Properties

Label 354.3.h.a.5.9
Level 354
Weight 3
Character 354.5
Analytic conductor 9.646
Analytic rank 0
Dimension 1120
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 354 = 2 \cdot 3 \cdot 59 \)
Weight: \( k \) = \( 3 \)
Character orbit: \([\chi]\) = 354.h (of order \(58\), degree \(28\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(9.64580135835\)
Analytic rank: \(0\)
Dimension: \(1120\)
Relative dimension: \(40\) over \(\Q(\zeta_{58})\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{58}]$

Embedding invariants

Embedding label 5.9
Character \(\chi\) = 354.5
Dual form 354.3.h.a.71.9

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.451561 + 1.34018i) q^{2} +(-0.520443 - 2.95451i) q^{3} +(-1.59219 - 1.21035i) q^{4} +(-4.82640 - 1.92301i) q^{5} +(4.19460 + 0.636651i) q^{6} +(-5.47968 + 2.53517i) q^{7} +(2.34106 - 1.58728i) q^{8} +(-8.45828 + 3.07531i) q^{9} +O(q^{10})\) \(q+(-0.451561 + 1.34018i) q^{2} +(-0.520443 - 2.95451i) q^{3} +(-1.59219 - 1.21035i) q^{4} +(-4.82640 - 1.92301i) q^{5} +(4.19460 + 0.636651i) q^{6} +(-5.47968 + 2.53517i) q^{7} +(2.34106 - 1.58728i) q^{8} +(-8.45828 + 3.07531i) q^{9} +(4.75660 - 5.59991i) q^{10} +(9.66680 + 2.68397i) q^{11} +(-2.74735 + 5.33405i) q^{12} +(3.44343 - 6.49500i) q^{13} +(-0.923186 - 8.48856i) q^{14} +(-3.16970 + 15.2605i) q^{15} +(1.07011 + 3.85420i) q^{16} +(-4.82690 + 10.4332i) q^{17} +(-0.302057 - 12.7243i) q^{18} +(-11.5266 + 2.53719i) q^{19} +(5.35701 + 8.90342i) q^{20} +(10.3420 + 14.8704i) q^{21} +(-7.96216 + 11.7433i) q^{22} +(41.0414 + 6.72839i) q^{23} +(-5.90801 - 6.09060i) q^{24} +(1.44627 + 1.36998i) q^{25} +(7.14957 + 7.54771i) q^{26} +(13.4881 + 23.3896i) q^{27} +(11.7931 + 2.59586i) q^{28} +(13.4238 + 39.8403i) q^{29} +(-19.0205 - 11.1390i) q^{30} +(8.35704 + 1.83952i) q^{31} +(-5.64856 - 0.306256i) q^{32} +(2.89881 - 29.9575i) q^{33} +(-11.8027 - 11.1801i) q^{34} +(31.3223 - 1.69824i) q^{35} +(17.1893 + 5.34100i) q^{36} +(-17.8134 + 26.2728i) q^{37} +(1.80464 - 16.5934i) q^{38} +(-20.9817 - 6.79338i) q^{39} +(-14.3512 + 3.15895i) q^{40} +(69.5971 - 11.4099i) q^{41} +(-24.5991 + 7.14537i) q^{42} +(7.23688 + 26.0649i) q^{43} +(-12.1428 - 15.9736i) q^{44} +(46.7369 + 1.42271i) q^{45} +(-27.5499 + 51.9647i) q^{46} +(-28.2588 + 11.2593i) q^{47} +(10.8303 - 5.16755i) q^{48} +(-8.12216 + 9.56214i) q^{49} +(-2.48910 + 1.31964i) q^{50} +(33.3370 + 8.83126i) q^{51} +(-13.3438 + 6.17350i) q^{52} +(-3.54195 + 3.00856i) q^{53} +(-37.4370 + 7.51472i) q^{54} +(-41.4945 - 31.5433i) q^{55} +(-8.80423 + 14.6327i) q^{56} +(13.4951 + 32.7349i) q^{57} -59.4550 q^{58} +(4.12899 + 58.8553i) q^{59} +(23.5172 - 20.4611i) q^{60} +(-68.5201 - 23.0871i) q^{61} +(-6.23901 + 10.3693i) q^{62} +(38.5522 - 38.2949i) q^{63} +(2.96111 - 7.43181i) q^{64} +(-29.1093 + 24.7257i) q^{65} +(38.8396 + 17.4126i) q^{66} +(-38.2673 - 56.4401i) q^{67} +(20.3131 - 10.7693i) q^{68} +(-1.48059 - 124.759i) q^{69} +(-11.8679 + 42.7445i) q^{70} +(-57.9458 + 23.0877i) q^{71} +(-14.9200 + 20.6251i) q^{72} +(60.2740 - 6.55519i) q^{73} +(-27.1666 - 35.7370i) q^{74} +(3.29492 - 4.98601i) q^{75} +(21.4233 + 9.91149i) q^{76} +(-59.7752 + 9.79965i) q^{77} +(18.5789 - 25.0517i) q^{78} +(-50.7105 + 30.5115i) q^{79} +(2.24688 - 20.6598i) q^{80} +(62.0849 - 52.0237i) q^{81} +(-16.1360 + 98.4252i) q^{82} +(-134.261 + 7.27944i) q^{83} +(1.53185 - 36.1939i) q^{84} +(43.3597 - 41.0725i) q^{85} +(-38.1996 - 2.07112i) q^{86} +(110.722 - 60.3953i) q^{87} +(26.8907 - 9.06055i) q^{88} +(6.31127 + 18.7312i) q^{89} +(-23.0112 + 61.9936i) q^{90} +(-2.40297 + 44.3202i) q^{91} +(-57.2018 - 60.3872i) q^{92} +(1.08553 - 25.6483i) q^{93} +(-2.32902 - 42.9562i) q^{94} +(60.5109 + 9.92026i) q^{95} +(2.03492 + 16.8481i) q^{96} +(96.6190 + 10.5079i) q^{97} +(-9.14738 - 15.2031i) q^{98} +(-90.0185 + 7.02661i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 1120q + 80q^{4} - 8q^{6} - 8q^{7} + 24q^{9} + O(q^{10}) \) \( 1120q + 80q^{4} - 8q^{6} - 8q^{7} + 24q^{9} + 16q^{10} - 34q^{15} - 160q^{16} - 16q^{18} - 24q^{19} + 18q^{21} + 16q^{22} + 16q^{24} + 216q^{25} + 30q^{27} + 16q^{28} + 64q^{30} - 96q^{31} - 76q^{33} - 80q^{34} - 48q^{36} + 200q^{37} + 28q^{39} - 32q^{40} - 48q^{42} + 104q^{43} + 696q^{45} - 32q^{46} - 288q^{49} + 1800q^{51} + 852q^{54} - 360q^{55} + 76q^{57} + 128q^{58} - 280q^{60} + 32q^{61} - 1318q^{63} + 320q^{64} - 1512q^{66} + 344q^{67} - 2640q^{69} - 192q^{70} + 32q^{72} - 40q^{73} - 1014q^{75} + 48q^{76} - 96q^{78} - 32q^{79} - 336q^{81} + 80q^{82} - 36q^{84} - 168q^{85} + 162q^{87} - 32q^{88} - 112q^{90} - 88q^{91} + 316q^{93} + 400q^{94} - 32q^{96} + 184q^{97} + 148q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/354\mathbb{Z}\right)^\times\).

