gp: [N,k,chi] = [357,2,Mod(1,357)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(357, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("357.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [1,2,1,2,1,2,-1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
3 3 3
− 1 -1 − 1
7 7 7
+ 1 +1 + 1
17 17 1 7
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 357 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(357)) S 2 n e w ( Γ 0 ( 3 5 7 ) ) :
T 2 − 2 T_{2} - 2 T 2 − 2
T2 - 2
T 11 − 1 T_{11} - 1 T 1 1 − 1
T11 - 1
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T − 2 T - 2 T − 2
T - 2
3 3 3
T − 1 T - 1 T − 1
T - 1
5 5 5
T − 1 T - 1 T − 1
T - 1
7 7 7
T + 1 T + 1 T + 1
T + 1
11 11 1 1
T − 1 T - 1 T − 1
T - 1
13 13 1 3
T − 1 T - 1 T − 1
T - 1
17 17 1 7
T + 1 T + 1 T + 1
T + 1
19 19 1 9
T − 1 T - 1 T − 1
T - 1
23 23 2 3
T + 3 T + 3 T + 3
T + 3
29 29 2 9
T + 2 T + 2 T + 2
T + 2
31 31 3 1
T T T
T
37 37 3 7
T + 6 T + 6 T + 6
T + 6
41 41 4 1
T + 1 T + 1 T + 1
T + 1
43 43 4 3
T − 5 T - 5 T − 5
T - 5
47 47 4 7
T − 12 T - 12 T − 1 2
T - 12
53 53 5 3
T T T
T
59 59 5 9
T T T
T
61 61 6 1
T + 2 T + 2 T + 2
T + 2
67 67 6 7
T + 8 T + 8 T + 8
T + 8
71 71 7 1
T T T
T
73 73 7 3
T − 6 T - 6 T − 6
T - 6
79 79 7 9
T + 4 T + 4 T + 4
T + 4
83 83 8 3
T − 6 T - 6 T − 6
T - 6
89 89 8 9
T − 16 T - 16 T − 1 6
T - 16
97 97 9 7
T + 12 T + 12 T + 1 2
T + 12
show more
show less