Learn more

Refine search


Results (1-50 of 113 matches)

Next   displayed columns for results
Label Char Prim Dim $A$ Field CM Minimal twist Traces Fricke sign Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
357.2.a.a 357.a 1.a $1$ $2.851$ \(\Q\) None 357.2.a.a \(-2\) \(1\) \(-3\) \(1\) $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+q^{3}+2q^{4}-3q^{5}-2q^{6}+\cdots\)
357.2.a.b 357.a 1.a $1$ $2.851$ \(\Q\) None 357.2.a.b \(0\) \(-1\) \(1\) \(-1\) $-$ $\mathrm{SU}(2)$ \(q-q^{3}-2q^{4}+q^{5}-q^{7}+q^{9}+3q^{11}+\cdots\)
357.2.a.c 357.a 1.a $1$ $2.851$ \(\Q\) None 357.2.a.c \(0\) \(-1\) \(1\) \(1\) $+$ $\mathrm{SU}(2)$ \(q-q^{3}-2q^{4}+q^{5}+q^{7}+q^{9}-5q^{11}+\cdots\)
357.2.a.d 357.a 1.a $1$ $2.851$ \(\Q\) None 357.2.a.d \(2\) \(1\) \(1\) \(-1\) $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+q^{3}+2q^{4}+q^{5}+2q^{6}-q^{7}+\cdots\)
357.2.a.e 357.a 1.a $2$ $2.851$ \(\Q(\sqrt{3}) \) None 357.2.a.e \(-2\) \(2\) \(-4\) \(-2\) $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta )q^{2}+q^{3}+(2-2\beta )q^{4}+(-2+\cdots)q^{5}+\cdots\)
357.2.a.f 357.a 1.a $2$ $2.851$ \(\Q(\sqrt{2}) \) None 357.2.a.f \(0\) \(-2\) \(-2\) \(-2\) $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}-q^{3}+(-1-\beta )q^{5}-\beta q^{6}+\cdots\)
357.2.a.g 357.a 1.a $3$ $2.851$ 3.3.316.1 None 357.2.a.g \(1\) \(3\) \(2\) \(3\) $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+q^{3}+(1+\beta _{2})q^{4}+(1-\beta _{1}+\cdots)q^{5}+\cdots\)
357.2.a.h 357.a 1.a $4$ $2.851$ 4.4.7232.1 None 357.2.a.h \(2\) \(-4\) \(-2\) \(4\) $-$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{2}-q^{3}+(1-\beta _{2}-\beta _{3})q^{4}+\beta _{1}q^{5}+\cdots\)
357.2.c.a 357.c 357.c $20$ $2.851$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) \(\Q(\sqrt{-119}) \) 357.2.c.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+\beta _{8}q^{2}+\beta _{18}q^{3}+(-2-\beta _{10})q^{4}+\cdots\)
357.2.c.b 357.c 357.c $24$ $2.851$ None 357.2.c.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$
357.2.d.a 357.d 21.c $22$ $2.851$ None 357.2.d.a \(0\) \(0\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{2}]$
357.2.d.b 357.d 21.c $22$ $2.851$ None 357.2.d.a \(0\) \(0\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{2}]$
357.2.f.a 357.f 17.b $6$ $2.851$ 6.0.350464.1 None 357.2.f.a \(4\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(1+\beta _{2})q^{2}+\beta _{3}q^{3}+(1+\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
357.2.f.b 357.f 17.b $10$ $2.851$ 10.0.\(\cdots\).1 None 357.2.f.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{3}q^{2}-\beta _{2}q^{3}+(2-\beta _{8})q^{4}+(\beta _{2}+\cdots)q^{5}+\cdots\)
357.2.i.a 357.i 7.c $2$ $2.851$ \(\Q(\sqrt{-3}) \) None 357.2.i.a \(-1\) \(-1\) \(-3\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q-\zeta_{6}q^{2}+(-1+\zeta_{6})q^{3}+(1-\zeta_{6})q^{4}+\cdots\)
