Newspace parameters
| Level: | \( N \) | \(=\) | \( 357 = 3 \cdot 7 \cdot 17 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 357.u (of order \(8\), degree \(4\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(2.85065935216\) |
| Analytic rank: | \(0\) |
| Dimension: | \(32\) |
| Relative dimension: | \(8\) over \(\Q(\zeta_{8})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{8}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 43.1 | −1.83460 | + | 1.83460i | −0.923880 | − | 0.382683i | − | 4.73152i | −0.623364 | + | 1.50493i | 2.39702 | − | 0.992879i | −0.382683 | − | 0.923880i | 5.01125 | + | 5.01125i | 0.707107 | + | 0.707107i | −1.61733 | − | 3.90458i | |
| 43.2 | −1.37093 | + | 1.37093i | 0.923880 | + | 0.382683i | − | 1.75892i | 0.320309 | − | 0.773295i | −1.79121 | + | 0.741944i | 0.382683 | + | 0.923880i | −0.330500 | − | 0.330500i | 0.707107 | + | 0.707107i | 0.621014 | + | 1.49926i | |
| 43.3 | −0.952098 | + | 0.952098i | −0.923880 | − | 0.382683i | 0.187018i | 0.256532 | − | 0.619322i | 1.24398 | − | 0.515272i | −0.382683 | − | 0.923880i | −2.08226 | − | 2.08226i | 0.707107 | + | 0.707107i | 0.345412 | + | 0.833899i | ||
| 43.4 | −0.185935 | + | 0.185935i | 0.923880 | + | 0.382683i | 1.93086i | −0.965862 | + | 2.33180i | −0.242936 | + | 0.100627i | 0.382683 | + | 0.923880i | −0.730884 | − | 0.730884i | 0.707107 | + | 0.707107i | −0.253975 | − | 0.613150i | ||
| 43.5 | 0.0534575 | − | 0.0534575i | −0.923880 | − | 0.382683i | 1.99428i | −0.219585 | + | 0.530125i | −0.0698456 | + | 0.0289310i | −0.382683 | − | 0.923880i | 0.213525 | + | 0.213525i | 0.707107 | + | 0.707107i | 0.0166007 | + | 0.0400776i | ||
| 43.6 | 0.551860 | − | 0.551860i | 0.923880 | + | 0.382683i | 1.39090i | 0.697030 | − | 1.68278i | 0.721040 | − | 0.298665i | 0.382683 | + | 0.923880i | 1.87130 | + | 1.87130i | 0.707107 | + | 0.707107i | −0.543996 | − | 1.31332i | ||
| 43.7 | 0.719572 | − | 0.719572i | −0.923880 | − | 0.382683i | 0.964432i | 1.67621 | − | 4.04672i | −0.940166 | + | 0.389430i | −0.382683 | − | 0.923880i | 2.13312 | + | 2.13312i | 0.707107 | + | 0.707107i | −1.70576 | − | 4.11806i | ||
| 43.8 | 1.60447 | − | 1.60447i | 0.923880 | + | 0.382683i | − | 3.14862i | 0.272946 | − | 0.658950i | 2.09634 | − | 0.868331i | 0.382683 | + | 0.923880i | −1.84292 | − | 1.84292i | 0.707107 | + | 0.707107i | −0.619331 | − | 1.49520i | |
| 127.1 | −1.48525 | + | 1.48525i | −0.382683 | + | 0.923880i | − | 2.41192i | −0.446226 | − | 0.184833i | −0.803810 | − | 1.94057i | 0.923880 | − | 0.382683i | 0.611807 | + | 0.611807i | −0.707107 | − | 0.707107i | 0.937278 | − | 0.388233i | |
| 127.2 | −1.32716 | + | 1.32716i | 0.382683 | − | 0.923880i | − | 1.52271i | 1.27840 | + | 0.529531i | 0.718254 | + | 1.73402i | −0.923880 | + | 0.382683i | −0.633442 | − | 0.633442i | −0.707107 | − | 0.707107i | −2.39941 | + | 0.993870i | |
| 127.3 | −1.01985 | + | 1.01985i | 0.382683 | − | 0.923880i | − | 0.0802040i | −1.03308 | − | 0.427916i | 0.551941 | + | 1.33250i | −0.923880 | + | 0.382683i | −1.95791 | − | 1.95791i | −0.707107 | − | 0.707107i | 1.49000 | − | 0.617180i | |