\(n\) \(61\) \(119\)
\(\chi(n)\) \(e\left(\frac{3}{29}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.451561 + 1.34018i −0.225780 + 0.670092i
\(3\) −0.520443 2.95451i −0.173481 0.984837i
\(4\) −1.59219 1.21035i −0.398047 0.302587i
\(5\) −4.82640 1.92301i −0.965280 0.384603i −0.166377 0.986062i \(-0.553207\pi\)
−0.798903 + 0.601460i \(0.794586\pi\)
\(6\) 4.19460 + 0.636651i 0.699100 + 0.106109i
\(7\) −5.47968 + 2.53517i −0.782811 + 0.362167i −0.770240 0.637754i \(-0.779864\pi\)
−0.0125708 + 0.999921i \(0.504002\pi\)
\(8\) 2.34106 1.58728i 0.292632 0.198410i
\(9\) −8.45828 + 3.07531i −0.939809 + 0.341701i
\(10\) 4.75660 5.59991i 0.475660 0.559991i
\(11\) 9.66680 + 2.68397i 0.878800 + 0.243998i 0.677492 0.735530i \(-0.263067\pi\)
0.201308 + 0.979528i \(0.435481\pi\)
\(12\) −2.74735 + 5.33405i −0.228946 + 0.444504i
\(13\) 3.44343 6.49500i 0.264879 0.499615i −0.715021 0.699103i \(-0.753583\pi\)
0.979900 + 0.199488i \(0.0639278\pi\)
\(14\) −0.923186 8.48856i −0.0659419 0.606325i
\(15\) −3.16970 + 15.2605i −0.211313 + 1.01736i
\(16\) 1.07011 + 3.85420i 0.0668821 + 0.240887i
\(17\) −4.82690 + 10.4332i −0.283935 + 0.613716i −0.996094 0.0883029i \(-0.971856\pi\)
0.712159 + 0.702019i \(0.247718\pi\)
\(18\) −0.302057 12.7243i −0.0167809 0.706908i
\(19\) −11.5266 + 2.53719i −0.606662 + 0.133536i −0.507670 0.861552i \(-0.669493\pi\)
−0.0989921 + 0.995088i \(0.531562\pi\)
\(20\) 5.35701 + 8.90342i 0.267851 + 0.445171i
\(21\) 10.3420 + 14.8704i 0.492478 + 0.708112i
\(22\) −7.96216 + 11.7433i −0.361916 + 0.533787i
\(23\) 41.0414 + 6.72839i 1.78441 + 0.292539i 0.961331 0.275394i \(-0.0888083\pi\)
0.823075 + 0.567932i \(0.192257\pi\)
\(24\) −5.90801 6.09060i −0.246167 0.253775i
\(25\) 1.44627 + 1.36998i 0.0578507 + 0.0547991i
\(26\) 7.14957 + 7.54771i 0.274984 + 0.290297i
\(27\) 13.4881 + 23.3896i 0.499559 + 0.866280i
\(28\) 11.7931 + 2.59586i 0.421182 + 0.0927092i
\(29\) 13.4238 + 39.8403i 0.462889 + 1.37381i 0.884293 + 0.466932i \(0.154641\pi\)
−0.421404 + 0.906873i \(0.638463\pi\)
\(30\) −19.0205 11.1390i −0.634018 0.371300i
\(31\) 8.35704 + 1.83952i 0.269582 + 0.0593395i 0.347704 0.937604i \(-0.386961\pi\)
−0.0781222 + 0.996944i \(0.524892\pi\)
\(32\) −5.64856 0.306256i −0.176517 0.00957050i
\(33\) 2.89881 29.9575i 0.0878428 0.907804i
\(34\) −11.8027 11.1801i −0.347139 0.328828i
\(35\) 31.3223 1.69824i 0.894922 0.0485213i
\(36\) 17.1893 + 5.34100i 0.477482 + 0.148361i
\(37\) −17.8134 + 26.2728i −0.481444 + 0.710076i −0.988396 0.151898i \(-0.951462\pi\)
0.506953 + 0.861974i \(0.330772\pi\)
\(38\) 1.80464 16.5934i 0.0474906 0.436669i
\(39\) −20.9817 6.79338i −0.537991 0.174189i
\(40\) −14.3512 + 3.15895i −0.358781 + 0.0789737i
\(41\) 69.5971 11.4099i 1.69749 0.278289i 0.766209 0.642591i \(-0.222141\pi\)
0.931281 + 0.364302i \(0.118692\pi\)
\(42\) −24.5991 + 7.14537i −0.585692 + 0.170128i
\(43\) 7.23688 + 26.0649i 0.168300 + 0.606160i 0.998792 + 0.0491309i \(0.0156452\pi\)
−0.830493 + 0.557029i \(0.811941\pi\)
\(44\) −12.1428 15.9736i −0.275973 0.363036i
\(45\) 46.7369 + 1.42271i 1.03860 + 0.0316157i
\(46\) −27.5499 + 51.9647i −0.598912 + 1.12967i
\(47\) −28.2588 + 11.2593i −0.601250 + 0.239560i −0.650847 0.759209i \(-0.725586\pi\)
0.0495961 + 0.998769i \(0.484207\pi\)
\(48\) 10.8303 5.16755i 0.225632 0.107657i
\(49\) −8.12216 + 9.56214i −0.165758 + 0.195146i
\(50\) −2.48910 + 1.31964i −0.0497820 + 0.0263928i
\(51\) 33.3370 + 8.83126i 0.653667 + 0.173162i
\(52\) −13.3438 + 6.17350i −0.256611 + 0.118721i
\(53\) −3.54195 + 3.00856i −0.0668292 + 0.0567653i −0.680178 0.733047i \(-0.738098\pi\)
0.613349 + 0.789812i \(0.289822\pi\)
\(54\) −37.4370 + 7.51472i −0.693278 + 0.139162i
\(55\) −41.4945 31.5433i −0.754446 0.573515i
\(56\) −8.80423 + 14.6327i −0.157218 + 0.261299i
\(57\) 13.4951 + 32.7349i 0.236756 + 0.574297i
\(58\) −59.4550 −1.02509
\(59\) 4.12899 + 58.8553i 0.0699828 + 0.997548i
\(60\) 23.5172 20.4611i 0.391954 0.341018i
\(61\) −68.5201 23.0871i −1.12328 0.378477i −0.304459 0.952525i \(-0.598476\pi\)
−0.818822 + 0.574048i \(0.805372\pi\)
\(62\) −6.23901 + 10.3693i −0.100629 + 0.167247i
\(63\) 38.5522 38.2949i 0.611940 0.607855i
\(64\) 2.96111 7.43181i 0.0462673 0.116122i
\(65\) −29.1093 + 24.7257i −0.447836 + 0.380395i
\(66\) 38.8396 + 17.4126i 0.588479 + 0.263827i
\(67\) −38.2673 56.4401i −0.571154 0.842389i 0.426929 0.904285i \(-0.359596\pi\)
−0.998083 + 0.0618963i \(0.980285\pi\)
\(68\) 20.3131 10.7693i 0.298722 0.158372i
\(69\) −1.48059 124.759i −0.0214578 1.80810i
\(70\) −11.8679 + 42.7445i −0.169542 + 0.610635i
\(71\) −57.9458 + 23.0877i −0.816138 + 0.325179i −0.740585 0.671963i \(-0.765452\pi\)
−0.0755530 + 0.997142i \(0.524072\pi\)
\(72\) −14.9200 + 20.6251i −0.207222 + 0.286460i
\(73\) 60.2740 6.55519i 0.825671 0.0897971i 0.314480 0.949264i \(-0.398170\pi\)
0.511191 + 0.859467i \(0.329204\pi\)
\(74\) −27.1666 35.7370i −0.367116 0.482933i
\(75\) 3.29492 4.98601i 0.0439322 0.0664802i
\(76\) 21.4233 + 9.91149i 0.281886 + 0.130414i
\(77\) −59.7752 + 9.79965i −0.776302 + 0.127268i
\(78\) 18.5789 25.0517i 0.238191 0.321175i
\(79\) −50.7105 + 30.5115i −0.641905 + 0.386222i −0.798974 0.601366i \(-0.794623\pi\)
0.157068 + 0.987588i \(0.449796\pi\)
\(80\) 2.24688 20.6598i 0.0280860 0.258247i
\(81\) 62.0849 52.0237i 0.766481 0.642267i
\(82\) −16.1360 + 98.4252i −0.196780 + 1.20031i
\(83\) −134.261 + 7.27944i −1.61761 + 0.0877041i −0.840553 0.541730i \(-0.817770\pi\)
−0.777054 + 0.629434i \(0.783287\pi\)
\(84\) 1.53185 36.1939i 0.0182364 0.430879i
\(85\) 43.3597 41.0725i 0.510114 0.483205i
\(86\) −38.1996 2.07112i −0.444182 0.0240828i
\(87\) 110.722 60.3953i 1.27267 0.694199i
\(88\) 26.8907 9.06055i 0.305577 0.102961i
\(89\) 6.31127 + 18.7312i 0.0709131 + 0.210463i 0.977249 0.212096i \(-0.0680288\pi\)
−0.906336 + 0.422558i \(0.861132\pi\)
\(90\) −23.0112 + 61.9936i −0.255680 + 0.688818i
\(91\) −2.40297 + 44.3202i −0.0264063 + 0.487035i
\(92\) −57.2018 60.3872i −0.621758 0.656382i
\(93\) 1.08553 25.6483i 0.0116724 0.275789i
\(94\) −2.32902 42.9562i −0.0247768 0.456981i
\(95\) 60.5109 + 9.92026i 0.636957 + 0.104424i
