Properties

Label 3549.2.a.w.1.4
Level $3549$
Weight $2$
Character 3549.1
Self dual yes
Analytic conductor $28.339$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3549,2,Mod(1,3549)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3549, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3549.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3549 = 3 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3549.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(28.3389076774\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.17428.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 6x^{2} + 4x + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 273)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.787711\) of defining polynomial
Character \(\chi\) \(=\) 3549.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.37951 q^{2} +1.00000 q^{3} +3.66208 q^{4} +2.66208 q^{5} +2.37951 q^{6} -1.00000 q^{7} +3.95493 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+2.37951 q^{2} +1.00000 q^{3} +3.66208 q^{4} +2.66208 q^{5} +2.37951 q^{6} -1.00000 q^{7} +3.95493 q^{8} +1.00000 q^{9} +6.33445 q^{10} -1.57542 q^{11} +3.66208 q^{12} -2.37951 q^{14} +2.66208 q^{15} +2.08666 q^{16} +4.75902 q^{17} +2.37951 q^{18} +2.23750 q^{19} +9.74873 q^{20} -1.00000 q^{21} -3.74873 q^{22} +5.84568 q^{23} +3.95493 q^{24} +2.08666 q^{25} +1.00000 q^{27} -3.66208 q^{28} +4.23750 q^{29} +6.33445 q^{30} -7.28055 q^{31} -2.94464 q^{32} -1.57542 q^{33} +11.3242 q^{34} -2.66208 q^{35} +3.66208 q^{36} -10.4750 q^{37} +5.32415 q^{38} +10.5283 q^{40} +2.25127 q^{41} -2.37951 q^{42} +0.913344 q^{43} -5.76931 q^{44} +2.66208 q^{45} +13.9099 q^{46} +2.09695 q^{47} +2.08666 q^{48} +1.00000 q^{49} +4.96522 q^{50} +4.75902 q^{51} +1.08666 q^{53} +2.37951 q^{54} -4.19389 q^{55} -3.95493 q^{56} +2.23750 q^{57} +10.0832 q^{58} +12.3344 q^{59} +9.74873 q^{60} -7.51805 q^{61} -17.3242 q^{62} -1.00000 q^{63} -11.1801 q^{64} -3.74873 q^{66} +15.6914 q^{67} +17.4279 q^{68} +5.84568 q^{69} -6.33445 q^{70} -10.0504 q^{71} +3.95493 q^{72} -15.0797 q^{73} -24.9254 q^{74} +2.08666 q^{75} +8.19389 q^{76} +1.57542 q^{77} -11.7555 q^{79} +5.55484 q^{80} +1.00000 q^{81} +5.35692 q^{82} -7.42110 q^{83} -3.66208 q^{84} +12.6689 q^{85} +2.17331 q^{86} +4.23750 q^{87} -6.23069 q^{88} +11.1371 q^{89} +6.33445 q^{90} +21.4073 q^{92} -7.28055 q^{93} +4.98971 q^{94} +5.95639 q^{95} -2.94464 q^{96} +14.6047 q^{97} +2.37951 q^{98} -1.57542 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} + 4 q^{3} + 7 q^{4} + 3 q^{5} - q^{6} - 4 q^{7} - 3 q^{8} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - q^{2} + 4 q^{3} + 7 q^{4} + 3 q^{5} - q^{6} - 4 q^{7} - 3 q^{8} + 4 q^{9} - 4 q^{10} + 2 q^{11} + 7 q^{12} + q^{14} + 3 q^{15} + 9 q^{16} - 2 q^{17} - q^{18} - 7 q^{19} + 32 q^{20} - 4 q^{21} - 8 q^{22} + 3 q^{23} - 3 q^{24} + 9 q^{25} + 4 q^{27} - 7 q^{28} + q^{29} - 4 q^{30} - 3 q^{31} - 7 q^{32} + 2 q^{33} + 30 q^{34} - 3 q^{35} + 7 q^{36} - 10 q^{37} + 6 q^{38} - 14 q^{40} + 16 q^{41} + q^{42} + 3 q^{43} + 12 q^{44} + 3 q^{45} + 18 q^{46} - 5 q^{47} + 9 q^{48} + 4 q^{49} - 13 q^{50} - 2 q^{51} + 5 q^{53} - q^{54} + 10 q^{55} + 3 q^{56} - 7 q^{57} + 4 q^{58} + 20 q^{59} + 32 q^{60} + 12 q^{61} - 54 q^{62} - 4 q^{63} + 5 q^{64} - 8 q^{66} + 22 q^{67} - 10 q^{68} + 3 q^{69} + 4 q^{70} - 3 q^{72} + 13 q^{73} - 6 q^{74} + 9 q^{75} + 6 q^{76} - 2 q^{77} + 11 q^{79} + 42 q^{80} + 4 q^{81} + 10 q^{82} - q^{83} - 7 q^{84} - 8 q^{85} + 10 q^{86} + q^{87} - 60 q^{88} + 5 q^{89} - 4 q^{90} + 34 q^{92} - 3 q^{93} + 34 q^{94} + 13 q^{95} - 7 q^{96} + 17 q^{97} - q^{98} + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.37951 1.68257 0.841285 0.540593i \(-0.181800\pi\)
0.841285 + 0.540593i \(0.181800\pi\)
\(3\) 1.00000 0.577350
\(4\) 3.66208 1.83104
\(5\) 2.66208 1.19052 0.595259 0.803534i \(-0.297050\pi\)
0.595259 + 0.803534i \(0.297050\pi\)
\(6\) 2.37951 0.971432
\(7\) −1.00000 −0.377964
\(8\) 3.95493 1.39828
\(9\) 1.00000 0.333333
\(10\) 6.33445 2.00313
\(11\) −1.57542 −0.475007 −0.237504 0.971387i \(-0.576329\pi\)
−0.237504 + 0.971387i \(0.576329\pi\)
\(12\) 3.66208 1.05715
\(13\) 0 0
\(14\) −2.37951 −0.635951
\(15\) 2.66208 0.687345
\(16\) 2.08666 0.521664
\(17\) 4.75902 1.15423 0.577116 0.816662i \(-0.304178\pi\)
0.577116 + 0.816662i \(0.304178\pi\)
\(18\) 2.37951 0.560856
\(19\) 2.23750 0.513317 0.256659 0.966502i \(-0.417378\pi\)
0.256659 + 0.966502i \(0.417378\pi\)
\(20\) 9.74873 2.17988
\(21\) −1.00000 −0.218218
\(22\) −3.74873 −0.799233
\(23\) 5.84568 1.21891 0.609454 0.792821i \(-0.291389\pi\)
0.609454 + 0.792821i \(0.291389\pi\)
\(24\) 3.95493 0.807297
\(25\) 2.08666 0.417331
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) −3.66208 −0.692068
\(29\) 4.23750 0.786884 0.393442 0.919349i \(-0.371284\pi\)
0.393442 + 0.919349i \(0.371284\pi\)
\(30\) 6.33445 1.15651
\(31\) −7.28055 −1.30763 −0.653813 0.756656i \(-0.726832\pi\)
−0.653813 + 0.756656i \(0.726832\pi\)
\(32\) −2.94464 −0.520544
\(33\) −1.57542 −0.274246
\(34\) 11.3242 1.94208
\(35\) −2.66208 −0.449973
\(36\) 3.66208 0.610346
\(37\) −10.4750 −1.72208 −0.861039 0.508538i \(-0.830186\pi\)