| 127.4 | 0.124990 | − | 0.124990i | −0.382683 | + | 0.923880i | 1.96875i | 3.70116 | + | 1.53307i | 0.0676443 | + | 0.163308i | 0.923880 | − | 0.382683i | 0.496056 | + | 0.496056i | −0.707107 | − | 0.707107i | 0.654228 | − | 0.270990i | ||
| 127.5 | 0.764267 | − | 0.764267i | −0.382683 | + | 0.923880i | 0.831793i | −1.58285 | − | 0.655638i | 0.413618 | + | 0.998563i | 0.923880 | − | 0.382683i | 2.16424 | + | 2.16424i | −0.707107 | − | 0.707107i | −1.71080 | + | 0.708638i | ||
| 127.6 | 0.904145 | − | 0.904145i | 0.382683 | − | 0.923880i | 0.365044i | 2.54273 | + | 1.05323i | −0.489320 | − | 1.18132i | −0.923880 | + | 0.382683i | 2.13834 | + | 2.13834i | −0.707107 | − | 0.707107i | 3.25127 | − | 1.34672i | ||
| 127.7 | 1.60878 | − | 1.60878i | 0.382683 | − | 0.923880i | − | 3.17634i | −2.57128 | − | 1.06506i | −0.870665 | − | 2.10197i | −0.923880 | + | 0.382683i | −1.89248 | − | 1.89248i | −0.707107 | − | 0.707107i | −5.85006 | + | 2.42317i | |
| 127.8 | 1.84429 | − | 1.84429i | −0.382683 | + | 0.923880i | − | 4.80284i | −3.30307 | − | 1.36818i | 0.998125 | + | 2.40969i | 0.923880 | − | 0.382683i | −5.16926 | − | 5.16926i | −0.707107 | − | 0.707107i | −8.61515 | + | 3.56851i | |
| 253.1 | −1.48525 | − | 1.48525i | −0.382683 | − | 0.923880i | 2.41192i | −0.446226 | + | 0.184833i | −0.803810 | + | 1.94057i | 0.923880 | + | 0.382683i | 0.611807 | − | 0.611807i | −0.707107 | + | 0.707107i | 0.937278 | + | 0.388233i | ||
| 253.2 | −1.32716 | − | 1.32716i | 0.382683 | + | 0.923880i | 1.52271i | 1.27840 | − | 0.529531i | 0.718254 | − | 1.73402i | −0.923880 | − | 0.382683i | −0.633442 | + | 0.633442i | −0.707107 | + | 0.707107i | −2.39941 | − | 0.993870i | ||
| 253.3 | −1.01985 | − | 1.01985i | 0.382683 | + | 0.923880i | 0.0802040i | −1.03308 | + | 0.427916i | 0.551941 | − | 1.33250i | −0.923880 | − | 0.382683i | −1.95791 | + | 1.95791i | −0.707107 | + | 0.707107i | 1.49000 | + | 0.617180i | ||
| 253.4 | 0.124990 | + | 0.124990i | −0.382683 | − | 0.923880i | − | 1.96875i | 3.70116 | − | 1.53307i | 0.0676443 | − | 0.163308i | 0.923880 | + | 0.382683i | 0.496056 | − | 0.496056i | −0.707107 | + | 0.707107i | 0.654228 | + | 0.270990i | |
| See all 32 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 17.d | even | 8 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 357.2.u.a | ✓ | 32 |
| 17.d | even | 8 | 1 | inner | 357.2.u.a | ✓ | 32 |
| 17.e | odd | 16 | 1 | 6069.2.a.bj | 16 | ||
| 17.e | odd | 16 | 1 | 6069.2.a.bk | 16 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 357.2.u.a | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
| 357.2.u.a | ✓ | 32 | 17.d | even | 8 | 1 | inner |
| 6069.2.a.bj | 16 | 17.e | odd | 16 | 1 | ||
| 6069.2.a.bk | 16 | 17.e | odd | 16 | 1 | ||
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{32} + 102 T_{2}^{28} + 8 T_{2}^{27} - 56 T_{2}^{25} + 3605 T_{2}^{24} + 504 T_{2}^{23} + 32 T_{2}^{22} + \cdots + 4 \)
acting on \(S_{2}^{\mathrm{new}}(357, [\chi])\).