\(96\) 2.03492 + 16.8481i 0.0211970 + 0.175501i
\(97\) 96.6190 + 10.5079i 0.996072 + 0.108329i 0.591609 0.806225i \(-0.298493\pi\)
0.404463 + 0.914554i \(0.367459\pi\)
\(98\) −9.14738 15.2031i −0.0933406 0.155133i
\(99\) −90.0185 + 7.02661i −0.909278 + 0.0709758i
\(100\) −0.644578 3.93175i −0.00644578 0.0393175i
\(101\) −4.75229 + 10.2719i −0.0470523 + 0.101702i −0.929676 0.368379i \(-0.879913\pi\)
0.882624 + 0.470080i \(0.155775\pi\)
\(102\) −26.8892 + 40.6899i −0.263620 + 0.398921i
\(103\) 83.2662 63.2973i 0.808410 0.614537i −0.117160 0.993113i \(-0.537379\pi\)
0.925570 + 0.378576i \(0.123586\pi\)
\(104\) −2.24809 20.6708i −0.0216162 0.198758i
\(105\) −21.3189 91.6582i −0.203038 0.872935i
\(106\) −2.43262 6.10541i −0.0229492 0.0575982i
\(107\) −17.1769 4.76915i −0.160532 0.0445715i 0.186333 0.982487i \(-0.440340\pi\)
−0.346864 + 0.937915i \(0.612754\pi\)
\(108\) 6.83396 53.5658i 0.0632774 0.495980i
\(109\) 83.5741 + 157.637i 0.766735 + 1.44622i 0.891018 + 0.453968i \(0.149992\pi\)
−0.124283 + 0.992247i \(0.539663\pi\)
\(110\) 61.0111 41.3666i 0.554647 0.376060i
\(111\) 86.8942 + 38.9564i 0.782831 + 0.350959i
\(112\) −15.6349 18.4069i −0.139597 0.164347i
\(113\) 164.082 + 65.3764i 1.45206 + 0.578553i 0.956943 0.290275i \(-0.0937469\pi\)
0.495114 + 0.868828i \(0.335126\pi\)
\(114\) −49.9647 + 3.30409i −0.438287 + 0.0289833i
\(115\) −185.143 111.397i −1.60994 0.968669i
\(116\) 26.8476 79.6807i 0.231444 0.686903i
\(117\) −9.15135 + 65.5261i −0.0782167 + 0.560052i
\(118\) −80.7415 21.0432i −0.684250 0.178332i
\(119\) 69.4074i 0.583255i
\(120\) 16.8021 + 40.7568i 0.140018 + 0.339640i
\(121\) −17.4365 10.4912i −0.144103 0.0867039i
\(122\) 61.8820 81.4044i 0.507229 0.667249i
\(123\) −69.9319 199.687i −0.568552 1.62347i
\(124\) −11.0795 13.0438i −0.0893508 0.105192i
\(125\) 50.1914 + 108.487i 0.401532 + 0.867896i
\(126\) 33.9135 + 68.9595i 0.269155 + 0.547297i
\(127\) 16.5329 + 31.1843i 0.130180 + 0.245546i 0.940030 0.341091i \(-0.110796\pi\)
−0.809850 + 0.586637i \(0.800452\pi\)
\(128\) 8.62288 + 7.32434i 0.0673662 + 0.0572214i
\(129\) 73.2427 34.9467i 0.567773 0.270905i
\(130\) −19.9923 50.1770i −0.153787 0.385977i
\(131\) −16.4838 8.73913i −0.125830 0.0667109i 0.404304 0.914625i \(-0.367514\pi\)
−0.530134 + 0.847914i \(0.677859\pi\)
\(132\) −40.8745 + 44.1894i −0.309655 + 0.334768i
\(133\) 56.7297 43.1248i 0.426539 0.324246i
\(134\) 92.9201 25.7991i 0.693433 0.192531i
\(135\) −20.1205 138.825i −0.149041 1.02833i
\(136\) 5.26028 + 32.0863i 0.0386785 + 0.235928i
\(137\) −44.1516 200.583i −0.322274 1.46411i −0.807578 0.589761i \(-0.799222\pi\)
0.485303 0.874346i \(-0.338709\pi\)
\(138\) 167.868 + 54.3519i 1.21644 + 0.393855i
\(139\) −66.1509 7.19434i −0.475906 0.0517579i −0.132977 0.991119i \(-0.542454\pi\)
−0.342929 + 0.939361i \(0.611419\pi\)
\(140\) −51.9264 35.2069i −0.370903 0.251478i
\(141\) 47.9729 + 77.6310i 0.340233 + 0.550575i
\(142\) −4.77575 88.0835i −0.0336320 0.620307i
\(143\) 50.7193 53.5437i 0.354681 0.374432i
\(144\) −20.9042 29.3090i −0.145168 0.203534i
\(145\) 11.8250 218.100i 0.0815518 1.50413i
\(146\) −18.4322 + 83.7383i −0.126248 + 0.573550i
\(147\) 32.4786 + 19.0205i 0.220943 + 0.129391i
\(148\) 60.1615 20.2708i 0.406497 0.136965i
\(149\) 7.01293 31.8601i 0.0470667 0.213826i −0.947218 0.320591i \(-0.896118\pi\)
0.994284 + 0.106765i \(0.0340494\pi\)
\(150\) 5.19432 + 6.66728i 0.0346288 + 0.0444485i
\(151\) −112.410 + 106.481i −0.744440 + 0.705171i −0.962655 0.270730i \(-0.912735\pi\)
0.218216 + 0.975901i \(0.429976\pi\)
\(152\) −22.9571 + 24.2356i −0.151034 + 0.159445i
\(153\) 8.74201 103.091i 0.0571373 0.673796i
\(154\) 13.8588 84.5350i 0.0899922 0.548928i
\(155\) −36.7970 24.9490i −0.237400 0.160961i
\(156\) 25.1843 + 36.2114i 0.161438 + 0.232125i
\(157\) −201.846 + 121.447i −1.28565 + 0.773547i −0.983707 0.179781i \(-0.942461\pi\)
−0.301938 + 0.953327i \(0.597634\pi\)
\(158\) −17.9922 81.7392i −0.113874 0.517337i
\(159\) 10.7322 + 8.89895i 0.0674981 + 0.0559682i
\(160\) 26.6733 + 12.3404i 0.166708 + 0.0771273i
\(161\) −241.951 + 67.1773i −1.50280 + 0.417251i
\(162\) 41.6862 + 106.697i 0.257322 + 0.658624i
\(163\) 107.925 11.7376i 0.662119 0.0720098i 0.229112 0.973400i \(-0.426418\pi\)
0.433007 + 0.901390i \(0.357452\pi\)
\(164\) −124.621 66.0701i −0.759887 0.402867i
\(165\) −71.5995 + 139.013i −0.433937 + 0.842500i
\(166\) 50.8714 183.222i 0.306454 1.10375i
\(167\) −9.40609 7.98960i −0.0563239 0.0478419i 0.618782 0.785563i \(-0.287626\pi\)
−0.675106 + 0.737721i \(0.735902\pi\)
\(168\) 47.8147 + 18.3967i 0.284611 + 0.109504i
\(169\) 64.5128 + 95.1493i 0.381733 + 0.563014i
\(170\) 35.4651 + 76.6566i 0.208618 + 0.450921i
\(171\) 89.6923 56.9080i 0.524516 0.332796i
\(172\) 20.0251 50.2593i 0.116425 0.292205i
\(173\) 32.2992 42.4889i 0.186701 0.245600i −0.693215 0.720731i \(-0.743806\pi\)
0.879915 + 0.475131i \(0.157599\pi\)
\(174\) 30.9430 + 175.661i 0.177833 + 1.00954i
\(175\) −11.3982 3.84050i −0.0651326 0.0219457i
\(176\) 40.1299i 0.228011i
\(177\) 171.740 42.8300i 0.970282 0.241977i
\(178\) −27.9531 −0.157040
\(179\) −17.8382 + 52.9419i −0.0996548 + 0.295765i −0.985871 0.167507i \(-0.946428\pi\)
0.886216 + 0.463272i \(0.153325\pi\)
\(180\) −72.6919 58.8331i −0.403844 0.326851i
\(181\) 184.737 + 140.433i 1.02064 + 0.775874i 0.974801 0.223075i \(-0.0716095\pi\)
0.0458430 + 0.998949i \(0.485403\pi\)
\(182\) −58.3121 23.2337i −0.320396 0.127657i
\(183\) −32.5503 + 214.459i −0.177871 + 1.17191i
\(184\) 106.760 49.3924i 0.580217 0.268437i
\(185\) 136.498 92.5477i 0.737825 0.500258i
\(186\) 33.8833 + 13.0366i 0.182168 + 0.0700892i
\(187\) −74.6630 + 87.9001i −0.399267 + 0.470054i
\(188\) 58.6209 + 16.2760i 0.311813 + 0.0865746i
\(189\) −133.207 93.9726i −0.704798 0.497210i
\(190\) −40.6193 + 76.6161i −0.213786 + 0.403243i
\(191\) 13.6507 + 125.516i 0.0714698 + 0.657154i 0.974003 + 0.226534i \(0.0727395\pi\)
−0.902533 + 0.430620i \(0.858295\pi\)
\(192\) −23.4985 4.88078i −0.122388 0.0254208i
\(193\) 75.9957 + 273.712i 0.393760 + 1.41820i 0.849267 + 0.527964i \(0.177044\pi\)
−0.455507 + 0.890232i \(0.650542\pi\)