−0.861039 + 0.508538i \(0.830186\pi\)
\(38\) 5.32415 0.863692
\(39\) 0 0
\(40\) 10.5283 1.66468
\(41\) 2.25127 0.351589 0.175794 0.984427i \(-0.443751\pi\)
0.175794 + 0.984427i \(0.443751\pi\)
\(42\) −2.37951 −0.367167
\(43\) 0.913344 0.139284 0.0696418 0.997572i \(-0.477814\pi\)
0.0696418 + 0.997572i \(0.477814\pi\)
\(44\) −5.76931 −0.869757
\(45\) 2.66208 0.396839
\(46\) 13.9099 2.05090
\(47\) 2.09695 0.305871 0.152936 0.988236i \(-0.451127\pi\)
0.152936 + 0.988236i \(0.451127\pi\)
\(48\) 2.08666 0.301183
\(49\) 1.00000 0.142857
\(50\) 4.96522 0.702189
\(51\) 4.75902 0.666397
\(52\) 0 0
\(53\) 1.08666 0.149264 0.0746319 0.997211i \(-0.476222\pi\)
0.0746319 + 0.997211i \(0.476222\pi\)
\(54\) 2.37951 0.323811
\(55\) −4.19389 −0.565504
\(56\) −3.95493 −0.528500
\(57\) 2.23750 0.296364
\(58\) 10.0832 1.32399
\(59\) 12.3344 1.60581 0.802904 0.596108i \(-0.203287\pi\)
0.802904 + 0.596108i \(0.203287\pi\)
\(60\) 9.74873 1.25856
\(61\) −7.51805 −0.962587 −0.481294 0.876559i \(-0.659833\pi\)
−0.481294 + 0.876559i \(0.659833\pi\)
\(62\) −17.3242 −2.20017
\(63\) −1.00000 −0.125988
\(64\) −11.1801 −1.39752
\(65\) 0 0
\(66\) −3.74873 −0.461437
\(67\) 15.6914 1.91700 0.958502 0.285084i \(-0.0920217\pi\)
0.958502 + 0.285084i \(0.0920217\pi\)
\(68\) 17.4279 2.11345
\(69\) 5.84568 0.703737
\(70\) −6.33445 −0.757111
\(71\) −10.0504 −1.19277 −0.596383 0.802700i \(-0.703396\pi\)
−0.596383 + 0.802700i \(0.703396\pi\)
\(72\) 3.95493 0.466093
\(73\) −15.0797 −1.76495 −0.882473 0.470363i \(-0.844123\pi\)
−0.882473 + 0.470363i \(0.844123\pi\)
\(74\) −24.9254 −2.89752
\(75\) 2.08666 0.240946
\(76\) 8.19389 0.939904
\(77\) 1.57542 0.179536
\(78\) 0 0
\(79\) −11.7555 −1.32260 −0.661301 0.750121i \(-0.729995\pi\)
−0.661301 + 0.750121i \(0.729995\pi\)
\(80\) 5.55484 0.621050
\(81\) 1.00000 0.111111
\(82\) 5.35692 0.591572
\(83\) −7.42110 −0.814572 −0.407286 0.913301i \(-0.633525\pi\)
−0.407286 + 0.913301i \(0.633525\pi\)
\(84\) −3.66208 −0.399565
\(85\) 12.6689 1.37413
\(86\) 2.17331 0.234354
\(87\) 4.23750 0.454308
\(88\) −6.23069 −0.664193
\(89\) 11.1371 1.18053 0.590264 0.807210i \(-0.299024\pi\)
0.590264 + 0.807210i \(0.299024\pi\)
\(90\) 6.33445 0.667709
\(91\) 0 0
\(92\) 21.4073 2.23187
\(93\) −7.28055 −0.754958
\(94\) 4.98971 0.514649
\(95\) 5.95639 0.611113
\(96\) −2.94464 −0.300536
\(97\) 14.6047 1.48288 0.741442 0.671017i \(-0.234142\pi\)
0.741442 + 0.671017i \(0.234142\pi\)
\(98\) 2.37951 0.240367
\(99\) −1.57542 −0.158336
\(100\) 7.64150 0.764150
\(101\) −11.4349 −1.13781 −0.568906 0.822403i \(-0.692633\pi\)
−0.568906 + 0.822403i \(0.692633\pi\)
\(102\) 11.3242 1.12126
\(103\) 11.1508 1.09873 0.549363 0.835584i \(-0.314871\pi\)
0.549363 + 0.835584i \(0.314871\pi\)
\(104\) 0 0
\(105\) −2.66208 −0.259792
\(106\) 2.58571 0.251147
\(107\) 2.28403 0.220805 0.110403 0.993887i \(-0.464786\pi\)
0.110403 + 0.993887i \(0.464786\pi\)
\(108\) 3.66208 0.352384
\(109\) −14.6689 −1.40502 −0.702512 0.711671i \(-0.747938\pi\)
−0.702512 + 0.711671i \(0.747938\pi\)
\(110\) −9.97942 −0.951500
\(111\) −10.4750 −0.994243
\(112\) −2.08666 −0.197170
\(113\) −4.23750 −0.398630 −0.199315 0.979935i \(-0.563872\pi\)
−0.199315 + 0.979935i \(0.563872\pi\)
\(114\) 5.32415 0.498653
\(115\) 15.5617 1.45113
\(116\) 15.5180 1.44081
\(117\) 0 0
\(118\) 29.3500 2.70188
\(119\) −4.75902 −0.436259
\(120\) 10.5283 0.961101
\(121\) −8.51805 −0.774368
\(122\) −17.8893 −1.61962
\(123\) 2.25127 0.202990
\(124\) −26.6619 −2.39431
\(125\) −7.75555 −0.693677
\(126\) −2.37951 −0.211984
\(127\) 4.84916 0.430293 0.215147 0.976582i \(-0.430977\pi\)
0.215147 + 0.976582i \(0.430977\pi\)
\(128\) −20.7140 −1.83087
\(129\) 0.913344 0.0804154
\(130\) 0 0
\(131\) −6.36721 −0.556305 −0.278153 0.960537i \(-0.589722\pi\)
−0.278153 + 0.960537i \(0.589722\pi\)
\(132\) −5.76931 −0.502154
\(133\) −2.23750 −0.194016
\(134\) 37.3378 3.22549
\(135\) 2.66208 0.229115
\(136\) 18.8216 1.61394
\(137\) 18.0258 1.54005 0.770024 0.638015i \(-0.220244\pi\)
0.770024 + 0.638015i \(0.220244\pi\)
\(138\) 13.9099 1.18409
\(139\) 2.67585 0.226962 0.113481 0.993540i \(-0.463800\pi\)
0.113481 + 0.993540i \(0.463800\pi\)
\(140\) −9.74873 −0.823918
\(141\) 2.09695 0.176595
\(142\) −23.9151 −2.00691
\(143\) 0 0
\(144\) 2.08666 0.173888
\(145\) 11.2805 0.936799
\(146\) −35.8823 −2.96964
\(147\) 1.00000 0.0824786
\(148\) −38.3603 −3.15319
\(149\) 7.46471 0.611533 0.305766 0.952107i \(-0.401087\pi\)
0.305766 + 0.952107i \(0.401087\pi\)
\(150\) 4.96522 0.405409
\(151\) −13.0155 −1.05919 −0.529594 0.848251i \(-0.677656\pi\)
−0.529594 + 0.848251i \(0.677656\pi\)
\(152\) 8.84916 0.717761
\(153\) 4.75902 0.384744
\(154\) 3.74873 0.302082
\(155\) −19.3814 −1.55675
\(156\) 0 0
\(157\) −17.1233 −1.36659 −0.683294 0.730143i \(-0.739453\pi\)
−0.683294 + 0.730143i \(0.739453\pi\)
\(158\) −27.9725 −2.22537
\(159\) 1.08666 0.0861774
\(160\) −7.83887 −0.619717
\(161\) −5.84568 −0.460704
\(162\) 2.37951 0.186952
\(163\) 0.849158 0.0665112 0.0332556 0.999447i \(-0.489412\pi\)
0.0332556 + 0.999447i \(0.489412\pi\)
\(164\) 8.24431 0.643773
\(165\) −4.19389 −0.326494
\(166\) −17.6586 −1.37057
\(167\) −18.3781 −1.42214 −0.711068 0.703123i \(-0.751788\pi\)