357.2.i.b 357.i 7.c $2$ $2.851$ \(\Q(\sqrt{-3}) \) None 357.2.i.b \(0\) \(1\) \(-4\) \(5\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{3}+(2-2\zeta_{6})q^{4}-4\zeta_{6}q^{5}+\cdots\)
357.2.i.c 357.i 7.c $2$ $2.851$ \(\Q(\sqrt{-3}) \) None 357.2.i.c \(1\) \(-1\) \(-1\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+\zeta_{6}q^{2}+(-1+\zeta_{6})q^{3}+(1-\zeta_{6})q^{4}+\cdots\)
357.2.i.d 357.i 7.c $8$ $2.851$ 8.0.1767277521.3 None 357.2.i.d \(1\) \(-4\) \(-4\) \(7\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{3}+\beta _{7})q^{2}-\beta _{6}q^{3}+(\beta _{4}+\beta _{5}-2\beta _{6}+\cdots)q^{4}+\cdots\)
357.2.i.e 357.i 7.c $8$ $2.851$ 8.0.7007196681.1 None 357.2.i.e \(3\) \(-4\) \(6\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\beta _{1}+\beta _{4})q^{2}+\beta _{4}q^{3}+(-\beta _{1}+\cdots)q^{4}+\cdots\)
357.2.i.f 357.i 7.c $10$ $2.851$ 10.0.\(\cdots\).1 None 357.2.i.f \(2\) \(5\) \(-1\) \(-5\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{1}+\beta _{2}-\beta _{8})q^{2}+\beta _{4}q^{3}+(\beta _{2}+\cdots)q^{4}+\cdots\)
357.2.i.g 357.i 7.c $12$ $2.851$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 357.2.i.g \(-2\) \(6\) \(7\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{1}q^{2}-\beta _{5}q^{3}+(\beta _{1}+\beta _{2}+\beta _{5}-\beta _{6}+\cdots)q^{4}+\cdots\)
357.2.k.a 357.k 17.c $12$ $2.851$ 12.0.\(\cdots\).1 None 357.2.k.a \(0\) \(0\) \(8\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{10}q^{2}-\beta _{9}q^{3}+(1-\beta _{2}+\beta _{7}-\beta _{8}+\cdots)q^{4}+\cdots\)
357.2.k.b 357.k 17.c $20$ $2.851$ \(\mathbb{Q}[x]/(x^{20} + \cdots)\) None 357.2.k.b \(0\) \(0\) \(8\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{1}q^{2}+\beta _{9}q^{3}+(-1-\beta _{7}+\beta _{8}+\cdots)q^{4}+\cdots\)
357.2.l.a 357.l 357.l $4$ $2.851$ \(\Q(i, \sqrt{5})\) None 357.2.l.a \(0\) \(-2\) \(4\) \(-6\) $\mathrm{SU}(2)[C_{4}]$ \(q+(1+\beta _{1}-\beta _{3})q^{2}+(-1+\beta _{3})q^{3}+\cdots\)
357.2.l.b 357.l 357.l $4$ $2.851$ \(\Q(i, \sqrt{5})\) None 357.2.l.a \(0\) \(2\) \(-4\) \(-6\) $\mathrm{SU}(2)[C_{4}]$ \(q+(1+\beta _{1}-\beta _{3})q^{2}+(1-\beta _{3})q^{3}+3q^{4}+\cdots\)
357.2.l.c 357.l 357.l $80$ $2.851$ None 357.2.l.c \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{4}]$
357.2.p.a 357.p 119.j $48$ $2.851$ None 357.2.p.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$
357.2.r.a 357.r 21.g $2$ $2.851$ \(\Q(\sqrt{-3}) \) None 357.2.r.a \(-3\) \(-3\) \(-3\) \(4\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-2+\zeta_{6})q^{2}+(-1-\zeta_{6})q^{3}+(1+\cdots)q^{4}+\cdots\)
357.2.r.b 357.r 21.g $2$ $2.851$ \(\Q(\sqrt{-3}) \) None 357.2.r.b \(-3\) \(3\) \(0\) \(4\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-2+\zeta_{6})q^{2}+(2-\zeta_{6})q^{3}+(1-\zeta_{6})q^{4}+\cdots\)