\(194\) −57.7119 + 124.742i −0.297484 + 0.643001i
\(195\) 88.2021 + 73.1356i 0.452318 + 0.375054i
\(196\) 24.5055 5.39407i 0.125028 0.0275208i
\(197\) 71.8052 + 119.341i 0.364493 + 0.605793i 0.983781 0.179371i \(-0.0574063\pi\)
−0.619288 + 0.785164i \(0.712579\pi\)
\(198\) 31.2319 123.814i 0.157737 0.625325i
\(199\) −82.2143 + 121.257i −0.413137 + 0.609331i −0.976145 0.217120i \(-0.930334\pi\)
0.563008 + 0.826451i \(0.309644\pi\)
\(200\) 5.56033 + 0.911570i 0.0278017 + 0.00455785i
\(201\) −146.837 + 142.435i −0.730532 + 0.708632i
\(202\) −11.6203 11.0073i −0.0575262 0.0544917i
\(203\) −174.560 184.281i −0.859901 0.907786i
\(204\) −42.3899 54.4104i −0.207794 0.266718i
\(205\) −357.845 78.7676i −1.74558 0.384232i
\(206\) 47.2303 + 140.175i 0.229273 + 0.680459i
\(207\) −367.831 + 69.3043i −1.77696 + 0.334803i
\(208\) 28.7179 + 6.32128i 0.138067 + 0.0303908i
\(209\) −118.235 6.41050i −0.565717 0.0306723i
\(210\) 132.466 + 12.8179i 0.630789 + 0.0610377i
\(211\) −227.016 215.041i −1.07590 1.01915i −0.999757 0.0220528i \(-0.992980\pi\)
−0.0761462 0.997097i \(-0.524262\pi\)
\(212\) 9.28085 0.503193i 0.0437776 0.00237355i
\(213\) 98.3704 + 159.186i 0.461833 + 0.747351i
\(214\) 14.1480 20.8667i 0.0661119 0.0975078i
\(215\) 15.1951 139.716i 0.0706747 0.649843i
\(216\) 68.7021 + 33.3470i 0.318065 + 0.154384i
\(217\) −50.4574 + 11.1065i −0.232522 + 0.0511821i
\(218\) −249.002 + 40.8218i −1.14221 + 0.187256i
\(219\) −50.7366 174.669i −0.231674 0.797573i
\(220\) 27.8886 + 100.446i 0.126766 + 0.456571i
\(221\) 51.1423 + 67.2766i 0.231413 + 0.304419i
\(222\) −91.4468 + 98.8630i −0.411922 + 0.445329i
\(223\) −35.7446 + 67.4215i −0.160290 + 0.302339i −0.950628 0.310332i \(-0.899560\pi\)
0.790338 + 0.612670i \(0.209905\pi\)
\(224\) 31.7287 12.6419i 0.141646 0.0564369i
\(225\) −16.4461 7.13993i −0.0730936 0.0317330i
\(226\) −161.710 + 190.379i −0.715529 + 0.842386i
\(227\) 120.707 63.9946i 0.531747 0.281915i −0.180823 0.983516i \(-0.557876\pi\)
0.712570 + 0.701601i \(0.247531\pi\)
\(228\) 18.1340 68.4538i 0.0795350 0.300236i
\(229\) −188.272 + 87.1041i −0.822151 + 0.380367i −0.785424 0.618958i \(-0.787555\pi\)
−0.0367265 + 0.999325i \(0.511693\pi\)
\(230\) 232.896 197.823i 1.01259 0.860102i
\(231\) 60.0628 + 171.506i 0.260012 + 0.742452i
\(232\) 94.6635 + 71.9613i 0.408032 + 0.310178i
\(233\) −124.052 + 206.176i −0.532411 + 0.884874i 0.467589 + 0.883946i \(0.345123\pi\)
−1.00000 0.000927625i \(0.999705\pi\)
\(234\) −83.6846 41.8535i −0.357627 0.178861i
\(235\) 158.040 0.672510
\(236\) 64.6614 98.7062i 0.273989 0.418246i
\(237\) 116.539 + 133.945i 0.491724 + 0.565170i
\(238\) 93.0187 + 31.3416i 0.390835 + 0.131688i
\(239\) −117.484 + 195.260i −0.491564 + 0.816986i −0.999000 0.0447035i \(-0.985766\pi\)
0.507436 + 0.861689i \(0.330593\pi\)
\(240\) −62.2089 + 4.11378i −0.259204 + 0.0171408i
\(241\) 127.393 319.732i 0.528602 1.32669i −0.386061 0.922473i \(-0.626165\pi\)
0.914663 0.404217i \(-0.132456\pi\)
\(242\) 21.9337 18.6307i 0.0906352 0.0769863i
\(243\) −186.016 156.355i −0.765499 0.643437i
\(244\) 81.1533 + 119.692i 0.332596 + 0.490542i
\(245\) 57.5889 30.5317i 0.235057 0.124619i
\(246\) 299.196 3.55073i 1.21624 0.0144339i
\(247\) −23.2119 + 83.6017i −0.0939753 + 0.338468i
\(248\) 22.4841 8.95850i 0.0906619 0.0361230i
\(249\) 91.3826 + 392.888i 0.366998 + 1.57786i
\(250\) −168.057 + 18.2773i −0.672228 + 0.0731092i
\(251\) 177.982 + 234.131i 0.709091 + 0.932793i 0.999711 0.0240455i \(-0.00765466\pi\)
−0.290620 + 0.956839i \(0.593862\pi\)
\(252\) −107.732 + 14.3110i −0.427510 + 0.0567895i
\(253\) 378.680 + 175.196i 1.49676 + 0.692474i
\(254\) −49.2583 + 8.07549i −0.193930 + 0.0317932i
\(255\) −143.915 106.731i −0.564374 0.418552i
\(256\) −13.7097 + 8.24886i −0.0535536 + 0.0322221i
\(257\) 42.0412 386.563i 0.163585 1.50414i −0.568365 0.822776i \(-0.692424\pi\)
0.731950 0.681359i \(-0.238611\pi\)
\(258\) 13.7616 + 113.939i 0.0533395 + 0.441625i
\(259\) 31.0057 189.127i 0.119713 0.730218i
\(260\) 76.2742 4.13547i 0.293362 0.0159056i
\(261\) −236.063 295.698i −0.904458 1.13294i
\(262\) 19.1555 18.1450i 0.0731124 0.0692558i
\(263\) −136.344 7.39234i −0.518417 0.0281077i −0.206925 0.978357i \(-0.566346\pi\)
−0.311491 + 0.950249i \(0.600829\pi\)
\(264\) −40.7646 74.7335i −0.154411 0.283081i
\(265\) 22.8804 7.70929i 0.0863410 0.0290917i
\(266\) 32.1782 + 95.5016i 0.120971 + 0.359029i
\(267\) 52.0568 28.3952i 0.194969 0.106349i
\(268\) −7.38346 + 136.180i −0.0275502 + 0.508134i
\(269\) −175.705 185.490i −0.653179 0.689553i 0.312315 0.949979i \(-0.398896\pi\)
−0.965494 + 0.260426i \(0.916137\pi\)
\(270\) 195.137 + 35.7228i 0.722729 + 0.132307i
\(271\) −6.69844 123.546i −0.0247175 0.455888i −0.984527 0.175234i \(-0.943932\pi\)
0.959809 0.280653i \(-0.0905511\pi\)
\(272\) −45.3768 7.43916i −0.166827 0.0273498i
\(273\) 132.195 15.9665i 0.484231 0.0584854i
\(274\) 288.755 + 31.4040i 1.05385 + 0.114613i
\(275\) 10.3038 + 17.1250i 0.0374684 + 0.0622729i
\(276\) −148.644 + 200.431i −0.538567 + 0.726201i
\(277\) 3.16556 + 19.3091i 0.0114280 + 0.0697079i 0.991925 0.126827i \(-0.0404793\pi\)
−0.980497 + 0.196535i \(0.937031\pi\)
\(278\) 39.5129 85.4057i 0.142133 0.307215i
\(279\) −76.3433 + 10.1413i −0.273632 + 0.0363487i
\(280\) 70.6317 53.6928i 0.252256 0.191760i
\(281\) 55.5649 + 510.911i 0.197740 + 1.81819i 0.501187 + 0.865339i \(0.332897\pi\)
−0.303447 + 0.952848i \(0.598138\pi\)
\(282\) −125.703 + 29.2374i −0.445754 + 0.103679i
\(283\) −36.5458 91.7231i −0.129137 0.324110i 0.850164 0.526518i \(-0.176503\pi\)
−0.979301 + 0.202408i \(0.935123\pi\)
\(284\) 120.205 + 33.3747i 0.423256 + 0.117516i
\(285\) −2.18296 183.943i −0.00765950 0.645414i
\(286\) 48.8556 + 92.1515i 0.170824 + 0.322208i
\(287\) −352.444 + 238.963i −1.22803 + 0.832623i
\(288\) 48.7189 14.7807i 0.169163 0.0513218i
\(289\) 101.543 + 119.545i 0.351358 + 0.413651i
\(290\) 286.954 + 114.333i 0.989496 + 0.394251i
\(291\) −19.2388 290.931i −0.0661128 0.999762i
\(292\) −103.901 62.5154i −0.355827 0.214094i
\(293\) −135.142 + 401.088i −0.461237 + 1.36890i 0.424800 + 0.905287i \(0.360344\pi\)
