Properties

Label 3549.1
Level 3549
Weight 1
Dimension 380
Nonzero newspaces 18
Newform subspaces 48
Sturm bound 908544
Trace bound 144

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 3549 = 3 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 18 \)
Newform subspaces: \( 48 \)
Sturm bound: \(908544\)
Trace bound: \(144\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(3549))\).

Total New Old
Modular forms 6090 2424 3666
Cusp forms 618 380 238
Eisenstein series 5472 2044 3428

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 340 40 0 0

Trace form

\( 380 q + 4 q^{6} + 2 q^{7} + 10 q^{9} + 2 q^{10} + 8 q^{12} + 4 q^{15} + 10 q^{16} + 8 q^{19} + 4 q^{21} - 2 q^{24} + 4 q^{28} + 4 q^{31} - 8 q^{34} + 6 q^{37} + 4 q^{39} + 20 q^{40} - 2 q^{42} + 20 q^{43}+ \cdots + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(3549))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
3549.1.b \(\chi_{3549}(1184, \cdot)\) None 0 1
3549.1.d \(\chi_{3549}(2365, \cdot)\) None 0 1
3549.1.f \(\chi_{3549}(2029, \cdot)\) None 0 1
3549.1.h \(\chi_{3549}(1520, \cdot)\) None 0 1
3549.1.m \(\chi_{3549}(1282, \cdot)\) None 0 2
3549.1.o \(\chi_{3549}(944, \cdot)\) 3549.1.o.a 2 2
3549.1.o.b 2
3549.1.q \(\chi_{3549}(1837, \cdot)\) None 0 2
3549.1.s \(\chi_{3549}(653, \cdot)\) 3549.1.s.a 2 2
3549.1.s.b 4
3549.1.s.c 4
3549.1.v \(\chi_{3549}(2050, \cdot)\) None 0 2
3549.1.w \(\chi_{3549}(506, \cdot)\) 3549.1.w.a 2 2
3549.1.w.b 2
3549.1.w.c 4
3549.1.w.d 4
3549.1.w.e 4
3549.1.x \(\chi_{3549}(485, \cdot)\) 3549.1.x.a 2 2
3549.1.x.b 4
3549.1.x.c 4
3549.1.x.d 4
3549.1.z \(\chi_{3549}(2005, \cdot)\) None 0 2
3549.1.bb \(\chi_{3549}(1522, \cdot)\) None 0 2
3549.1.bc \(\chi_{3549}(1037, \cdot)\) None 0 2
3549.1.be \(\chi_{3549}(1205, \cdot)\) None 0 2
3549.1.bg \(\chi_{3549}(1375, \cdot)\) None 0 2
3549.1.bi \(\chi_{3549}(1858, \cdot)\) None 0 2
3549.1.bk \(\chi_{3549}(170, \cdot)\) 3549.1.bk.a 2 2
3549.1.bk.b 2
3549.1.bk.c 4
3549.1.bk.d 4
3549.1.bk.e 4
3549.1.bm \(\chi_{3549}(191, \cdot)\) 3549.1.bm.a 2 2
3549.1.bm.b 4
3549.1.bm.c 4
3549.1.bo \(\chi_{3549}(1882, \cdot)\) None 0 2
3549.1.bp \(\chi_{3549}(23, \cdot)\) 3549.1.bp.a 2 2
3549.1.bp.b 4
3549.1.bp.c 4
3549.1.bp.d 4
3549.1.bq \(\chi_{3549}(1543, \cdot)\) None 0 2
3549.1.bs \(\chi_{3549}(89, \cdot)\) 3549.1.bs.a 4 4
3549.1.bs.b 4
3549.1.bs.c 4
3549.1.bu \(\chi_{3549}(319, \cdot)\) None 0 4
3549.1.bx \(\chi_{3549}(1432, \cdot)\) None 0 4
3549.1.ca \(\chi_{3549}(188, \cdot)\) 3549.1.ca.a 4 4
3549.1.ca.b 4
3549.1.ca.c 4
3549.1.ca.d 4
3549.1.cb \(\chi_{3549}(437, \cdot)\) 3549.1.cb.a 4 4
3549.1.cb.b 4
3549.1.cb.c 4
3549.1.cb.d 4
3549.1.ce \(\chi_{3549}(526, \cdot)\) None 0 4
3549.1.cf \(\chi_{3549}(268, \cdot)\) None 0 4
3549.1.ch \(\chi_{3549}(80, \cdot)\) 3549.1.ch.a 4 4
3549.1.ch.b 4
3549.1.ch.c 4
3549.1.cj \(\chi_{3549}(155, \cdot)\) None 0 12
3549.1.cl \(\chi_{3549}(118, \cdot)\) None 0 12
3549.1.cn \(\chi_{3549}(181, \cdot)\) None 0 12
3549.1.cp \(\chi_{3549}(92, \cdot)\) None 0 12
3549.1.cv \(\chi_{3549}(83, \cdot)\) 3549.1.cv.a 24 24
3549.1.cv.b 24
3549.1.cx \(\chi_{3549}(148, \cdot)\) None 0 24
3549.1.cz \(\chi_{3549}(178, \cdot)\) None 0 24
3549.1.da \(\chi_{3549}(95, \cdot)\) 3549.1.da.a 24 24
3549.1.db \(\chi_{3549}(160, \cdot)\) None 0 24
3549.1.dd \(\chi_{3549}(263, \cdot)\) 3549.1.dd.a 24 24
3549.1.df \(\chi_{3549}(53, \cdot)\) None 0 24
3549.1.dh \(\chi_{3549}(103, \cdot)\) None 0 24
3549.1.dj \(\chi_{3549}(10, \cdot)\) None 0 24
3549.1.dl \(\chi_{3549}(29, \cdot)\) None 0 24
3549.1.dn \(\chi_{3549}(134, \cdot)\) None 0 24
3549.1.do \(\chi_{3549}(40, \cdot)\) None 0 24
3549.1.dq \(\chi_{3549}(61, \cdot)\) None 0 24
3549.1.ds \(\chi_{3549}(179, \cdot)\) 3549.1.ds.a 24 24
3549.1.dt \(\chi_{3549}(116, \cdot)\) None 0 24
3549.1.du \(\chi_{3549}(55, \cdot)\) None 0 24
3549.1.dx \(\chi_{3549}(74, \cdot)\) 3549.1.dx.a 24 24
3549.1.dz \(\chi_{3549}(166, \cdot)\) None 0 24
3549.1.ea \(\chi_{3549}(110, \cdot)\) 3549.1.ea.a 48 48
3549.1.ec \(\chi_{3549}(85, \cdot)\) None 0 48
3549.1.ed \(\chi_{3549}(109, \cdot)\) None 0 48
3549.1.eg \(\chi_{3549}(20, \cdot)\) None 0 48
3549.1.eh \(\chi_{3549}(5, \cdot)\) None 0 48
3549.1.ek \(\chi_{3549}(58, \cdot)\) None 0 48
3549.1.en \(\chi_{3549}(37, \cdot)\) None 0 48
3549.1.ep \(\chi_{3549}(59, \cdot)\) 3549.1.ep.a 48 48

Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(3549))\) into lower level spaces

\( S_{1}^{\mathrm{old}}(\Gamma_1(3549)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(39))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(91))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(169))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(273))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(507))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(1183))\)\(^{\oplus 2}\)