−0.711068 + 0.703123i \(0.751788\pi\)
\(168\) −3.95493 −0.305130
\(169\) 0 0
\(170\) 30.1458 2.31208
\(171\) 2.23750 0.171106
\(172\) 3.34474 0.255034
\(173\) −12.2565 −0.931844 −0.465922 0.884826i \(-0.654277\pi\)
−0.465922 + 0.884826i \(0.654277\pi\)
\(174\) 10.0832 0.764404
\(175\) −2.08666 −0.157736
\(176\) −3.28736 −0.247794
\(177\) 12.3344 0.927114
\(178\) 26.5008 1.98632
\(179\) 18.5146 1.38384 0.691922 0.721972i \(-0.256764\pi\)
0.691922 + 0.721972i \(0.256764\pi\)
\(180\) 9.74873 0.726628
\(181\) −18.1664 −1.35029 −0.675147 0.737683i \(-0.735920\pi\)
−0.675147 + 0.737683i \(0.735920\pi\)
\(182\) 0 0
\(183\) −7.51805 −0.555750
\(184\) 23.1193 1.70438
\(185\) −27.8853 −2.05016
\(186\) −17.3242 −1.27027
\(187\) −7.49747 −0.548269
\(188\) 7.67918 0.560062
\(189\) −1.00000 −0.0727393
\(190\) 14.1733 1.02824
\(191\) 23.5151 1.70149 0.850747 0.525575i \(-0.176150\pi\)
0.850747 + 0.525575i \(0.176150\pi\)
\(192\) −11.1801 −0.806856
\(193\) −14.7344 −1.06061 −0.530303 0.847808i \(-0.677922\pi\)
−0.530303 + 0.847808i \(0.677922\pi\)
\(194\) 34.7521 2.49505
\(195\) 0 0
\(196\) 3.66208 0.261577
\(197\) −14.5008 −1.03314 −0.516570 0.856245i \(-0.672791\pi\)
−0.516570 + 0.856245i \(0.672791\pi\)
\(198\) −3.74873 −0.266411
\(199\) −13.5180 −0.958269 −0.479135 0.877741i \(-0.659049\pi\)
−0.479135 + 0.877741i \(0.659049\pi\)
\(200\) 8.25259 0.583546
\(201\) 15.6914 1.10678
\(202\) −27.2094 −1.91445
\(203\) −4.23750 −0.297414
\(204\) 17.4279 1.22020
\(205\) 5.99305 0.418572
\(206\) 26.5336 1.84868
\(207\) 5.84568 0.406303
\(208\) 0 0
\(209\) −3.52500 −0.243830
\(210\) −6.33445 −0.437118
\(211\) 4.06419 0.279790 0.139895 0.990166i \(-0.455323\pi\)
0.139895 + 0.990166i \(0.455323\pi\)
\(212\) 3.97942 0.273308
\(213\) −10.0504 −0.688643
\(214\) 5.43487 0.371520
\(215\) 2.43139 0.165820
\(216\) 3.95493 0.269099
\(217\) 7.28055 0.494236
\(218\) −34.9048 −2.36405
\(219\) −15.0797 −1.01899
\(220\) −15.3584 −1.03546
\(221\) 0 0
\(222\) −24.9254 −1.67288
\(223\) 0.0641862 0.00429822 0.00214911 0.999998i \(-0.499316\pi\)
0.00214911 + 0.999998i \(0.499316\pi\)
\(224\) 2.94464 0.196747
\(225\) 2.08666 0.139110
\(226\) −10.0832 −0.670723
\(227\) 1.68614 0.111913 0.0559564 0.998433i \(-0.482179\pi\)
0.0559564 + 0.998433i \(0.482179\pi\)
\(228\) 8.19389 0.542654
\(229\) −0.648310 −0.0428415 −0.0214208 0.999771i \(-0.506819\pi\)
−0.0214208 + 0.999771i \(0.506819\pi\)
\(230\) 37.0291 2.44163
\(231\) 1.57542 0.103655
\(232\) 16.7590 1.10028
\(233\) 3.10724 0.203562 0.101781 0.994807i \(-0.467546\pi\)
0.101781 + 0.994807i \(0.467546\pi\)
\(234\) 0 0
\(235\) 5.58223 0.364145
\(236\) 45.1697 2.94030
\(237\) −11.7555 −0.763605
\(238\) −11.3242 −0.734036
\(239\) 15.0659 0.974534 0.487267 0.873253i \(-0.337994\pi\)
0.487267 + 0.873253i \(0.337994\pi\)
\(240\) 5.55484 0.358563
\(241\) −25.7280 −1.65729 −0.828643 0.559777i \(-0.810887\pi\)
−0.828643 + 0.559777i \(0.810887\pi\)
\(242\) −20.2688 −1.30293
\(243\) 1.00000 0.0641500
\(244\) −27.5317 −1.76253
\(245\) 2.66208 0.170074
\(246\) 5.35692 0.341544
\(247\) 0 0
\(248\) −28.7941 −1.82843
\(249\) −7.42110 −0.470293
\(250\) −18.4544 −1.16716
\(251\) −11.6258 −0.733816 −0.366908 0.930257i \(-0.619584\pi\)
−0.366908 + 0.930257i \(0.619584\pi\)
\(252\) −3.66208 −0.230689
\(253\) −9.20941 −0.578991
\(254\) 11.5386 0.723998
\(255\) 12.6689 0.793357
\(256\) −26.9289 −1.68305
\(257\) −12.5651 −0.783791 −0.391896 0.920010i \(-0.628181\pi\)
−0.391896 + 0.920010i \(0.628181\pi\)
\(258\) 2.17331 0.135305
\(259\) 10.4750 0.650885
\(260\) 0 0
\(261\) 4.23750 0.262295
\(262\) −15.1508 −0.936022
\(263\) 9.37068 0.577821 0.288911 0.957356i \(-0.406707\pi\)
0.288911 + 0.957356i \(0.406707\pi\)
\(264\) −6.23069 −0.383472
\(265\) 2.89276 0.177701
\(266\) −5.32415 −0.326445
\(267\) 11.1371 0.681578
\(268\) 57.4630 3.51011
\(269\) −10.3918 −0.633600 −0.316800 0.948492i \(-0.602608\pi\)
−0.316800 + 0.948492i \(0.602608\pi\)
\(270\) 6.33445 0.385502
\(271\) 5.13026 0.311641 0.155821 0.987785i \(-0.450198\pi\)
0.155821 + 0.987785i \(0.450198\pi\)
\(272\) 9.93045 0.602122
\(273\) 0 0
\(274\) 42.8926 2.59124
\(275\) −3.28736 −0.198235
\(276\) 21.4073 1.28857
\(277\) 8.04361 0.483293 0.241647 0.970364i \(-0.422312\pi\)
0.241647 + 0.970364i \(0.422312\pi\)
\(278\) 6.36721 0.381880
\(279\) −7.28055 −0.435875
\(280\) −10.5283 −0.629189
\(281\) 27.8525 1.66154 0.830770 0.556616i \(-0.187900\pi\)
0.830770 + 0.556616i \(0.187900\pi\)
\(282\) 4.98971 0.297133
\(283\) 23.8197 1.41594 0.707968 0.706244i \(-0.249612\pi\)
0.707968 + 0.706244i \(0.249612\pi\)
\(284\) −36.8054 −2.18400
\(285\) 5.95639 0.352826
\(286\) 0 0
\(287\) −2.25127 −0.132888
\(288\) −2.94464 −0.173515
\(289\) 5.64831 0.332254
\(290\) 26.8422 1.57623
\(291\) 14.6047 0.856143
\(292\) −55.2230 −3.23168
\(293\) 16.4612 0.961675 0.480838 0.876810i \(-0.340333\pi\)
0.480838 + 0.876810i \(0.340333\pi\)
\(294\) 2.37951 0.138776
\(295\) 32.8352 1.91174
\(296\) −41.4279 −2.40795
\(297\) −1.57542 −0.0914152
\(298\) 17.7624 1.02895
\(299\) 0 0
\(300\) 7.64150 0.441182
\(301\) −0.913344 −0.0526443
\(302\) −30.9706 −1.78216
\(303\) −11.4349 −0.656916