−0.886037 + 0.463615i \(0.846552\pi\)
\(294\) −40.1570 + 34.9384i −0.136588 + 0.118838i
\(295\) 93.2515 292.000i 0.316107 0.989829i
\(296\) 89.7810i 0.303314i
\(297\) 67.6097 + 262.304i 0.227642 + 0.883178i
\(298\) 39.5316 + 23.7854i 0.132656 + 0.0798167i
\(299\) 185.024 243.395i 0.618809 0.814029i
\(300\) −11.2809 + 3.95066i −0.0376031 + 0.0131689i
\(301\) −105.735 124.480i −0.351278 0.413556i
\(302\) −91.9437 198.733i −0.304449 0.658057i
\(303\) 32.8217 + 8.69475i 0.108323 + 0.0286955i
\(304\) −22.1136 41.7106i −0.0727420 0.137206i
\(305\) 286.309 + 243.193i 0.938717 + 0.797354i
\(306\) 134.213 + 58.2677i 0.438605 + 0.190417i
\(307\) −79.3372 199.121i −0.258427 0.648604i 0.741318 0.671154i \(-0.234201\pi\)
−0.999746 + 0.0225496i \(0.992822\pi\)
\(308\) 107.034 + 56.7460i 0.347514 + 0.184240i
\(309\) −230.348 213.068i −0.745463 0.689542i
\(310\) 50.0523 38.0488i 0.161459 0.122738i
\(311\) 476.942 132.422i 1.53358 0.425795i 0.604782 0.796391i \(-0.293260\pi\)
0.928794 + 0.370596i \(0.120847\pi\)
\(312\) −59.9022 + 17.4000i −0.191994 + 0.0557692i
\(313\) −0.366557 2.23590i −0.00117111 0.00714344i 0.986235 0.165353i \(-0.0528762\pi\)
−0.987406 + 0.158209i \(0.949428\pi\)
\(314\) −71.6153 325.352i −0.228074 1.03615i
\(315\) −259.710 + 110.690i −0.824476 + 0.351397i
\(316\) 117.670 + 12.7974i 0.372374 + 0.0404981i
\(317\) 376.274 + 255.120i 1.18699 + 0.804796i 0.984653 0.174521i \(-0.0558377\pi\)
0.202332 + 0.979317i \(0.435148\pi\)
\(318\) −16.7725 + 10.3647i −0.0527436 + 0.0325934i
\(319\) 22.8345 + 421.158i 0.0715815 + 1.32024i
\(320\) −28.5830 + 30.1747i −0.0893217 + 0.0942958i
\(321\) −5.15089 + 53.2315i −0.0160464 + 0.165830i
\(322\) 19.2255 354.593i 0.0597065 1.10122i
\(323\) 29.1666 132.505i 0.0902992 0.410233i
\(324\) −161.818 + 7.68694i −0.499437 + 0.0237251i
\(325\) 13.8781 4.67609i 0.0427019 0.0143880i
\(326\) −33.0043 + 149.940i −0.101240 + 0.459939i
\(327\) 422.246 328.962i 1.29127 1.00600i
\(328\) 144.820 137.181i 0.441525 0.418235i
\(329\) 126.305 133.338i 0.383905 0.405283i
\(330\) −153.971 158.729i −0.466578 0.480997i
\(331\) −12.4206 + 75.7624i −0.0375245 + 0.228889i −0.998930 0.0462457i \(-0.985274\pi\)
0.961406 + 0.275135i \(0.0887226\pi\)
\(332\) 222.580 + 150.913i 0.670421 + 0.454557i
\(333\) 69.8737 277.005i 0.209831 0.831846i
\(334\) 14.9550 8.99810i 0.0447753 0.0269404i
\(335\) 76.1584 + 345.991i 0.227338 + 1.03281i
\(336\) −46.2462 + 55.7733i −0.137637 + 0.165992i
\(337\) 506.868 + 234.502i 1.50406 + 0.695852i 0.987092 0.160154i \(-0.0511990\pi\)
0.516967 + 0.856006i \(0.327061\pi\)
\(338\) −156.649 + 43.4934i −0.463459 + 0.128679i
\(339\) 107.760 518.808i 0.317876 1.53041i
\(340\) −118.749 + 12.9147i −0.349261 + 0.0379844i
\(341\) 75.8486 + 40.2124i 0.222430 + 0.117925i
\(342\) 35.7657 + 145.902i 0.104578 + 0.426613i
\(343\) 99.4128 358.053i 0.289833 1.04388i
\(344\) 58.3142 + 49.5325i 0.169518 + 0.143990i
\(345\) −232.767 + 604.984i −0.674687 + 1.75358i
\(346\) 42.3579 + 62.4732i 0.122422 + 0.180558i
\(347\) −40.9293 88.4671i −0.117952 0.254949i 0.839603 0.543201i \(-0.182788\pi\)
−0.957554 + 0.288252i \(0.906926\pi\)
\(348\) −249.390 37.8521i −0.716638 0.108771i
\(349\) 7.15083 17.9472i 0.0204895 0.0514247i −0.918376 0.395709i \(-0.870499\pi\)
0.938866 + 0.344284i \(0.111878\pi\)
\(350\) 10.2940 13.5415i 0.0294113 0.0386899i
\(351\) 198.360 7.06483i 0.565129 0.0201277i
\(352\) −53.7815 18.1211i −0.152788 0.0514804i
\(353\) 377.096i 1.06826i −0.845402 0.534130i \(-0.820639\pi\)
0.845402 0.534130i \(-0.179361\pi\)
\(354\) −20.1509 + 249.503i −0.0569234 + 0.704812i
\(355\) 324.068 0.912866
\(356\) 12.6225 37.4623i 0.0354566 0.105231i
\(357\) −205.065 + 36.1226i −0.574412 + 0.101184i
\(358\) −62.8969 47.8130i −0.175690 0.133556i
\(359\) −455.012 181.293i −1.26744 0.504995i −0.363079 0.931758i \(-0.618275\pi\)
−0.904364 + 0.426763i \(0.859654\pi\)
\(360\) 111.672 70.8537i 0.310200 0.196816i
\(361\) −201.210 + 93.0898i −0.557369 + 0.257866i
\(362\) −271.626 + 184.167i −0.750348 + 0.508749i
\(363\) −21.9216 + 56.9763i −0.0603901 + 0.156960i
\(364\) 57.4688 67.6575i 0.157881 0.185872i
\(365\) −303.512 84.2697i −0.831540 0.230876i
\(366\) −272.716 140.465i −0.745126 0.383783i
\(367\) 0.340260 0.641798i 0.000927139 0.00174877i −0.883048 0.469283i \(-0.844513\pi\)
0.883975 + 0.467534i \(0.154857\pi\)
\(368\) 17.9863 + 165.382i 0.0488759 + 0.449407i
\(369\) −553.583 + 310.540i −1.50022 + 0.841573i
\(370\) 62.3940 + 224.723i 0.168632 + 0.607359i
\(371\) 11.7815 25.4654i 0.0317561 0.0686398i
\(372\) −32.7718 + 39.5231i −0.0880962 + 0.106245i
\(373\) 175.982 38.7365i 0.471801 0.103851i 0.0272956 0.999627i \(-0.491310\pi\)
0.444505 + 0.895776i \(0.353379\pi\)
\(374\) −84.0874 139.754i −0.224833 0.373675i
\(375\) 294.404 204.753i 0.785078 0.546007i
\(376\) −48.2838 + 71.2132i −0.128414 + 0.189397i
\(377\) 304.987 + 50.0000i 0.808983 + 0.132626i
\(378\) 186.092 136.087i 0.492306 0.360019i
\(379\) −192.050 181.919i −0.506727 0.479997i 0.391098 0.920349i \(-0.372095\pi\)
−0.897825 + 0.440352i \(0.854854\pi\)
\(380\) −84.3376 89.0342i −0.221941 0.234300i
\(381\) 83.5299 65.0762i 0.219239 0.170804i
\(382\) −174.379 38.3838i −0.456490 0.100481i
\(383\) −107.048 317.707i −0.279499 0.829523i −0.991817 0.127666i \(-0.959251\pi\)
0.712319 0.701856i \(-0.247645\pi\)
\(384\) 17.1521 29.2883i 0.0446670 0.0762716i
\(385\) 307.344 + 67.6515i 0.798296 + 0.175718i
\(386\) −401.141 21.7492i −1.03923 0.0563452i
\(387\) −141.369 198.208i −0.365295 0.512167i
\(388\) −141.117 133.673i −0.363704 0.344519i
\(389\) 22.9275 1.24309i 0.0589397 0.00319562i −0.0246455 0.999696i \(-0.507846\pi\)
0.0835852 + 0.996501i \(0.473363\pi\)
\(390\) −137.844 + 85.1819i −0.353445 + 0.218415i
\(391\) −268.301 + 395.714i −0.686191 + 1.01206i
\(392\) −3.83667 + 35.2776i −0.00978743 + 0.0899940i
\(393\) −17.2410 + 53.2497i −0.0438703 + 0.135495i
\(394\) −192.363 + 42.3424i −0.488232 + 0.107468i
\(395\) 303.423 49.7437i 0.768160 0.125933i
\(396\) 151.831 + 97.7661i 0.383411 + 0.246884i
\(397\) −186.395 671.333i −0.469508 1.69102i −0.696864 0.717203i \(-0.745422\pi\)
