Properties

Label 3549.2.a.n
Level $3549$
Weight $2$
Character orbit 3549.a
Self dual yes
Analytic conductor $28.339$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3549 = 3 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3549.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(28.3389076774\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
Defining polynomial: \(x^{3} - 3 x - 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 273)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{1} q^{2} + q^{3} + \beta_{2} q^{4} + ( -2 - \beta_{1} + \beta_{2} ) q^{5} + \beta_{1} q^{6} + q^{7} + ( 1 - \beta_{1} ) q^{8} + q^{9} +O(q^{10})\) \( q + \beta_{1} q^{2} + q^{3} + \beta_{2} q^{4} + ( -2 - \beta_{1} + \beta_{2} ) q^{5} + \beta_{1} q^{6} + q^{7} + ( 1 - \beta_{1} ) q^{8} + q^{9} + ( -1 - \beta_{1} - \beta_{2} ) q^{10} + ( -2 + \beta_{1} - 3 \beta_{2} ) q^{11} + \beta_{2} q^{12} + \beta_{1} q^{14} + ( -2 - \beta_{1} + \beta_{2} ) q^{15} + ( -2 + \beta_{1} - 3 \beta_{2} ) q^{16} + ( 2 - \beta_{1} + 4 \beta_{2} ) q^{17} + \beta_{1} q^{18} + ( -3 - 2 \beta_{1} + 2 \beta_{2} ) q^{19} + ( 1 - 3 \beta_{2} ) q^{20} + q^{21} + ( -1 - 5 \beta_{1} + \beta_{2} ) q^{22} + ( 1 + 4 \beta_{1} - \beta_{2} ) q^{23} + ( 1 - \beta_{1} ) q^{24} + ( 1 + 3 \beta_{1} - 4 \beta_{2} ) q^{25} + q^{27} + \beta_{2} q^{28} + ( 3 - 5 \beta_{1} ) q^{29} + ( -1 - \beta_{1} - \beta_{2} ) q^{30} + ( -3 + 3 \beta_{1} - 3 \beta_{2} ) q^{31} + ( -3 - 3 \beta_{1} + \beta_{2} ) q^{32} + ( -2 + \beta_{1} - 3 \beta_{2} ) q^{33} + ( 2 + 6 \beta_{1} - \beta_{2} ) q^{34} + ( -2 - \beta_{1} + \beta_{2} ) q^{35} + \beta_{2} q^{36} + ( -4 - 5 \beta_{1} + 3 \beta_{2} ) q^{37} + ( -2 - \beta_{1} - 2 \beta_{2} ) q^{38} + ( -1 + 2 \beta_{2} ) q^{40} + ( -2 + 4 \beta_{1} - 8 \beta_{2} ) q^{41} + \beta_{1} q^{42} + ( 3 - 5 \beta_{2} ) q^{43} + ( -5 - 2 \beta_{1} + \beta_{2} ) q^{44} + ( -2 - \beta_{1} + \beta_{2} ) q^{45} + ( 7 + 4 \beta_{2} ) q^{46} + ( -1 + 3 \beta_{1} - \beta_{2} ) q^{47} + ( -2 + \beta_{1} - 3 \beta_{2} ) q^{48} + q^{49} + ( 2 - 3 \beta_{1} + 3 \beta_{2} ) q^{50} + ( 2 - \beta_{1} + 4 \beta_{2} ) q^{51} + ( 1 - 6 \beta_{1} - 2 \beta_{2} ) q^{53} + \beta_{1} q^{54} + ( \beta_{1} + 6 \beta_{2} ) q^{55} + ( 1 - \beta_{1} ) q^{56} + ( -3 - 2 \beta_{1} + 2 \beta_{2} ) q^{57} + ( -10 + 3 \beta_{1} - 5 \beta_{2} ) q^{58} + ( -5 - 8 \beta_{1} + 5 \beta_{2} ) q^{59} + ( 1 - 3 \beta_{2} ) q^{60} + ( -5 + 2 \beta_{1} - 4 \beta_{2} ) q^{61} + ( 3 - 6 \beta_{1} + 3 \beta_{2} ) q^{62} + q^{63} + ( -1 - 4 \beta_{1} + 3 \beta_{2} ) q^{64} + ( -1 - 5 \beta_{1} + \beta_{2} ) q^{66} + ( -3 + 7 \beta_{1} + 2 \beta_{2} ) q^{67} + ( 7 + 3 \beta_{1} - 2 \beta_{2} ) q^{68} + ( 1 + 4 \beta_{1} - \beta_{2} ) q^{69} + ( -1 - \beta_{1} - \beta_{2} ) q^{70} + ( 4 + 4 \beta_{1} - \beta_{2} ) q^{71} + ( 1 - \beta_{1} ) q^{72} + ( -10 - 2 \beta_{1} + 3 \beta_{2} ) q^{73} + ( -7 - \beta_{1} - 5 \beta_{2} ) q^{74} + ( 1 + 3 \beta_{1} - 4 \beta_{2} ) q^{75} + ( 2 - 5 \beta_{2} ) q^{76} + ( -2 + \beta_{1} - 3 \beta_{2} ) q^{77} + ( -7 + \beta_{1} + \beta_{2} ) q^{79} + ( \beta_{1} + 6 \beta_{2} ) q^{80} + q^{81} + ( -10 \beta_{1} + 4 \beta_{2} ) q^{82} + ( -8 + 3 \beta_{1} + \beta_{2} ) q^{83} + \beta_{2} q^{84} + ( 1 - \beta_{1} - 