\(304\) 4.66889 0.267779
\(305\) −20.0136 −1.14598
\(306\) 11.3242 0.647359
\(307\) −1.95639 −0.111657 −0.0558287 0.998440i \(-0.517780\pi\)
−0.0558287 + 0.998440i \(0.517780\pi\)
\(308\) 5.76931 0.328737
\(309\) 11.1508 0.634349
\(310\) −46.1182 −2.61934
\(311\) −6.67585 −0.378552 −0.189276 0.981924i \(-0.560614\pi\)
−0.189276 + 0.981924i \(0.560614\pi\)
\(312\) 0 0
\(313\) −6.78364 −0.383434 −0.191717 0.981450i \(-0.561406\pi\)
−0.191717 + 0.981450i \(0.561406\pi\)
\(314\) −40.7451 −2.29938
\(315\) −2.66208 −0.149991
\(316\) −43.0497 −2.42174
\(317\) 30.6947 1.72399 0.861993 0.506920i \(-0.169216\pi\)
0.861993 + 0.506920i \(0.169216\pi\)
\(318\) 2.58571 0.145000
\(319\) −6.67585 −0.373776
\(320\) −29.7624 −1.66377
\(321\) 2.28403 0.127482
\(322\) −13.9099 −0.775167
\(323\) 10.6483 0.592488
\(324\) 3.66208 0.203449
\(325\) 0 0
\(326\) 2.02058 0.111910
\(327\) −14.6689 −0.811191
\(328\) 8.90361 0.491620
\(329\) −2.09695 −0.115608
\(330\) −9.97942 −0.549349
\(331\) 13.8267 0.759983 0.379992 0.924990i \(-0.375927\pi\)
0.379992 + 0.924990i \(0.375927\pi\)
\(332\) −27.1766 −1.49151
\(333\) −10.4750 −0.574026
\(334\) −43.7308 −2.39284
\(335\) 41.7716 2.28223
\(336\) −2.08666 −0.113836
\(337\) 23.8633 1.29992 0.649959 0.759969i \(-0.274786\pi\)
0.649959 + 0.759969i \(0.274786\pi\)
\(338\) 0 0
\(339\) −4.23750 −0.230149
\(340\) 46.3945 2.51609
\(341\) 11.4699 0.621132
\(342\) 5.32415 0.287897
\(343\) −1.00000 −0.0539949
\(344\) 3.61221 0.194758
\(345\) 15.5617 0.837811
\(346\) −29.1645 −1.56789
\(347\) −13.6012 −0.730152 −0.365076 0.930978i \(-0.618957\pi\)
−0.365076 + 0.930978i \(0.618957\pi\)
\(348\) 15.5180 0.831855
\(349\) 16.4039 0.878078 0.439039 0.898468i \(-0.355319\pi\)
0.439039 + 0.898468i \(0.355319\pi\)
\(350\) −4.96522 −0.265402
\(351\) 0 0
\(352\) 4.63905 0.247262
\(353\) 4.73322 0.251924 0.125962 0.992035i \(-0.459798\pi\)
0.125962 + 0.992035i \(0.459798\pi\)
\(354\) 29.3500 1.55993
\(355\) −26.7550 −1.42001
\(356\) 40.7848 2.16159
\(357\) −4.75902 −0.251874
\(358\) 44.0556 2.32841
\(359\) 17.5479 0.926142 0.463071 0.886321i \(-0.346747\pi\)
0.463071 + 0.886321i \(0.346747\pi\)
\(360\) 10.5283 0.554892
\(361\) −13.9936 −0.736505
\(362\) −43.2271 −2.27196
\(363\) −8.51805 −0.447082
\(364\) 0 0
\(365\) −40.1433 −2.10120
\(366\) −17.8893 −0.935088
\(367\) −11.1888 −0.584052 −0.292026 0.956410i \(-0.594329\pi\)
−0.292026 + 0.956410i \(0.594329\pi\)
\(368\) 12.1979 0.635861
\(369\) 2.25127 0.117196
\(370\) −66.3533 −3.44954
\(371\) −1.08666 −0.0564164
\(372\) −26.6619 −1.38236
\(373\) −5.43195 −0.281256 −0.140628 0.990063i \(-0.544912\pi\)
−0.140628 + 0.990063i \(0.544912\pi\)
\(374\) −17.8403 −0.922501
\(375\) −7.75555 −0.400495
\(376\) 8.29328 0.427693
\(377\) 0 0
\(378\) −2.37951 −0.122389
\(379\) −10.8422 −0.556927 −0.278463 0.960447i \(-0.589825\pi\)
−0.278463 + 0.960447i \(0.589825\pi\)
\(380\) 21.8128 1.11897
\(381\) 4.84916 0.248430
\(382\) 55.9545 2.86288
\(383\) −10.5353 −0.538328 −0.269164 0.963094i \(-0.586747\pi\)
−0.269164 + 0.963094i \(0.586747\pi\)
\(384\) −20.7140 −1.05705
\(385\) 4.19389 0.213741
\(386\) −35.0607 −1.78454
\(387\) 0.913344 0.0464279
\(388\) 53.4836 2.71522
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) 27.8197 1.40690
\(392\) 3.95493 0.199754
\(393\) −6.36721 −0.321183
\(394\) −34.5048 −1.73833
\(395\) −31.2942 −1.57458
\(396\) −5.76931 −0.289919
\(397\) 35.4400 1.77868 0.889340 0.457246i \(-0.151164\pi\)
0.889340 + 0.457246i \(0.151164\pi\)
\(398\) −32.1664 −1.61235
\(399\) −2.23750 −0.112015
\(400\) 4.35413 0.217707
\(401\) −23.7241 −1.18473 −0.592363 0.805671i \(-0.701805\pi\)
−0.592363 + 0.805671i \(0.701805\pi\)
\(402\) 37.3378 1.86224
\(403\) 0 0
\(404\) −41.8754 −2.08338
\(405\) 2.66208 0.132280
\(406\) −10.0832 −0.500420
\(407\) 16.5025 0.818000
\(408\) 18.8216 0.931809
\(409\) 3.95639 0.195631 0.0978156 0.995205i \(-0.468814\pi\)
0.0978156 + 0.995205i \(0.468814\pi\)
\(410\) 14.2605 0.704277
\(411\) 18.0258 0.889147
\(412\) 40.8352 2.01181
\(413\) −12.3344 −0.606938
\(414\) 13.9099 0.683633
\(415\) −19.7555 −0.969762
\(416\) 0 0
\(417\) 2.67585 0.131037
\(418\) −8.38779 −0.410260
\(419\) −18.0586 −0.882219 −0.441109 0.897453i \(-0.645415\pi\)
−0.441109 + 0.897453i \(0.645415\pi\)
\(420\) −9.74873 −0.475689
\(421\) −24.4956 −1.19384 −0.596921 0.802300i \(-0.703609\pi\)
−0.596921 + 0.802300i \(0.703609\pi\)
\(422\) 9.67078 0.470766
\(423\) 2.09695 0.101957
\(424\) 4.29765 0.208712
\(425\) 9.93045 0.481697
\(426\) −23.9151 −1.15869
\(427\) 7.51805 0.363824
\(428\) 8.36428 0.404303
\(429\) 0 0
\(430\) 5.78553 0.279003
\(431\) 40.7779 1.96420 0.982101 0.188357i \(-0.0603163\pi\)
0.982101 + 0.188357i \(0.0603163\pi\)
\(432\) 2.08666 0.100394
\(433\) −18.0791 −0.868828 −0.434414 0.900713i \(-0.643045\pi\)
−0.434414 + 0.900713i \(0.643045\pi\)
\(434\) 17.3242 0.831586
\(435\) 11.2805 0.540861
\(436\) −53.7186 −2.57265
\(437\) 13.0797 0.625687
\(438\) −35.8823 −1.71452
\(439\) 20.7561 0.990635 0.495317 0.868712i \(-0.335052\pi\)
0.495317 + 0.868712i \(0.335052\pi\)
\(440\) −16.5866 −0.790734
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) −8.24042 −0.391514 −0.195757 0.980652i \(-0.562716\pi\)
