gp: [N,k,chi] = [357,2,Mod(1,357)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(357, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("357.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [1,0,-1,-2,1,0,1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
3 3 3
+ 1 +1 + 1
7 7 7
− 1 -1 − 1
17 17 1 7
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 357 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(357)) S 2 n e w ( Γ 0 ( 3 5 7 ) ) :
T 2 T_{2} T 2
T2
T 11 + 5 T_{11} + 5 T 1 1 + 5
T11 + 5
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T T T
T
3 3 3
T + 1 T + 1 T + 1
T + 1
5 5 5
T − 1 T - 1 T − 1
T - 1
7 7 7
T − 1 T - 1 T − 1
T - 1
11 11 1 1
T + 5 T + 5 T + 5
T + 5
13 13 1 3
T + 5 T + 5 T + 5
T + 5
17 17 1 7
T − 1 T - 1 T − 1
T - 1
19 19 1 9
T + 5 T + 5 T + 5
T + 5
23 23 2 3
T + 1 T + 1 T + 1
T + 1
29 29 2 9
T + 6 T + 6 T + 6
T + 6
31 31 3 1
T + 6 T + 6 T + 6
T + 6
37 37 3 7
T − 4 T - 4 T − 4
T - 4
41 41 4 1
T − 7 T - 7 T − 7
T - 7
43 43 4 3
T + 7 T + 7 T + 7
T + 7
47 47 4 7
T − 6 T - 6 T − 6
T - 6
53 53 5 3
T − 6 T - 6 T − 6
T - 6
59 59 5 9
T − 14 T - 14 T − 1 4
T - 14
61 61 6 1
T T T
T
67 67 6 7
T + 12 T + 12 T + 1 2
T + 12
71 71 7 1
T − 4 T - 4 T − 4
T - 4
73 73 7 3
T − 6 T - 6 T − 6
T - 6
79 79 7 9
T + 6 T + 6 T + 6
T + 6
83 83 8 3
T + 6 T + 6 T + 6
T + 6
89 89 8 9
T − 12 T - 12 T − 1 2
T - 12
97 97 9 7
T − 8 T - 8 T − 8
T - 8
show more
show less