0.227356 0.973812i \(-0.426992\pi\)
\(398\) −125.382 164.937i −0.315030 0.414415i
\(399\) −156.937 145.164i −0.393326 0.363821i
\(400\) −3.73250 + 7.04024i −0.00933125 + 0.0176006i
\(401\) −377.286 + 150.324i −0.940862 + 0.374874i −0.789601 0.613620i \(-0.789713\pi\)
−0.151261 + 0.988494i \(0.548333\pi\)
\(402\) −124.583 261.106i −0.309909 0.649519i
\(403\) 40.7246 47.9447i 0.101054 0.118969i
\(404\) 19.9991 10.6029i 0.0495027 0.0262447i
\(405\) −399.689 + 131.697i −0.986886 + 0.325177i
\(406\) 325.794 150.729i 0.802449 0.371253i
\(407\) −242.714 + 206.163i −0.596349 + 0.506544i
\(408\) 92.0616 32.2406i 0.225641 0.0790212i
\(409\) −463.489 352.335i −1.13323 0.861456i −0.141513 0.989936i \(-0.545197\pi\)
−0.991712 + 0.128481i \(0.958990\pi\)
\(410\) 267.152 444.009i 0.651589 1.08295i
\(411\) −569.645 + 234.838i −1.38600 + 0.571382i
\(412\) −209.187 −0.507736
\(413\) −171.834 312.041i −0.416062 0.755546i
\(414\) 73.2175 524.256i 0.176854 1.26632i
\(415\) 661.998 + 223.053i 1.59517 + 0.537477i
\(416\) −21.4395 + 35.6328i −0.0515374 + 0.0856558i
\(417\) 13.1720 + 199.188i 0.0315875 + 0.477669i
\(418\) 61.9814 155.562i 0.148281 0.372157i
\(419\) 279.879 237.731i 0.667969 0.567378i −0.247934 0.968777i \(-0.579752\pi\)
0.915903 + 0.401399i \(0.131476\pi\)
\(420\) −76.9946 + 171.740i −0.183320 + 0.408905i
\(421\) −89.6791 132.267i −0.213014 0.314173i 0.706138 0.708074i \(-0.250436\pi\)
−0.919153 + 0.393901i \(0.871125\pi\)
\(422\) 390.705 207.139i 0.925842 0.490850i
\(423\) 204.395 182.139i 0.483202 0.430589i
\(424\) −3.51649 + 12.6653i −0.00829362 + 0.0298709i
\(425\) −21.2742 + 8.47642i −0.0500570 + 0.0199445i
\(426\) −257.758 + 59.9525i −0.605066 + 0.140733i
\(427\) 433.998 47.2001i 1.01639 0.110539i
\(428\) 21.5765 + 28.3834i 0.0504124 + 0.0663164i
\(429\) −184.592 121.984i −0.430285 0.284346i
\(430\) 180.384 + 83.4545i 0.419498 + 0.194080i
\(431\) 158.177 25.9318i 0.367000 0.0601667i 0.0245398 0.999699i \(-0.492188\pi\)
0.342461 + 0.939532i \(0.388740\pi\)
\(432\) −75.7142 + 77.0153i −0.175264 + 0.178276i
\(433\) 216.619 130.335i 0.500275 0.301005i −0.242960 0.970036i \(-0.578118\pi\)
0.743234 + 0.669031i \(0.233291\pi\)
\(434\) 7.89979 72.6374i 0.0182023 0.167367i
\(435\) −650.532 + 78.5713i −1.49548 + 0.180624i
\(436\) 57.7307 352.142i 0.132410 0.807665i
\(437\) −490.137 + 26.5745i −1.12160 + 0.0608111i
\(438\) 256.999 + 10.8771i 0.586755 + 0.0248336i
\(439\) −361.724 + 342.644i −0.823974 + 0.780509i −0.978230 0.207521i \(-0.933460\pi\)
0.154257 + 0.988031i \(0.450702\pi\)
\(440\) −147.209 7.98144i −0.334566 0.0181396i
\(441\) 39.2929 105.857i 0.0890996 0.240039i
\(442\) −113.257 + 38.1607i −0.256237 + 0.0863364i
\(443\) 34.6347 + 102.792i 0.0781822 + 0.232037i 0.979616 0.200881i \(-0.0643806\pi\)
−0.901433 + 0.432918i \(0.857484\pi\)
\(444\) −91.2009 167.198i −0.205407 0.376572i
\(445\) 5.55960 102.541i 0.0124935 0.230429i
\(446\) −74.2164 78.3493i −0.166404 0.175671i
\(447\) −97.7808 4.13844i −0.218749 0.00925825i
\(448\) 2.61500 + 48.2308i 0.00583705 + 0.107658i
\(449\) −263.211 43.1512i −0.586216 0.0961052i −0.138627 0.990345i \(-0.544269\pi\)
−0.447589 + 0.894239i \(0.647717\pi\)
\(450\) 16.9952 18.8166i 0.0377671 0.0418147i
\(451\) 703.405 + 76.4999i 1.55966 + 0.169623i
\(452\) −182.122 302.688i −0.402924 0.669665i
\(453\) 373.102 + 276.701i 0.823625 + 0.610818i
\(454\) 31.2582 + 190.667i 0.0688506 + 0.419970i
\(455\) 96.8259 209.286i 0.212804 0.459969i
\(456\) 83.5522 + 55.2139i 0.183228 + 0.121083i
\(457\) 681.529 518.085i 1.49131 1.13367i 0.533673 0.845691i \(-0.320811\pi\)
0.957638 0.287975i \(-0.0929819\pi\)
\(458\) −31.7191 291.653i −0.0692557 0.636796i
\(459\) −309.133 + 27.8245i −0.673492 + 0.0606199i
\(460\) 159.953 + 401.452i 0.347725 + 0.872723i
\(461\) 217.222 + 60.3114i 0.471197 + 0.130827i 0.495007 0.868889i \(-0.335166\pi\)
−0.0238092 + 0.999717i \(0.507579\pi\)
\(462\) −256.972 + 3.04964i −0.556217 + 0.00660095i
\(463\) 6.18745 + 11.6708i 0.0133638 + 0.0252068i 0.890104 0.455757i \(-0.150632\pi\)
−0.876740 + 0.480964i \(0.840287\pi\)
\(464\) −139.188 + 94.3716i −0.299973 + 0.203387i
\(465\) −54.5613 + 121.702i −0.117336 + 0.261724i
\(466\) −220.296 259.353i −0.472739 0.556551i
\(467\) −481.718 191.934i −1.03152 0.410993i −0.207905 0.978149i \(-0.566664\pi\)
−0.823610 + 0.567156i \(0.808044\pi\)
\(468\) 93.8801 93.2534i 0.200598 0.199259i
\(469\) 352.778 + 212.259i 0.752191 + 0.452578i
\(470\) −71.3646 + 211.803i −0.151840 + 0.450644i
\(471\) 463.866 + 533.151i 0.984853 + 1.13196i
\(472\) 103.086 + 131.230i 0.218402 + 0.278030i
\(473\) 271.388i 0.573758i
\(474\) −232.136 + 95.6986i −0.489737 + 0.201896i
\(475\) −20.1464 12.1217i −0.0424135 0.0255194i
\(476\) −84.0071 + 110.509i −0.176486 + 0.232163i
\(477\) 20.7065 36.3398i 0.0434099 0.0761841i
\(478\) −208.633 245.621i −0.436470 0.513852i
\(479\) 229.717 + 496.525i 0.479576 + 1.03659i 0.984815 + 0.173607i \(0.0555421\pi\)
−0.505239 + 0.862979i \(0.668596\pi\)
\(480\) 22.5778 85.2289i 0.0470372 0.177560i
\(481\) 109.303 + 206.167i 0.227240 + 0.428621i
\(482\) 370.975 + 315.109i 0.769657 + 0.653752i
\(483\) 324.398 + 679.885i 0.671631 + 1.40763i
\(484\) 15.0641 + 37.8081i 0.0311242 + 0.0781159i
\(485\) −446.115 236.515i −0.919824 0.487660i
\(486\) 293.542 178.692i 0.603997 0.367679i
\(487\) −233.512 + 177.511i −0.479491 + 0.364500i −0.816825 0.576885i \(-0.804268\pi\)
0.337334 + 0.941385i \(0.390475\pi\)
\(488\) −197.055 + 54.7121i −0.403802 + 0.112115i
\(489\) −90.8479 312.758i −0.185783 0.639587i
\(490\) 14.9132 + 90.9666i 0.0304351 + 0.185646i
\(491\) 45.8525 + 208.310i 0.0933859 + 0.424256i 0.999997 + 0.00228998i \(0.000728925\pi\)
−0.906612 + 0.421966i \(0.861340\pi\)
\(492\) −130.347 + 402.581i −0.264932 + 0.818255i
\(493\) −480.456 52.2528i −0.974556 0.105989i
\(494\) −101.560 68.8594i −0.205587 0.139392i
\(495\) 447.978 + 139.194i 0.905005 + 0.281199i
\(496\) 1.85309 + 34.1782i 0.00373606 + 0.0689077i
\(497\) 258.993 273.416i 0.521113 0.550132i
\(498\) −567.807 54.9434i −1.14018 0.110328i