−0.195757 + 0.980652i \(0.562716\pi\)
\(444\) −38.3603 −1.82050
\(445\) 29.6478 1.40544
\(446\) 0.152732 0.00723206
\(447\) 7.46471 0.353069
\(448\) 11.1801 0.528211
\(449\) −36.1061 −1.70395 −0.851975 0.523582i \(-0.824595\pi\)
−0.851975 + 0.523582i \(0.824595\pi\)
\(450\) 4.96522 0.234063
\(451\) −3.54669 −0.167007
\(452\) −15.5180 −0.729908
\(453\) −13.0155 −0.611522
\(454\) 4.01218 0.188301
\(455\) 0 0
\(456\) 8.84916 0.414400
\(457\) 6.54052 0.305953 0.152976 0.988230i \(-0.451114\pi\)
0.152976 + 0.988230i \(0.451114\pi\)
\(458\) −1.54266 −0.0720838
\(459\) 4.75902 0.222132
\(460\) 56.9880 2.65708
\(461\) 14.6987 0.684588 0.342294 0.939593i \(-0.388796\pi\)
0.342294 + 0.939593i \(0.388796\pi\)
\(462\) 3.74873 0.174407
\(463\) −21.7775 −1.01208 −0.506042 0.862509i \(-0.668892\pi\)
−0.506042 + 0.862509i \(0.668892\pi\)
\(464\) 8.84220 0.410489
\(465\) −19.3814 −0.898790
\(466\) 7.39371 0.342507
\(467\) 35.0086 1.62000 0.810001 0.586428i \(-0.199466\pi\)
0.810001 + 0.586428i \(0.199466\pi\)
\(468\) 0 0
\(469\) −15.6914 −0.724560
\(470\) 13.2830 0.612699
\(471\) −17.1233 −0.789000
\(472\) 48.7819 2.24537
\(473\) −1.43890 −0.0661607
\(474\) −27.9725 −1.28482
\(475\) 4.66889 0.214223
\(476\) −17.4279 −0.798807
\(477\) 1.08666 0.0497546
\(478\) 35.8496 1.63972
\(479\) −31.7814 −1.45213 −0.726064 0.687628i \(-0.758652\pi\)
−0.726064 + 0.687628i \(0.758652\pi\)
\(480\) −7.83887 −0.357794
\(481\) 0 0
\(482\) −61.2201 −2.78850
\(483\) −5.84568 −0.265988
\(484\) −31.1938 −1.41790
\(485\) 38.8789 1.76540
\(486\) 2.37951 0.107937
\(487\) 28.5817 1.29516 0.647580 0.761998i \(-0.275781\pi\)
0.647580 + 0.761998i \(0.275781\pi\)
\(488\) −29.7334 −1.34597
\(489\) 0.849158 0.0384002
\(490\) 6.33445 0.286161
\(491\) 21.7160 0.980028 0.490014 0.871715i \(-0.336992\pi\)
0.490014 + 0.871715i \(0.336992\pi\)
\(492\) 8.24431 0.371682
\(493\) 20.1664 0.908247
\(494\) 0 0
\(495\) −4.19389 −0.188501
\(496\) −15.1920 −0.682141
\(497\) 10.0504 0.450823
\(498\) −17.6586 −0.791301
\(499\) 42.6895 1.91104 0.955522 0.294921i \(-0.0952934\pi\)
0.955522 + 0.294921i \(0.0952934\pi\)
\(500\) −28.4014 −1.27015
\(501\) −18.3781 −0.821071
\(502\) −27.6638 −1.23470
\(503\) 21.8922 0.976125 0.488063 0.872809i \(-0.337704\pi\)
0.488063 + 0.872809i \(0.337704\pi\)
\(504\) −3.95493 −0.176167
\(505\) −30.4405 −1.35458
\(506\) −21.9139 −0.974192
\(507\) 0 0
\(508\) 17.7580 0.787883
\(509\) 5.36546 0.237820 0.118910 0.992905i \(-0.462060\pi\)
0.118910 + 0.992905i \(0.462060\pi\)
\(510\) 30.1458 1.33488
\(511\) 15.0797 0.667087
\(512\) −22.6496 −1.00098
\(513\) 2.23750 0.0987880
\(514\) −29.8989 −1.31878
\(515\) 29.6844 1.30805
\(516\) 3.34474 0.147244
\(517\) −3.30357 −0.145291
\(518\) 24.9254 1.09516
\(519\) −12.2565 −0.538000
\(520\) 0 0
\(521\) −11.5221 −0.504791 −0.252396 0.967624i \(-0.581218\pi\)
−0.252396 + 0.967624i \(0.581218\pi\)
\(522\) 10.0832 0.441329
\(523\) −3.62584 −0.158547 −0.0792734 0.996853i \(-0.525260\pi\)
−0.0792734 + 0.996853i \(0.525260\pi\)
\(524\) −23.3172 −1.01862
\(525\) −2.08666 −0.0910691
\(526\) 22.2977 0.972224
\(527\) −34.6483 −1.50930
\(528\) −3.28736 −0.143064
\(529\) 11.1720 0.485738
\(530\) 6.88336 0.298994
\(531\) 12.3344 0.535269
\(532\) −8.19389 −0.355250
\(533\) 0 0
\(534\) 26.5008 1.14680
\(535\) 6.08026 0.262872
\(536\) 62.0583 2.68051
\(537\) 18.5146 0.798963
\(538\) −24.7275 −1.06608
\(539\) −1.57542 −0.0678582
\(540\) 9.74873 0.419519
\(541\) −37.2300 −1.60064 −0.800321 0.599572i \(-0.795338\pi\)
−0.800321 + 0.599572i \(0.795338\pi\)
\(542\) 12.2075 0.524358
\(543\) −18.1664 −0.779593
\(544\) −14.0136 −0.600829
\(545\) −39.0497 −1.67271
\(546\) 0 0
\(547\) −4.34529 −0.185791 −0.0928956 0.995676i \(-0.529612\pi\)
−0.0928956 + 0.995676i \(0.529612\pi\)
\(548\) 66.0119 2.81989
\(549\) −7.51805 −0.320862
\(550\) −7.82232 −0.333545
\(551\) 9.48140 0.403921
\(552\) 23.1193 0.984022
\(553\) 11.7555 0.499897
\(554\) 19.1399 0.813175
\(555\) −27.8853 −1.18366
\(556\) 9.79915 0.415577
\(557\) −28.0052 −1.18662 −0.593310 0.804974i \(-0.702179\pi\)
−0.593310 + 0.804974i \(0.702179\pi\)
\(558\) −17.3242 −0.733390
\(559\) 0 0
\(560\) −5.55484 −0.234735
\(561\) −7.49747 −0.316543
\(562\) 66.2753 2.79566
\(563\) −22.2525 −0.937829 −0.468915 0.883243i \(-0.655355\pi\)
−0.468915 + 0.883243i \(0.655355\pi\)
\(564\) 7.67918 0.323352
\(565\) −11.2805 −0.474576
\(566\) 56.6793 2.38241
\(567\) −1.00000 −0.0419961
\(568\) −39.7487 −1.66782
\(569\) 3.10724 0.130262 0.0651311 0.997877i \(-0.479253\pi\)
0.0651311 + 0.997877i \(0.479253\pi\)
\(570\) 14.1733 0.593655
\(571\) 16.5772 0.693733 0.346866 0.937915i \(-0.387246\pi\)
0.346866 + 0.937915i \(0.387246\pi\)
\(572\) 0 0
\(573\) 23.5151 0.982358
\(574\) −5.35692 −0.223593
\(575\) 12.1979 0.508689
\(576\) −11.1801 −0.465839
\(577\) 7.45253 0.310253 0.155126 0.987895i \(-0.450422\pi\)
0.155126 + 0.987895i \(0.450422\pi\)
\(578\) 13.4402 0.559039
\(579\) −14.7344 −0.612341
\(580\) 41.3102 1.71531
\(581\) 7.42110 0.307879
\(582\) 34.7521 1.44052
\(583\) −1.71194 −0.0709014
\(584\) −59.6392 −2.46789
\(585\) 0 0
\(586\) 39.1697 1.61809
