Newspace parameters
Level: | \( N \) | \(=\) | \( 357 = 3 \cdot 7 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 357.bl (of order \(48\), degree \(16\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.85065935216\) |
Analytic rank: | \(0\) |
Dimension: | \(384\) |
Relative dimension: | \(24\) over \(\Q(\zeta_{48})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{48}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10.1 | −2.71325 | + | 0.357206i | 0.442289 | + | 0.896873i | 5.30228 | − | 1.42074i | 1.66378 | − | 1.45910i | −1.52041 | − | 2.27545i | −2.09469 | + | 1.61625i | −8.82222 | + | 3.65428i | −0.608761 | + | 0.793353i | −3.99306 | + | 4.55322i |
10.2 | −2.58210 | + | 0.339940i | −0.442289 | − | 0.896873i | 4.61985 | − | 1.23788i | −3.08620 | + | 2.70653i | 1.44692 | + | 2.16547i | −1.79393 | + | 1.94469i | −6.69585 | + | 2.77351i | −0.608761 | + | 0.793353i | 7.04884 | − | 8.03766i |
10.3 | −2.43556 | + | 0.320648i | 0.442289 | + | 0.896873i | 3.89730 | − | 1.04428i | −1.44985 | + | 1.27149i | −1.36480 | − | 2.04257i | 2.55244 | − | 0.696467i | −4.61810 | + | 1.91288i | −0.608761 | + | 0.793353i | 3.12351 | − | 3.56168i |
10.4 | −2.23347 | + | 0.294042i | −0.442289 | − | 0.896873i | 2.97008 | − | 0.795831i | 1.86915 | − | 1.63920i | 1.25156 | + | 1.87309i | 2.39791 | + | 1.11804i | −2.23706 | + | 0.926619i | −0.608761 | + | 0.793353i | −3.69270 | + | 4.21072i |
10.5 | −1.79328 | + | 0.236090i | 0.442289 | + | 0.896873i | 1.22827 | − | 0.329115i | 0.723589 | − | 0.634571i | −1.00489 | − | 1.50393i | −2.30150 | − | 1.30502i | 1.21721 | − | 0.504184i | −0.608761 | + | 0.793353i | −1.14778 | + | 1.30880i |
10.6 | −1.52158 | + | 0.200320i | −0.442289 | − | 0.896873i | 0.343232 | − | 0.0919687i | 0.535735 | − | 0.469827i | 0.852640 | + | 1.27607i | −0.930484 | + | 2.47673i | 2.33194 | − | 0.965923i | −0.608761 | + | 0.793353i | −0.721050 | + | 0.822199i |
10.7 | −1.37138 | + | 0.180546i | 0.442289 | + | 0.896873i | −0.0837632 | + | 0.0224443i | −0.803646 | + | 0.704779i | −0.768473 | − | 1.15010i | 0.896773 | + | 2.48914i | 2.66667 | − | 1.10457i | −0.608761 | + | 0.793353i | 0.974860 | − | 1.11161i |
10.8 | −1.32179 | + | 0.174017i | −0.442289 | − | 0.896873i | −0.215000 | + | 0.0576090i | −2.58490 | + | 2.26690i | 0.740685 | + | 1.10851i | 2.64573 | + | 0.0116518i | 2.73759 | − | 1.13395i | −0.608761 | + | 0.793353i | 3.02223 | − | 3.44619i |
10.9 | −0.870777 | + | 0.114640i | −0.442289 | − | 0.896873i | −1.18674 | + | 0.317986i | 3.24146 | − | 2.84269i | 0.487952 | + | 0.730272i | −2.13834 | − | 1.55805i | 2.61980 | − | 1.08516i | −0.608761 | + | 0.793353i | −2.49670 | + | 2.84695i |
10.10 | −0.528748 | + | 0.0696109i | 0.442289 | + | 0.896873i | −1.65712 | + | 0.444025i | 0.601022 | − | 0.527083i | −0.296291 | − | 0.443431i | 1.64107 | − | 2.07531i | 1.83072 | − | 0.758309i | −0.608761 | + | 0.793353i | −0.281098 | + | 0.320531i |
10.11 | −0.466046 | + | 0.0613562i | −0.442289 | − | 0.896873i | −1.71842 | + | 0.460448i | −1.35733 | + | 1.19035i | 0.261156 | + | 0.390847i | −1.84474 | − | 1.89656i | 1.64118 | − | 0.679800i | −0.608761 | + | 0.793353i | 0.559543 | − | 0.638037i |