\(499\) 32.0564 591.245i 0.0642412 1.18486i −0.771681 0.636010i \(-0.780584\pi\)
0.835922 0.548849i \(-0.184934\pi\)
\(500\) 51.3930 233.481i 0.102786 0.466961i
\(501\) −18.7100 + 31.9485i −0.0373454 + 0.0637695i
\(502\) −394.148 + 132.804i −0.785156 + 0.264550i
\(503\) −170.560 + 774.862i −0.339086 + 1.54048i 0.430888 + 0.902405i \(0.358200\pi\)
−0.769973 + 0.638076i \(0.779731\pi\)
\(504\) 29.4684 150.843i 0.0584690 0.299293i
\(505\) 42.6894 40.4376i 0.0845335 0.0800744i
\(506\) −405.791 + 428.389i −0.801959 + 0.846618i
\(507\) 247.544 240.124i 0.488253 0.473617i
\(508\) 11.4205 69.6617i 0.0224812 0.137129i
\(509\) 358.094 + 242.793i 0.703524 + 0.477001i 0.859747 0.510721i \(-0.170621\pi\)
−0.156223 + 0.987722i \(0.549932\pi\)
\(510\) 208.025 144.678i 0.407893 0.283681i
\(511\) −313.663 + 188.725i −0.613823 + 0.369325i
\(512\) −4.86423 22.0984i −0.00950044 0.0431609i
\(513\) −214.815 235.380i −0.418743 0.458829i
\(514\) 499.081 + 230.899i 0.970975 + 0.449221i
\(515\) −523.598 + 145.376i −1.01669 + 0.282284i
\(516\) −158.914 33.0074i −0.307972 0.0639678i
\(517\) −303.392 + 32.9958i −0.586831 + 0.0638217i
\(518\) 239.463 + 126.955i 0.462285 + 0.245088i
\(519\) −142.344 73.3153i −0.274265 0.141263i
\(520\) −28.9001 + 104.089i −0.0555772 + 0.200171i
\(521\) 633.474 + 538.077i 1.21588 + 1.03278i 0.998390 + 0.0567152i \(0.0180627\pi\)
0.217490 + 0.976063i \(0.430213\pi\)
\(522\) 502.887 182.843i 0.963386 0.350273i
\(523\) 360.091 + 531.094i 0.688510 + 1.01548i 0.997915 + 0.0645464i \(0.0205600\pi\)
−0.309404 + 0.950931i \(0.600130\pi\)
\(524\) 15.6678 + 33.8654i 0.0299004 + 0.0646287i
\(525\) −5.41469 + 35.6749i −0.0103137 + 0.0679522i
\(526\) 71.4745 179.387i 0.135883 0.341041i
\(527\) −59.5306 + 78.3112i −0.112961 + 0.148598i
\(528\) 118.564 20.8853i 0.224554 0.0395556i
\(529\) 1137.81 + 383.374i 2.15087 + 0.724714i
\(530\) 34.1451i 0.0644247i
\(531\) −215.923 485.117i −0.406634 0.913591i
\(532\) −142.520 −0.267895
\(533\) 165.546 491.322i 0.310592 0.921805i
\(534\) 14.5480 + 82.5879i 0.0272435 + 0.154659i
\(535\) 73.7315 + 56.0493i 0.137816 + 0.104765i
\(536\) −179.172 71.3887i −0.334276 0.133188i
\(537\) 165.701 + 25.1499i 0.308568 + 0.0468342i
\(538\) 327.932 151.717i 0.609539 0.282003i
\(539\) −104.180 + 70.6356i −0.193283 + 0.131049i
\(540\) −135.991 + 245.388i −0.251836 + 0.454423i
\(541\) −530.033 + 624.004i −0.979729 + 1.15343i 0.00842566 + 0.999965i \(0.497318\pi\)
−0.988155 + 0.153462i \(0.950958\pi\)
\(542\) 168.599 + 46.8111i 0.311067 + 0.0863674i
\(543\) 318.766 618.894i 0.587047 1.13977i
\(544\) 30.4602 57.4541i 0.0559931 0.105614i
\(545\) −100.223 921.535i −0.183895 1.69089i
\(546\) −38.2960 + 184.375i −0.0701392 + 0.337684i
\(547\) −241.034 868.126i −0.440647 1.58707i −0.766887 0.641782i \(-0.778196\pi\)
0.326240 0.945287i \(-0.394218\pi\)
\(548\) −172.477 + 372.804i −0.314740 + 0.680299i
\(549\) 650.562 15.4434i 1.18500 0.0281300i
\(550\) −27.6035 + 6.07599i −0.0501882 + 0.0110473i
\(551\) −255.813 425.164i −0.464270 0.771622i
\(552\) −201.493 289.718i −0.365024 0.524851i
\(553\) 200.525 295.753i 0.362614 0.534815i
\(554\) −27.3072 4.47678i −0.0492909 0.00808084i
\(555\) −344.473 355.118i −0.620671 0.639852i
\(556\) 96.6169 + 91.5204i 0.173771 + 0.164605i
\(557\) 151.225 + 159.646i 0.271499 + 0.286618i 0.847460 0.530859i \(-0.178131\pi\)
−0.575961 + 0.817477i \(0.695372\pi\)
\(558\) 20.8824 106.893i 0.0374237 0.191565i
\(559\) 194.211 + 42.7491i 0.347426 + 0.0764742i
\(560\) 40.0638 + 118.905i 0.0715424 + 0.212330i
\(561\) 298.560 + 174.846i 0.532192 + 0.311668i
\(562\) −709.805 156.240i −1.26300 0.278007i
\(563\) 994.685 + 53.9303i 1.76676 + 0.0957909i 0.908619 0.417626i \(-0.137138\pi\)
0.858139 + 0.513417i \(0.171621\pi\)
\(564\) 17.5788 181.667i 0.0311682 0.322105i
\(565\) −666.208 631.066i −1.17913 1.11693i
\(566\) 139.429 7.55960i 0.246340 0.0133562i
\(567\) −208.317 + 442.469i −0.367401 + 0.780368i
\(568\) −99.0079 + 146.026i −0.174310 + 0.257087i
\(569\) 25.2340 232.023i 0.0443480 0.407774i −0.950832 0.309708i \(-0.899769\pi\)
0.995180 0.0980660i \(-0.0312656\pi\)
\(570\) 247.503 + 80.1359i 0.434216 + 0.140589i
\(571\) −988.088 + 217.495i −1.73045 + 0.380901i −0.964930 0.262508i \(-0.915450\pi\)
−0.765522 + 0.643409i \(0.777519\pi\)
\(572\) −145.561 + 23.8635i −0.254478 + 0.0417195i
\(573\) 363.735 105.655i 0.634791 0.184390i
\(574\) −161.104 580.245i −0.280670 1.01088i
\(575\) 50.1391 + 65.9568i 0.0871984 + 0.114708i
\(576\) −2.19072 + 71.9667i −0.00380333 + 0.124942i
\(577\) 395.708 746.385i 0.685803 1.29356i −0.258986 0.965881i \(-0.583388\pi\)
0.944789 0.327680i \(-0.106267\pi\)
\(578\) −206.065 + 82.1039i −0.356514 + 0.142048i
\(579\) 769.133 366.982i 1.32838 0.633820i
\(580\) −282.804 + 332.943i −0.487593 + 0.574039i
\(581\) 717.254 380.264i 1.23452 0.654499i
\(582\) 398.588 + 105.589i 0.684859 + 0.181425i
\(583\) −42.3142 + 19.5766i −0.0725801 + 0.0335791i
\(584\) 130.700 111.018i 0.223801 0.190099i
\(585\) 170.176 298.657i 0.290899 0.510525i
\(586\) −476.507 362.231i −0.813152 0.618142i
\(587\) 212.291 352.831i 0.361655 0.601075i −0.621595 0.783339i \(-0.713515\pi\)
0.983250 + 0.182264i \(0.0583425\pi\)
\(588\) −28.6906 69.5945i −0.0487935 0.118358i
\(589\) −100.995 −0.171469
\(590\) 349.224 + 256.830i 0.591906 + 0.435304i
\(591\) 315.224 274.260i 0.533374 0.464060i
\(592\) −120.323 40.5416i −0.203248 0.0684824i
\(593\) 213.136 354.235i 0.359421 0.597362i −0.623405 0.781899i \(-0.714251\pi\)
0.982825 + 0.184538i \(0.0590787\pi\)
\(594\) −382.065 27.8366i −0.643207 0.0468630i
\(595\) −133.471 + 334.988i −0.224322 + 0.563005i
\(596\) −49.7277 + 42.2391i −0.0834357 + 0.0708709i
\(597\) 401.043 + 179.796i 0.671764 + 0.301165i
\(598\) 242.644 + 357.873i 0.405760 + 0.598451i
\(599\) −828.794 + 439.399i −1.38363 + 0.733554i −0.983158 0.182755i \(-0.941498\pi\)
−0.400471 + 0.916309i \(0.631154\pi\)
\(600\) −0.200592 16.9025i −0.000334319 0.0281708i
\(601\) −89.0827 + 320.847i −0.148224 + 0.533855i 0.851727 + 0.523985i \(0.175555\pi\)
−0.999951 + 0.00986949i \(0.996858\pi\)
\(602\) 214.572 85.4934i 0.356432 0.142016i