\(587\) −11.9892 −0.494845 −0.247423 0.968908i \(-0.579584\pi\)
−0.247423 + 0.968908i \(0.579584\pi\)
\(588\) 3.66208 0.151022
\(589\) −16.2902 −0.671227
\(590\) 78.1319 3.21664
\(591\) −14.5008 −0.596483
\(592\) −21.8577 −0.898347
\(593\) 33.4767 1.37473 0.687363 0.726314i \(-0.258768\pi\)
0.687363 + 0.726314i \(0.258768\pi\)
\(594\) −3.74873 −0.153812
\(595\) −12.6689 −0.519374
\(596\) 27.3363 1.11974
\(597\) −13.5180 −0.553257
\(598\) 0 0
\(599\) −13.5863 −0.555120 −0.277560 0.960708i \(-0.589526\pi\)
−0.277560 + 0.960708i \(0.589526\pi\)
\(600\) 8.25259 0.336910
\(601\) −6.78364 −0.276710 −0.138355 0.990383i \(-0.544182\pi\)
−0.138355 + 0.990383i \(0.544182\pi\)
\(602\) −2.17331 −0.0885776
\(603\) 15.6914 0.639002
\(604\) −47.6638 −1.93941
\(605\) −22.6757 −0.921898
\(606\) −27.2094 −1.10531
\(607\) −17.4905 −0.709918 −0.354959 0.934882i \(-0.615505\pi\)
−0.354959 + 0.934882i \(0.615505\pi\)
\(608\) −6.58863 −0.267204
\(609\) −4.23750 −0.171712
\(610\) −47.6227 −1.92819
\(611\) 0 0
\(612\) 17.4279 0.704482
\(613\) 38.2455 1.54472 0.772361 0.635184i \(-0.219076\pi\)
0.772361 + 0.635184i \(0.219076\pi\)
\(614\) −4.65526 −0.187871
\(615\) 5.99305 0.241663
\(616\) 6.23069 0.251041
\(617\) 34.1542 1.37500 0.687498 0.726187i \(-0.258709\pi\)
0.687498 + 0.726187i \(0.258709\pi\)
\(618\) 26.5336 1.06734
\(619\) 8.56805 0.344379 0.172190 0.985064i \(-0.444916\pi\)
0.172190 + 0.985064i \(0.444916\pi\)
\(620\) −70.9761 −2.85047
\(621\) 5.84568 0.234579
\(622\) −15.8853 −0.636941
\(623\) −11.1371 −0.446197
\(624\) 0 0
\(625\) −31.0791 −1.24317
\(626\) −16.1417 −0.645154
\(627\) −3.52500 −0.140775
\(628\) −62.7069 −2.50228
\(629\) −49.8508 −1.98768
\(630\) −6.33445 −0.252370
\(631\) 17.7119 0.705101 0.352551 0.935793i \(-0.385314\pi\)
0.352551 + 0.935793i \(0.385314\pi\)
\(632\) −46.4924 −1.84937
\(633\) 4.06419 0.161537
\(634\) 73.0384 2.90073
\(635\) 12.9088 0.512271
\(636\) 3.97942 0.157794
\(637\) 0 0
\(638\) −15.8853 −0.628903
\(639\) −10.0504 −0.397588
\(640\) −55.1422 −2.17969
\(641\) 16.6117 0.656121 0.328061 0.944657i \(-0.393605\pi\)
0.328061 + 0.944657i \(0.393605\pi\)
\(642\) 5.43487 0.214497
\(643\) −12.9500 −0.510698 −0.255349 0.966849i \(-0.582190\pi\)
−0.255349 + 0.966849i \(0.582190\pi\)
\(644\) −21.4073 −0.843567
\(645\) 2.43139 0.0957360
\(646\) 25.3378 0.996902
\(647\) −23.6775 −0.930857 −0.465428 0.885086i \(-0.654100\pi\)
−0.465428 + 0.885086i \(0.654100\pi\)
\(648\) 3.95493 0.155364
\(649\) −19.4319 −0.762771
\(650\) 0 0
\(651\) 7.28055 0.285347
\(652\) 3.10968 0.121785
\(653\) 22.2811 0.871927 0.435963 0.899964i \(-0.356408\pi\)
0.435963 + 0.899964i \(0.356408\pi\)
\(654\) −34.9048 −1.36489
\(655\) −16.9500 −0.662291
\(656\) 4.69762 0.183411
\(657\) −15.0797 −0.588315
\(658\) −4.98971 −0.194519
\(659\) 15.5165 0.604435 0.302218 0.953239i \(-0.402273\pi\)
0.302218 + 0.953239i \(0.402273\pi\)
\(660\) −15.3584 −0.597823
\(661\) −28.1444 −1.09469 −0.547346 0.836906i \(-0.684362\pi\)
−0.547346 + 0.836906i \(0.684362\pi\)
\(662\) 32.9008 1.27872
\(663\) 0 0
\(664\) −29.3500 −1.13900
\(665\) −5.95639 −0.230979
\(666\) −24.9254 −0.965839
\(667\) 24.7711 0.959139
\(668\) −67.3018 −2.60399
\(669\) 0.0641862 0.00248158
\(670\) 99.3961 3.84000
\(671\) 11.8441 0.457236
\(672\) 2.94464 0.113592
\(673\) 7.13477 0.275025 0.137513 0.990500i \(-0.456089\pi\)
0.137513 + 0.990500i \(0.456089\pi\)
\(674\) 56.7831 2.18720
\(675\) 2.08666 0.0803154
\(676\) 0 0
\(677\) −10.7660 −0.413770 −0.206885 0.978365i \(-0.566333\pi\)
−0.206885 + 0.978365i \(0.566333\pi\)
\(678\) −10.0832 −0.387242
\(679\) −14.6047 −0.560477
\(680\) 50.1046 1.92142
\(681\) 1.68614 0.0646129
\(682\) 27.2928 1.04510
\(683\) 12.2020 0.466898 0.233449 0.972369i \(-0.424999\pi\)
0.233449 + 0.972369i \(0.424999\pi\)
\(684\) 8.19389 0.313301
\(685\) 47.9861 1.83345
\(686\) −2.37951 −0.0908502
\(687\) −0.648310 −0.0247346
\(688\) 1.90583 0.0726593
\(689\) 0 0
\(690\) 37.0291 1.40968
\(691\) −32.0367 −1.21873 −0.609366 0.792889i \(-0.708576\pi\)
−0.609366 + 0.792889i \(0.708576\pi\)
\(692\) −44.8842 −1.70624
\(693\) 1.57542 0.0598453
\(694\) −32.3643 −1.22853
\(695\) 7.12331 0.270202
\(696\) 16.7590 0.635249
\(697\) 10.7138 0.405815
\(698\) 39.0332 1.47743
\(699\) 3.10724 0.117526
\(700\) −7.64150 −0.288821
\(701\) −14.9513 −0.564704 −0.282352 0.959311i \(-0.591115\pi\)
−0.282352 + 0.959311i \(0.591115\pi\)
\(702\) 0 0
\(703\) −23.4378 −0.883973
\(704\) 17.6134 0.663830
\(705\) 5.58223 0.210239
\(706\) 11.2627 0.423879
\(707\) 11.4349 0.430053
\(708\) 45.1697 1.69758
\(709\) 8.58279 0.322333 0.161167 0.986927i \(-0.448474\pi\)
0.161167 + 0.986927i \(0.448474\pi\)
\(710\) −63.6638 −2.38926
\(711\) −11.7555 −0.440867
\(712\) 44.0464 1.65071
\(713\) −42.5598 −1.59388
\(714\) −11.3242 −0.423796
\(715\) 0 0
\(716\) 67.8018 2.53387
\(717\) 15.0659 0.562648
\(718\) 41.7554 1.55830
\(719\) 35.9644 1.34125 0.670623 0.741798i \(-0.266027\pi\)
0.670623 + 0.741798i \(0.266027\pi\)
\(720\) 5.55484 0.207017
\(721\) −11.1508 −0.415279
\(722\) −33.2979 −1.23922
\(723\) −25.7280 −0.956835
\(724\) −66.5266 −2.47244
\(725\) 8.84220 0.328391
\(726\) −20.2688 −0.752246
