Properties

Label 3549.2.a.c
Level 3549
Weight 2
Character orbit 3549.a
Self dual Yes
Analytic conductor 28.339
Analytic rank 1
Dimension 1
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 3549 = 3 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 3549.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(28.3389076774\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} + q^{3} - q^{4} + 2q^{5} + q^{6} + q^{7} - 3q^{8} + q^{9} + O(q^{10}) \) \( q + q^{2} + q^{3} - q^{4} + 2q^{5} + q^{6} + q^{7} - 3q^{8} + q^{9} + 2q^{10} - 4q^{11} - q^{12} + q^{14} + 2q^{15} - q^{16} - 6q^{17} + q^{18} - 4q^{19} - 2q^{20} + q^{21} - 4q^{22} - 3q^{24} - q^{25} + q^{27} - q^{28} - 2q^{29} + 2q^{30} + 5q^{32} - 4q^{33} - 6q^{34} + 2q^{35} - q^{36} - 6q^{37} - 4q^{38} - 6q^{40} - 2q^{41} + q^{42} - 4q^{43} + 4q^{44} + 2q^{45} - q^{48} + q^{49} - q^{50} - 6q^{51} + 6q^{53} + q^{54} - 8q^{55} - 3q^{56} - 4q^{57} - 2q^{58} - 12q^{59} - 2q^{60} - 2q^{61} + q^{63} + 7q^{64} - 4q^{66} - 4q^{67} + 6q^{68} + 2q^{70} - 3q^{72} + 6q^{73} - 6q^{74} - q^{75} + 4q^{76} - 4q^{77} - 16q^{79} - 2q^{80} + q^{81} - 2q^{82} + 12q^{83} - q^{84} - 12q^{85} - 4q^{86} - 2q^{87} + 12q^{88} + 14q^{89} + 2q^{90} - 8q^{95} + 5q^{96} - 18q^{97} + q^{98} - 4q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 1.00000 −1.00000 2.00000 1.00000 1.00000 −3.00000 1.00000 2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(7\) \(-1\)
\(13\) \(1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3549))\):

\( T_{2} - 1 \)
\( T_{5} - 2 \)