9 \beta_{2} ) q^{85} + ( -5 - 2 \beta_{1} ) q^{86} + ( 3 - 5 \beta_{1} ) q^{87} + ( -1 + 6 \beta_{1} - 4 \beta_{2} ) q^{88} + ( 3 - 2 \beta_{1} + 2 \beta_{2} ) q^{89} + ( -1 - \beta_{1} - \beta_{2} ) q^{90} + ( 2 + 3 \beta_{1} + 2 \beta_{2} ) q^{92} + ( -3 + 3 \beta_{1} - 3 \beta_{2} ) q^{93} + ( 5 - 2 \beta_{1} + 3 \beta_{2} ) q^{94} + ( 10 + 5 \beta_{1} - 7 \beta_{2} ) q^{95} + ( -3 - 3 \beta_{1} + \beta_{2} ) q^{96} + ( -1 - 7 \beta_{1} + \beta_{2} ) q^{97} + \beta_{1} q^{98} + ( -2 + \beta_{1} - 3 \beta_{2} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3q + 3q^{3} - 6q^{5} + 3q^{7} + 3q^{8} + 3q^{9} + O(q^{10}) \) \( 3q + 3q^{3} - 6q^{5} + 3q^{7} + 3q^{8} + 3q^{9} - 3q^{10} - 6q^{11} - 6q^{15} - 6q^{16} + 6q^{17} - 9q^{19} + 3q^{20} + 3q^{21} - 3q^{22} + 3q^{23} + 3q^{24} + 3q^{25} + 3q^{27} + 9q^{29} - 3q^{30} - 9q^{31} - 9q^{32} - 6q^{33} + 6q^{34} - 6q^{35} - 12q^{37} - 6q^{38} - 3q^{40} - 6q^{41} + 9q^{43} - 15q^{44} - 6q^{45} + 21q^{46} - 3q^{47} - 6q^{48} + 3q^{49} + 6q^{50} + 6q^{51} + 3q^{53} + 3q^{56} - 9q^{57} - 30q^{58} - 15q^{59} + 3q^{60} - 15q^{61} + 9q^{62} + 3q^{63} - 3q^{64} - 3q^{66} - 9q^{67} + 21q^{68} + 3q^{69} - 3q^{70} + 12q^{71} + 3q^{72} - 30q^{73} - 21q^{74} + 3q^{75} + 6q^{76} - 6q^{77} - 21q^{79} + 3q^{81} - 24q^{83} + 3q^{85} - 15q^{86} + 9q^{87} - 3q^{88} + 9q^{89} - 3q^{90} + 6q^{92} - 9q^{93} + 15q^{94} + 30q^{95} - 9q^{96} - 3q^{97} - 6q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.53209
−0.347296
1.87939
−1.53209 1.00000 0.347296 −0.120615 −1.53209 1.00000 2.53209 1.00000 0.184793
1.2 −0.347296 1.00000 −1.87939 −3.53209 −0.347296 1.00000 1.34730 1.00000 1.22668
1.3 1.87939 1.00000 1.53209 −2.34730 1.87939 1.00000 −0.879385 1.00000 −4.41147
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(7\) \(-1\)
\(13\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3549.2.a.n 3
13.b even 2 1 3549.2.a.o 3
13.e even 6 2 273.2.k.a 6
39.h odd 6 2 819.2.o.g 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
273.2.k.a 6 13.e even 6 2
819.2.o.g 6 39.h odd 6 2
3549.2.a.n 3 1.a even 1 1 trivial
3549.2.a.o 3 13.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3549))\):

\( T_{2}^{3} - 3 T_{2} - 1 \)
\( T_{5}^{3} + 6 T_{5}^{2} + 9 T_{5} + 1 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -1 - 3 T + T^{3} \)
$3$ \( ( -1 + T )^{3} \)
$5$ \( 1 + 9 T + 6 T^{2} + T^{3} \)
$7$ \( ( -1 + T )^{3} \)
$11$ \( -71 - 9 T + 6 T^{2} + T^{3} \)
$13$ \( T^{3} \)
$17$ \( 159 - 27 T - 6 T^{2} + T^{3} \)
$19$ \( -17 + 15 T + 9 T^{2} + T^{3} \)
$23$ \( 57 - 36 T - 3 T^{2} + T^{3} \)
$29$ \( 323 - 48 T - 9 T^{2} + T^{3} \)
$31$ \( -27 + 9 T^{2} + T^{3} \)
$37$ \( -327 - 9 T + 12 T^{2} + T^{3} \)
$41$ \( -856 - 132 T + 6 T^{2} + T^{3} \)
$43$ \( 73 - 48 T - 9 T^{2} + T^{3} \)
$47$ \( -3 - 18 T + 3 T^{2} + T^{3} \)
$53$ \( 867 - 153 T - 3 T^{2} + T^{3} \)
$59$ \( -1293 - 72 T + 15 T^{2} + T^{3} \)
$61$ \( -127 + 39 T + 15 T^{2} + T^{3} \)
$67$ \( -1583 - 174 T + 9 T^{2} + T^{3} \)
$71$ \( 111 + 9 T - 12 T^{2} + T^{3} \)
$73$ \( 807 + 279 T + 30 T^{2} + T^{3} \)
$79$ \( 271 + 138 T + 21 T^{2} + T^{3} \)
$83$ \( 111 + 153 T + 24 T^{2} + T^{3} \)
$89$ \( 1 + 15 T - 9 T^{2} + T^{3} \)
$97$ \( -57 - 126 T + 3 T^{2} + T^{3} \)
show more
show less