\(727\) −31.5111 −1.16868 −0.584341 0.811508i \(-0.698647\pi\)
−0.584341 + 0.811508i \(0.698647\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) −95.5215 −3.53541
\(731\) 4.34662 0.160766
\(732\) −27.5317 −1.01760
\(733\) 26.6047 0.982667 0.491334 0.870971i \(-0.336510\pi\)
0.491334 + 0.870971i \(0.336510\pi\)
\(734\) −26.6240 −0.982708
\(735\) 2.66208 0.0981922
\(736\) −17.2134 −0.634496
\(737\) −24.7205 −0.910591
\(738\) 5.35692 0.197191
\(739\) 50.3397 1.85177 0.925887 0.377800i \(-0.123319\pi\)
0.925887 + 0.377800i \(0.123319\pi\)
\(740\) −102.118 −3.75393
\(741\) 0 0
\(742\) −2.58571 −0.0949245
\(743\) −23.4021 −0.858540 −0.429270 0.903176i \(-0.641229\pi\)
−0.429270 + 0.903176i \(0.641229\pi\)
\(744\) −28.7941 −1.05564
\(745\) 19.8716 0.728040
\(746\) −12.9254 −0.473232
\(747\) −7.42110 −0.271524
\(748\) −27.4563 −1.00390
\(749\) −2.28403 −0.0834565
\(750\) −18.4544 −0.673860
\(751\) 49.0305 1.78915 0.894574 0.446920i \(-0.147479\pi\)
0.894574 + 0.446920i \(0.147479\pi\)
\(752\) 4.37561 0.159562
\(753\) −11.6258 −0.423669
\(754\) 0 0
\(755\) −34.6483 −1.26098
\(756\) −3.66208 −0.133188
\(757\) −35.3883 −1.28621 −0.643106 0.765778i \(-0.722354\pi\)
−0.643106 + 0.765778i \(0.722354\pi\)
\(758\) −25.7992 −0.937067
\(759\) −9.20941 −0.334280
\(760\) 23.5571 0.854507
\(761\) −27.7051 −1.00431 −0.502155 0.864778i \(-0.667459\pi\)
−0.502155 + 0.864778i \(0.667459\pi\)
\(762\) 11.5386 0.418000
\(763\) 14.6689 0.531049
\(764\) 86.1142 3.11550
\(765\) 12.6689 0.458045
\(766\) −25.0689 −0.905775
\(767\) 0 0
\(768\) −26.9289 −0.971712
\(769\) −21.1383 −0.762265 −0.381133 0.924520i \(-0.624466\pi\)
−0.381133 + 0.924520i \(0.624466\pi\)
\(770\) 9.97942 0.359633
\(771\) −12.5651 −0.452522
\(772\) −53.9586 −1.94201
\(773\) 41.4537 1.49099 0.745493 0.666513i \(-0.232214\pi\)
0.745493 + 0.666513i \(0.232214\pi\)
\(774\) 2.17331 0.0781181
\(775\) −15.1920 −0.545713
\(776\) 57.7606 2.07349
\(777\) 10.4750 0.375788
\(778\) 14.2771 0.511858
\(779\) 5.03721 0.180477
\(780\) 0 0
\(781\) 15.8336 0.566572
\(782\) 66.1974 2.36721
\(783\) 4.23750 0.151436
\(784\) 2.08666 0.0745234
\(785\) −45.5836 −1.62695
\(786\) −15.1508 −0.540413
\(787\) 28.7711 1.02558 0.512789 0.858515i \(-0.328612\pi\)
0.512789 + 0.858515i \(0.328612\pi\)
\(788\) −53.1031 −1.89172
\(789\) 9.37068 0.333605
\(790\) −74.4649 −2.64934
\(791\) 4.23750 0.150668
\(792\) −6.23069 −0.221398
\(793\) 0 0
\(794\) 84.3298 2.99275
\(795\) 2.89276 0.102596
\(796\) −49.5041 −1.75463
\(797\) 19.5357 0.691990 0.345995 0.938236i \(-0.387541\pi\)
0.345995 + 0.938236i \(0.387541\pi\)
\(798\) −5.32415 −0.188473
\(799\) 9.97942 0.353046
\(800\) −6.14446 −0.217239
\(801\) 11.1371 0.393509
\(802\) −56.4518 −1.99338
\(803\) 23.7569 0.838362
\(804\) 57.4630 2.02656
\(805\) −15.5617 −0.548476
\(806\) 0 0
\(807\) −10.3918 −0.365809
\(808\) −45.2241 −1.59098
\(809\) −36.1824 −1.27211 −0.636053 0.771645i \(-0.719434\pi\)
−0.636053 + 0.771645i \(0.719434\pi\)
\(810\) 6.33445 0.222570
\(811\) −0.794087 −0.0278842 −0.0139421 0.999903i \(-0.504438\pi\)
−0.0139421 + 0.999903i \(0.504438\pi\)
\(812\) −15.5180 −0.544577
\(813\) 5.13026 0.179926
\(814\) 39.2680 1.37634
\(815\) 2.26052 0.0791827
\(816\) 9.93045 0.347635
\(817\) 2.04361 0.0714967
\(818\) 9.41429 0.329163
\(819\) 0 0
\(820\) 21.9470 0.766422
\(821\) 15.8525 0.553256 0.276628 0.960977i \(-0.410783\pi\)
0.276628 + 0.960977i \(0.410783\pi\)
\(822\) 42.8926 1.49605
\(823\) −20.0412 −0.698591 −0.349295 0.937013i \(-0.613579\pi\)
−0.349295 + 0.937013i \(0.613579\pi\)
\(824\) 44.1008 1.53633
\(825\) −3.28736 −0.114451
\(826\) −29.3500 −1.02122
\(827\) −34.7848 −1.20959 −0.604794 0.796382i \(-0.706744\pi\)
−0.604794 + 0.796382i \(0.706744\pi\)
\(828\) 21.4073 0.743956
\(829\) −30.6793 −1.06554 −0.532769 0.846261i \(-0.678848\pi\)
−0.532769 + 0.846261i \(0.678848\pi\)
\(830\) −47.0086 −1.63169
\(831\) 8.04361 0.279030
\(832\) 0 0
\(833\) 4.75902 0.164890
\(834\) 6.36721 0.220478
\(835\) −48.9238 −1.69308
\(836\) −12.9088 −0.446461
\(837\) −7.28055 −0.251653
\(838\) −42.9706 −1.48439
\(839\) −39.8238 −1.37487 −0.687436 0.726245i \(-0.741264\pi\)
−0.687436 + 0.726245i \(0.741264\pi\)
\(840\) −10.5283 −0.363262
\(841\) −11.0436 −0.380814
\(842\) −58.2875 −2.00872
\(843\) 27.8525 0.959291
\(844\) 14.8834 0.512307
\(845\) 0 0
\(846\) 4.98971 0.171550
\(847\) 8.51805 0.292684
\(848\) 2.26748 0.0778655
\(849\) 23.8197 0.817491
\(850\) 23.6296 0.810489
\(851\) −61.2335 −2.09906
\(852\) −36.8054 −1.26093
\(853\) −24.7505 −0.847440 −0.423720 0.905793i \(-0.639276\pi\)
−0.423720 + 0.905793i \(0.639276\pi\)
\(854\) 17.8893 0.612159
\(855\) 5.95639 0.203704
\(856\) 9.03317 0.308748
\(857\) 6.47097 0.221044 0.110522 0.993874i \(-0.464748\pi\)
0.110522 + 0.993874i \(0.464748\pi\)
\(858\) 0 0
\(859\) 31.0741 1.06023 0.530117 0.847925i \(-0.322148\pi\)
0.530117 + 0.847925i \(0.322148\pi\)
\(860\) 8.90395 0.303622
\(861\) −2.25127 −0.0767230
\(862\) 97.0314 3.30490
\(863\) −28.6391 −0.974885 −0.487442 0.873155i \(-0.662070\pi\)
−0.487442 + 0.873155i \(0.662070\pi\)
\(864\) −2.94464 −0.100179
\(865\) −32.6277 −1.10938
\(866\) −43.0195 −1.46186
\(867\) 5.64831 0.191827
