Properties

Label 3549.2.l
Level $3549$
Weight $2$
Character orbit 3549.l
Rep. character $\chi_{3549}(529,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $410$
Sturm bound $970$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3549 = 3 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3549.l (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 91 \)
Character field: \(\Q(\zeta_{3})\)
Sturm bound: \(970\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3549, [\chi])\).

Total New Old
Modular forms 1026 410 616
Cusp forms 914 410 504
Eisenstein series 112 0 112

Trace form

\( 410q + 3q^{3} + 408q^{4} - 205q^{9} + O(q^{10}) \) \( 410q + 3q^{3} + 408q^{4} - 205q^{9} + 8q^{10} + 4q^{11} + 8q^{12} + 20q^{14} + 388q^{16} + 16q^{17} + 3q^{19} + 8q^{20} + 5q^{21} - 2q^{22} - 16q^{23} - 12q^{24} - 195q^{25} - 6q^{27} + 16q^{28} + 11q^{31} + 40q^{32} + 56q^{34} - 10q^{35} - 204q^{36} + 46q^{37} - 28q^{38} + 34q^{40} - 18q^{41} + 14q^{42} + 20q^{44} - 16q^{46} - 12q^{47} + 18q^{48} + 2q^{49} + 2q^{50} - 12q^{51} - 32q^{53} + 30q^{55} + 86q^{56} + 38q^{57} - 20q^{58} - 64q^{59} - 32q^{60} + 5q^{61} - 8q^{62} - 3q^{63} + 412q^{64} + 16q^{66} - 17q^{67} + 88q^{68} + 8q^{69} - 76q^{70} - 10q^{71} - 4q^{73} + 24q^{74} - 58q^{75} + 12q^{76} + 26q^{77} + 19q^{79} - 20q^{80} - 205q^{81} + 14q^{82} - 64q^{83} + 8q^{84} + 20q^{85} - 20q^{86} - 60q^{87} - 24q^{88} + 32q^{89} - 16q^{90} - 28q^{92} - 34q^{93} + 60q^{94} - 112q^{95} - 14q^{96} - 23q^{97} + 58q^{98} - 8q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(3549, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3549, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3549, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(91, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(273, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1183, [\chi])\)\(^{\oplus 2}\)