Properties

Label 357.2.u
Level $357$
Weight $2$
Character orbit 357.u
Rep. character $\chi_{357}(43,\cdot)$
Character field $\Q(\zeta_{8})$
Dimension $80$
Newform subspaces $2$
Sturm bound $96$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 357 = 3 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 357.u (of order \(8\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 17 \)
Character field: \(\Q(\zeta_{8})\)
Newform subspaces: \( 2 \)
Sturm bound: \(96\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(357, [\chi])\).

Total New Old
Modular forms 208 80 128
Cusp forms 176 80 96
Eisenstein series 32 0 32

Trace form

\( 80 q + 16 q^{6} - 128 q^{16} - 16 q^{17} + 16 q^{19} - 32 q^{20} - 16 q^{23} - 16 q^{24} + 48 q^{25} + 32 q^{26} - 16 q^{31} - 80 q^{32} + 16 q^{33} + 16 q^{34} - 16 q^{36} + 32 q^{37} - 32 q^{39} + 80 q^{40}+ \cdots - 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(357, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
357.2.u.a 357.u 17.d $32$ $2.851$ None 357.2.u.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$
357.2.u.b 357.u 17.d $48$ $2.851$ None 357.2.u.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$

Decomposition of \(S_{2}^{\mathrm{old}}(357, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(357, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(17, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(51, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(119, [\chi])\)\(^{\oplus 2}\)