\(868\) 26.6619 0.904965
\(869\) 18.5199 0.628246
\(870\) 26.8422 0.910036
\(871\) 0 0
\(872\) −58.0145 −1.96462
\(873\) 14.6047 0.494294
\(874\) 31.1233 1.05276
\(875\) 7.75555 0.262185
\(876\) −55.2230 −1.86581
\(877\) −0.00110921 −3.74555e−5 0 −1.87278e−5 1.00000i \(-0.500006\pi\)
−1.87278e−5 1.00000i \(0.500006\pi\)
\(878\) 49.3894 1.66681
\(879\) 16.4612 0.555223
\(880\) −8.75121 −0.295003
\(881\) 23.9479 0.806824 0.403412 0.915019i \(-0.367824\pi\)
0.403412 + 0.915019i \(0.367824\pi\)
\(882\) 2.37951 0.0801223
\(883\) 51.9965 1.74982 0.874911 0.484283i \(-0.160919\pi\)
0.874911 + 0.484283i \(0.160919\pi\)
\(884\) 0 0
\(885\) 32.8352 1.10374
\(886\) −19.6082 −0.658750
\(887\) 10.8697 0.364970 0.182485 0.983209i \(-0.441586\pi\)
0.182485 + 0.983209i \(0.441586\pi\)
\(888\) −41.4279 −1.39023
\(889\) −4.84916 −0.162636
\(890\) 70.5472 2.36475
\(891\) −1.57542 −0.0527786
\(892\) 0.235055 0.00787021
\(893\) 4.69192 0.157009
\(894\) 17.7624 0.594062
\(895\) 49.2872 1.64749
\(896\) 20.7140 0.692005
\(897\) 0 0
\(898\) −85.9148 −2.86701
\(899\) −30.8513 −1.02895
\(900\) 7.64150 0.254717
\(901\) 5.17142 0.172285
\(902\) −8.43940 −0.281001
\(903\) −0.913344 −0.0303942
\(904\) −16.7590 −0.557397
\(905\) −48.3603 −1.60755
\(906\) −30.9706 −1.02893
\(907\) −25.4892 −0.846354 −0.423177 0.906047i \(-0.639085\pi\)
−0.423177 + 0.906047i \(0.639085\pi\)
\(908\) 6.17476 0.204917
\(909\) −11.4349 −0.379271
\(910\) 0 0
\(911\) 42.2059 1.39834 0.699172 0.714953i \(-0.253552\pi\)
0.699172 + 0.714953i \(0.253552\pi\)
\(912\) 4.66889 0.154602
\(913\) 11.6914 0.386928
\(914\) 15.5632 0.514786
\(915\) −20.0136 −0.661630
\(916\) −2.37416 −0.0784445
\(917\) 6.36721 0.210264
\(918\) 11.3242 0.373753
\(919\) −29.4033 −0.969925 −0.484963 0.874535i \(-0.661167\pi\)
−0.484963 + 0.874535i \(0.661167\pi\)
\(920\) 61.5453 2.02909
\(921\) −1.95639 −0.0644654
\(922\) 34.9758 1.15187
\(923\) 0 0
\(924\) 5.76931 0.189797
\(925\) −21.8577 −0.718677
\(926\) −51.8197 −1.70290
\(927\) 11.1508 0.366242
\(928\) −12.4779 −0.409608
\(929\) 13.3759 0.438849 0.219425 0.975629i \(-0.429582\pi\)
0.219425 + 0.975629i \(0.429582\pi\)
\(930\) −46.1182 −1.51228
\(931\) 2.23750 0.0733311
\(932\) 11.3789 0.372730
\(933\) −6.67585 −0.218557
\(934\) 83.3033 2.72577
\(935\) −19.9588 −0.652724
\(936\) 0 0
\(937\) −24.9981 −0.816653 −0.408326 0.912836i \(-0.633887\pi\)
−0.408326 + 0.912836i \(0.633887\pi\)
\(938\) −37.3378 −1.21912
\(939\) −6.78364 −0.221376
\(940\) 20.4426 0.666763
\(941\) −10.5369 −0.343493 −0.171746 0.985141i \(-0.554941\pi\)
−0.171746 + 0.985141i \(0.554941\pi\)
\(942\) −40.7451 −1.32755
\(943\) 13.1602 0.428555
\(944\) 25.7377 0.837692
\(945\) −2.66208 −0.0865974
\(946\) −3.42388 −0.111320
\(947\) 52.7779 1.71505 0.857525 0.514442i \(-0.172001\pi\)
0.857525 + 0.514442i \(0.172001\pi\)
\(948\) −43.0497 −1.39819
\(949\) 0 0
\(950\) 11.1097 0.360446
\(951\) 30.6947 0.995344
\(952\) −18.8216 −0.610012
\(953\) 21.8486 0.707746 0.353873 0.935294i \(-0.384865\pi\)
0.353873 + 0.935294i \(0.384865\pi\)
\(954\) 2.58571 0.0837155
\(955\) 62.5991 2.02566
\(956\) 55.1726 1.78441
\(957\) −6.67585 −0.215799
\(958\) −75.6241 −2.44330
\(959\) −18.0258 −0.582084
\(960\) −29.7624 −0.960576
\(961\) 22.0064 0.709884
\(962\) 0 0
\(963\) 2.28403 0.0736017
\(964\) −94.2180 −3.03456
\(965\) −39.2241 −1.26267
\(966\) −13.9099 −0.447543
\(967\) −1.94143 −0.0624323 −0.0312162 0.999513i \(-0.509938\pi\)
−0.0312162 + 0.999513i \(0.509938\pi\)
\(968\) −33.6883 −1.08278
\(969\) 10.6483 0.342073
\(970\) 92.5127 2.97040
\(971\) −14.9077 −0.478412 −0.239206 0.970969i \(-0.576887\pi\)
−0.239206 + 0.970969i \(0.576887\pi\)
\(972\) 3.66208 0.117461
\(973\) −2.67585 −0.0857837
\(974\) 68.0105 2.17920
\(975\) 0 0
\(976\) −15.6876 −0.502147
\(977\) 16.5353 0.529011 0.264505 0.964384i \(-0.414791\pi\)
0.264505 + 0.964384i \(0.414791\pi\)
\(978\) 2.02058 0.0646110
\(979\) −17.5456 −0.560759
\(980\) 9.74873 0.311412
\(981\) −14.6689 −0.468342
\(982\) 51.6734 1.64897
\(983\) 30.0694 0.959065 0.479533 0.877524i \(-0.340806\pi\)
0.479533 + 0.877524i \(0.340806\pi\)
\(984\) 8.90361 0.283837
\(985\) −38.6023 −1.22997
\(986\) 47.9861 1.52819
\(987\) −2.09695 −0.0667465
\(988\) 0 0
\(989\) 5.33912 0.169774
\(990\) −9.97942 −0.317167
\(991\) 43.5902 1.38469 0.692345 0.721567i \(-0.256578\pi\)
0.692345 + 0.721567i \(0.256578\pi\)
\(992\) 21.4386 0.680677
\(993\) 13.8267 0.438777
\(994\) 23.9151 0.758541
\(995\) −35.9861 −1.14084
\(996\) −27.1766 −0.861125
\(997\) 57.8577 1.83237 0.916186 0.400753i \(-0.131251\pi\)
0.916186 + 0.400753i \(0.131251\pi\)
\(998\) 101.580 3.21546
\(999\) −10.4750 −0.331414
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3549.2.a.w.1.4 4
13.12 even 2 273.2.a.e.1.1 4
39.38 odd 2 819.2.a.k.1.4 4
52.51 odd 2 4368.2.a.br.1.2 4
65.64 even 2 6825.2.a.bg.1.4 4
91.90 odd 2 1911.2.a.s.1.1 4
273.272 even 2 5733.2.a.bf.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
273.2.a.e.1.1 4 13.12 even 2
819.2.a.k.1.4 4 39.38 odd 2
1911.2.a.s.1.1 4 91.90 odd 2
3549.2.a.w.1.4 4 1.1 even 1 trivial
4368.2.a.br.1.2 4 52.51 odd 2
5733.2.a.bf.1.4 4 273.272 even 2
6825.2.a.bg.1.4 4 65.64 even 2