10.12 | 0.0465376 | − | 0.00612679i | 0.442289 | + | 0.896873i | −1.92972 | + | 0.517068i | 3.21502 | − | 2.81950i | 0.0260780 | + | 0.0390285i | −1.10998 | + | 2.40166i | −0.173369 | + | 0.0718118i | −0.608761 | + | 0.793353i | 0.132345 | − | 0.150910i |
10.13 | 0.0808615 | − | 0.0106456i | 0.442289 | + | 0.896873i | −1.92543 | + | 0.515916i | 0.199390 | − | 0.174860i | 0.0453119 | + | 0.0678141i | −2.58704 | − | 0.554286i | −0.300903 | + | 0.124638i | −0.608761 | + | 0.793353i | 0.0142615 | − | 0.0162621i |
10.14 | 0.235499 | − | 0.0310041i | −0.442289 | − | 0.896873i | −1.87735 | + | 0.503035i | −0.00654072 | + | 0.00573606i | −0.131965 | − | 0.197500i | 1.26448 | + | 2.32402i | −0.865421 | + | 0.358469i | −0.608761 | + | 0.793353i | −0.00136250 | + | 0.00155363i |
10.15 | 0.559246 | − | 0.0736262i | −0.442289 | − | 0.896873i | −1.62452 | + | 0.435288i | 1.94651 | − | 1.70704i | −0.313382 | − | 0.469009i | 2.53814 | − | 0.746878i | −1.91873 | + | 0.794762i | −0.608761 | + | 0.793353i | 0.962895 | − | 1.09797i |
10.16 | 1.03243 | − | 0.135922i | 0.442289 | + | 0.896873i | −0.884410 | + | 0.236977i | −2.20366 | + | 1.93256i | 0.578538 | + | 0.865843i | 2.58525 | + | 0.562582i | −2.80503 | + | 1.16188i | −0.608761 | + | 0.793353i | −2.01245 | + | 2.29476i |
10.17 | 1.06738 | − | 0.140524i | −0.442289 | − | 0.896873i | −0.812294 | + | 0.217654i | −2.05370 | + | 1.80104i | −0.598123 | − | 0.895154i | −0.418160 | − | 2.61250i | −2.82573 | + | 1.17045i | −0.608761 | + | 0.793353i | −1.93899 | + | 2.21099i |
10.18 | 1.25234 | − | 0.164874i | 0.442289 | + | 0.896873i | −0.390673 | + | 0.104680i | −1.76440 | + | 1.54734i | 0.701768 | + | 1.05027i | −2.47727 | + | 0.929057i | −2.80599 | + | 1.16228i | −0.608761 | + | 0.793353i | −1.95452 | + | 2.22870i |
10.19 | 1.77641 | − | 0.233869i | 0.442289 | + | 0.896873i | 1.16909 | − | 0.313256i | 2.18661 | − | 1.91760i | 0.995437 | + | 1.48978i | 1.61314 | − | 2.09709i | −1.30718 | + | 0.541453i | −0.608761 | + | 0.793353i | 3.43585 | − | 3.91783i |
10.20 | 2.11462 | − | 0.278396i | 0.442289 | + | 0.896873i | 2.46228 | − | 0.659766i | 0.750143 | − | 0.657858i | 1.18496 | + | 1.77342i | 0.498513 | + | 2.59836i | 1.08209 | − | 0.448216i | −0.608761 | + | 0.793353i | 1.40313 | − | 1.59996i |
See next 80 embeddings (of 384 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.d | odd | 6 | 1 | inner |
17.e | odd | 16 | 1 | inner |
119.s | even | 48 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 357.2.bl.a | ✓ | 384 |
7.d | odd | 6 | 1 | inner | 357.2.bl.a | ✓ | 384 |
17.e | odd | 16 | 1 | inner | 357.2.bl.a | ✓ | 384 |
119.s | even | 48 | 1 | inner | 357.2.bl.a | ✓ | 384 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
357.2.bl.a | ✓ | 384 | 1.a | even | 1 | 1 | trivial |
357.2.bl.a | ✓ | 384 | 7.d | odd | 6 | 1 | inner |
357.2.bl.a | ✓ | 384 | 17.e | odd | 16 | 1 | inner |
357.2.bl.a | ✓ | 384 | 119.s | even | 48 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(357, [\chi])\).