357.2.r.c 357.r 21.g $2$ $2.851$ \(\Q(\sqrt{-3}) \) None 357.2.r.a \(3\) \(-3\) \(3\) \(4\) $\mathrm{SU}(2)[C_{6}]$ \(q+(2-\zeta_{6})q^{2}+(-1-\zeta_{6})q^{3}+(1-\zeta_{6})q^{4}+\cdots\)
357.2.r.d 357.r 21.g $2$ $2.851$ \(\Q(\sqrt{-3}) \) None 357.2.r.b \(3\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{6}]$ \(q+(2-\zeta_{6})q^{2}+(-1+2\zeta_{6})q^{3}+(1-\zeta_{6})q^{4}+\cdots\)
357.2.r.e 357.r 21.g $4$ $2.851$ \(\Q(\sqrt{-3}, \sqrt{-11})\) None 357.2.r.e \(-6\) \(-2\) \(-1\) \(-8\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-2+\beta _{2})q^{2}+(-\beta _{1}+\beta _{3})q^{3}+(1+\cdots)q^{4}+\cdots\)
357.2.r.f 357.r 21.g $4$ $2.851$ \(\Q(\sqrt{-3}, \sqrt{-11})\) None 357.2.r.e \(6\) \(-1\) \(1\) \(-8\) $\mathrm{SU}(2)[C_{6}]$ \(q+(1+\beta _{2})q^{2}-\beta _{1}q^{3}+\beta _{2}q^{4}+(1-\beta _{1}+\cdots)q^{5}+\cdots\)
357.2.r.g 357.r 21.g $34$ $2.851$ None 357.2.r.g \(-6\) \(4\) \(2\) \(-5\) $\mathrm{SU}(2)[C_{6}]$
357.2.r.h 357.r 21.g $34$ $2.851$ None 357.2.r.g \(6\) \(2\) \(-2\) \(-5\) $\mathrm{SU}(2)[C_{6}]$
357.2.s.a 357.s 357.s $88$ $2.851$ None 357.2.s.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$
357.2.u.a 357.u 17.d $32$ $2.851$ None 357.2.u.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$
357.2.u.b 357.u 17.d $48$ $2.851$ None 357.2.u.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$
357.2.w.a 357.w 357.w $176$ $2.851$ None 357.2.w.a \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{8}]$
357.2.y.a 357.y 357.y $176$ $2.851$ None 357.2.y.a \(0\) \(-6\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{12}]$
357.2.bb.a 357.bb 119.n $96$ $2.851$ None 357.2.bb.a \(0\) \(0\) \(4\) \(4\) $\mathrm{SU}(2)[C_{12}]$
357.2.bc.a 357.bc 119.p $192$ $2.851$ None 357.2.bc.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{16}]$
357.2.bf.a 357.bf 51.i $288$ $2.851$ None 357.2.bf.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{16}]$
357.2.bh.a 357.bh 119.q $192$ $2.851$ None 357.2.bh.a \(0\) \(0\) \(-8\) \(0\) $\mathrm{SU}(2)[C_{24}]$
357.2.bj.a 357.bj 357.aj $352$ $2.851$ None 357.2.bj.a \(0\) \(-12\) \(0\) \(-16\) $\mathrm{SU}(2)[C_{24}]$
357.2.bl.a 357.bl 119.s $384$ $2.851$ None 357.2.bl.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{48}]$
357.2.bm.a 357.bm 357.am $704$ $2.851$ None 357.2.bm.a \(0\) \(-8\) \(0\) \(-32\) $\mathrm{SU}(2)[C_{48}]$
357.3.b.a 357.b 3.b $64$ $9.728$ None 357.3.b.a \(0\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$
357.3.e.a 357.e 51.c $72$ $9.728$ None 357.3.e.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$
357.3.g.a 357.g 7.b $44$ $9.728$ None 357.3.g.a \(-4\) \(0\) \(0\) \(-16\) $\mathrm{SU}(2)[C_{2}]$
Next   displayed columns for results