Properties

Label 354.4
Level 354
Weight 4
Dimension 2608
Nonzero newspaces 4
Sturm bound 27840
Trace bound 1

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 354 = 2 \cdot 3 \cdot 59 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 4 \)
Sturm bound: \(27840\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(354))\).

Total New Old
Modular forms 10672 2608 8064
Cusp forms 10208 2608 7600
Eisenstein series 464 0 464

Trace form

\( 2608q + 4q^{2} + 6q^{3} - 8q^{4} - 12q^{5} - 12q^{6} + 32q^{7} + 16q^{8} - 18q^{9} + O(q^{10}) \) \( 2608q + 4q^{2} + 6q^{3} - 8q^{4} - 12q^{5} - 12q^{6} + 32q^{7} + 16q^{8} - 18q^{9} + 24q^{10} - 24q^{11} + 24q^{12} - 76q^{13} - 64q^{14} + 36q^{15} - 32q^{16} + 252q^{17} + 36q^{18} - 40q^{19} - 48q^{20} - 96q^{21} + 48q^{22} - 336q^{23} - 48q^{24} + 178q^{25} + 152q^{26} + 54q^{27} + 128q^{28} - 60q^{29} - 72q^{30} + 176q^{31} + 64q^{32} + 72q^{33} - 504q^{34} + 192q^{35} - 72q^{36} - 508q^{37} + 80q^{38} + 228q^{39} + 96q^{40} - 84q^{41} + 192q^{42} + 104q^{43} - 96q^{44} - 7300q^{45} - 10696q^{46} - 8392q^{47} + 96q^{48} - 7250q^{49} - 3604q^{50} - 292q^{51} + 1552q^{52} + 6100q^{53} + 7606q^{54} + 15864q^{55} - 256q^{56} + 16360q^{57} + 6848q^{58} + 14116q^{59} + 9888q^{60} + 13140q^{61} + 4984q^{62} + 11308q^{63} - 128q^{64} + 5112q^{65} + 262q^{66} - 5016q^{67} - 2704q^{68} - 11056q^{69} - 17552q^{70} - 24320q^{71} + 144q^{72} - 18068q^{73} - 20096q^{74} - 12946q^{75} - 160q^{76} + 384q^{77} - 456q^{78} + 1040q^{79} - 192q^{80} - 162q^{81} + 168q^{82} + 984q^{83} - 384q^{84} + 1512q^{85} - 208q^{86} + 180q^{87} + 192q^{88} - 1620q^{89} + 216q^{90} + 1216q^{91} - 1344q^{92} - 528q^{93} - 384q^{94} - 240q^{95} - 192q^{96} - 2308q^{97} - 348q^{98} - 216q^{99} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(354))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
354.4.a \(\chi_{354}(1, \cdot)\) 354.4.a.a 2 1
354.4.a.b 2
354.4.a.c 2
354.4.a.d 3
354.4.a.e 3
354.4.a.f 3
354.4.a.g 3
354.4.a.h 4
354.4.a.i 6
354.4.c \(\chi_{354}(353, \cdot)\) 354.4.c.a 30 1
354.4.c.b 30
354.4.e \(\chi_{354}(7, \cdot)\) n/a 840 28
354.4.g \(\chi_{354}(11, \cdot)\) n/a 1680 28

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(354))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(354)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(59))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(118))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(177))\)\(^{\oplus 2}\)