\(603\) 497.246 + 359.702i 0.824621 + 0.596521i
\(604\) 307.857 33.4815i 0.509697 0.0554329i
\(605\) 63.9807 + 84.1652i 0.105753 + 0.139116i
\(606\) −26.4736 + 40.0610i −0.0436857 + 0.0661072i
\(607\) 871.935 + 403.400i 1.43647 + 0.664580i 0.974924 0.222538i \(-0.0714341\pi\)
0.461543 + 0.887118i \(0.347296\pi\)
\(608\) 65.8855 10.8014i 0.108364 0.0177654i
\(609\) −453.611 + 611.647i −0.744845 + 1.00435i
\(610\) −455.209 + 273.890i −0.746244 + 0.449000i
\(611\) −24.1778 + 222.311i −0.0395709 + 0.363848i
\(612\) −138.695 + 153.559i −0.226625 + 0.250913i
\(613\) −84.2406 + 513.845i −0.137424 + 0.838246i 0.824688 + 0.565589i \(0.191351\pi\)
−0.962111 + 0.272658i \(0.912097\pi\)
\(614\) 302.685 16.4111i 0.492972 0.0267282i
\(615\) −46.4819 + 1098.25i −0.0755804 + 1.78577i
\(616\) −124.383 + 117.821i −0.201920 + 0.191269i
\(617\) −694.300 37.6438i −1.12528 0.0610111i −0.517916 0.855432i \(-0.673292\pi\)
−0.607368 + 0.794421i \(0.707775\pi\)
\(618\) 389.567 212.495i 0.630367 0.343844i
\(619\) −749.611 + 252.573i −1.21100 + 0.408035i −0.851124 0.524964i \(-0.824079\pi\)
−0.359879 + 0.932999i \(0.617182\pi\)
\(620\) 28.3907 + 84.2606i 0.0457914 + 0.135904i
\(621\) 396.196 + 1050.69i 0.637996 + 1.69194i
\(622\) −37.8980 + 698.987i −0.0609292 + 1.12377i
\(623\) −82.0704 86.6406i −0.131734 0.139070i
\(624\) 3.73028 88.1372i 0.00597802 0.141245i
\(625\) −36.3182 669.851i −0.0581092 1.07176i
\(626\) 3.16203 + 0.518389i 0.00505117 + 0.000828098i
\(627\) 42.5946 + 352.662i 0.0679339 + 0.562460i
\(628\) 468.370 + 50.9383i 0.745812 + 0.0811119i
\(629\) −188.125 312.667i −0.299086 0.497085i
\(630\) −31.0701 398.042i −0.0493177 0.631813i
\(631\) −94.7744 578.099i −0.150197 0.916162i −0.949163 0.314786i \(-0.898067\pi\)
0.798966 0.601377i \(-0.205381\pi\)
\(632\) −70.2860 + 151.921i −0.111212 + 0.240381i
\(633\) −517.191 + 782.636i −0.817048 + 1.23639i
\(634\) −511.819 + 389.075i −0.807285 + 0.613682i
\(635\) −19.8264 182.301i −0.0312227 0.287088i
\(636\) −6.31684 27.1585i −0.00993214 0.0427020i
\(637\) 34.1380 + 85.6799i 0.0535918 + 0.134505i
\(638\) −574.740 159.576i −0.900846 0.250119i
\(639\) 419.120 373.484i 0.655899 0.584481i
\(640\) −27.5327 51.9321i −0.0430198 0.0811439i
\(641\) 427.493 289.847i 0.666915 0.452180i −0.180171 0.983635i \(-0.557665\pi\)
0.847086 + 0.531455i \(0.178355\pi\)
\(642\) −69.0140 30.9404i −0.107498 0.0481937i
\(643\) −495.270 583.076i −0.770248 0.906806i 0.227507 0.973777i \(-0.426943\pi\)
−0.997755 + 0.0669702i \(0.978667\pi\)
\(644\) 466.539 + 185.886i 0.724439 + 0.288643i
\(645\) −420.701 + 27.8204i −0.652250 + 0.0431324i
\(646\) 164.411 + 98.9229i 0.254506 + 0.153131i
\(647\) −317.325 + 941.788i −0.490456 + 1.45562i 0.361680 + 0.932302i \(0.382203\pi\)
−0.852136 + 0.523320i \(0.824693\pi\)
\(648\) 62.7685 220.336i 0.0968650 0.340025i
\(649\) −118.052 + 580.025i −0.181898 + 0.893721i
\(650\) 20.7108i 0.0318627i
\(651\) 59.0745 + 143.297i 0.0907442 + 0.220118i
\(652\) −186.044 111.939i −0.285343 0.171685i
\(653\) 549.980 723.487i 0.842236 1.10794i −0.150616 0.988592i \(-0.548126\pi\)
0.992852 0.119351i \(-0.0380812\pi\)
\(654\) 250.200 + 714.434i 0.382568 + 1.09241i
\(655\) 62.7517 + 73.8770i 0.0958042 + 0.112789i
\(656\) 118.453 + 256.031i 0.180568 + 0.390292i
\(657\) −489.655 + 240.807i −0.745289 + 0.366525i
\(658\) 121.664 + 229.482i 0.184899 + 0.348756i
\(659\) 682.013 + 579.307i 1.03492 + 0.879071i 0.992769 0.120041i \(-0.0383025\pi\)
0.0421529 + 0.999111i \(0.486578\pi\)
\(660\) 282.253 134.673i 0.427657 0.204051i
\(661\) −158.648 398.176i −0.240012 0.602384i 0.758789 0.651336i \(-0.225791\pi\)
−0.998801 + 0.0489521i \(0.984412\pi\)
\(662\) −95.9269 50.8572i −0.144905 0.0768236i
\(663\) 172.153 186.114i 0.259657 0.280715i
\(664\) −302.759 + 230.152i −0.455963 + 0.346614i
\(665\) −356.730 + 99.0455i −0.536435 + 0.148941i
\(666\) 339.685 + 218.728i 0.510037 + 0.328420i
\(667\) 282.869 + 1725.42i 0.424091 + 2.58684i
\(668\) 5.30604 + 24.1056i 0.00794317 + 0.0360862i
\(669\) 217.801 + 70.5189i 0.325562 + 0.105409i
\(670\) −498.082 54.1696i −0.743405 0.0808502i
\(671\) −600.405 407.085i −0.894791 0.606684i
\(672\) −53.8635 87.1634i −0.0801540 0.129707i
\(673\) −21.3761 394.258i −0.0317624 0.585822i −0.970487 0.241154i \(-0.922474\pi\)
0.938724 0.344668i \(-0.112009\pi\)
\(674\) −543.157 + 573.404i −0.805871 + 0.850748i
\(675\) −12.5358 + 52.3060i −0.0185715 + 0.0774903i
\(676\) 12.4474 229.578i 0.0184133 0.339613i
\(677\) −111.191 + 505.146i −0.164241 + 0.746154i 0.820432 + 0.571744i \(0.193733\pi\)
−0.984673 + 0.174410i \(0.944198\pi\)
\(678\) 646.639 + 378.691i 0.953744 + 0.558542i
\(679\) −556.080 + 187.365i −0.818969 + 0.275943i
\(680\) 36.3141 164.977i 0.0534031 0.242613i
\(681\) −251.894 323.324i −0.369888 0.474778i
\(682\) −88.1422 + 83.4927i −0.129241 + 0.122423i
\(683\) 690.641 729.101i 1.01119 1.06750i 0.0134748 0.999909i \(-0.495711\pi\)
0.997713 0.0675890i \(-0.0215307\pi\)
\(684\) −211.685 17.9507i −0.309482 0.0262438i
\(685\) −172.630 + 1053.00i −0.252015 + 1.53722i
\(686\) 434.965 + 294.914i 0.634060 + 0.429904i
\(687\) 355.335 + 510.921i 0.517227 + 0.743698i
\(688\) −92.7150 + 55.7848i −0.134760 + 0.0810825i
\(689\) 7.34413 + 33.3647i 0.0106591 + 0.0484248i
\(690\) −705.681 585.137i −1.02273 0.848025i
\(691\) −981.333 454.013i −1.42016 0.657037i −0.448581 0.893742i \(-0.648071\pi\)
−0.971582 + 0.236705i \(0.923933\pi\)
\(692\) −102.853 + 28.5569i −0.148631 + 0.0412672i
\(693\) 475.459 266.716i 0.686087 0.384871i
\(694\) 137.044 14.9045i 0.197470 0.0214762i
\(695\) 305.436 + 161.932i 0.439476 + 0.232996i
\(696\) 163.344 317.136i 0.234689 0.455655i
\(697\) −216.897 + 781.193i −0.311187 + 1.12079i
\(698\) 20.8236 + 17.6877i 0.0298332 + 0.0253405i
\(699\) 673.710 + 259.210i 0.963820 + 0.370829i
\(700\) 13.4997 + 19.9106i 0.0192853 + 0.0284437i
\(701\) −101.246 218.839i −0.144430 0.312181i 0.821837 0.569723i \(-0.192949\pi\)
−0.966267 + 0.257542i \(0.917087\pi\)
\(702\) −80.1036 + 269.030i −0.114108 + 0.383233i
\(703\) 138.668 348.032i 0.197252 0.495066i
\(704\) 48.5712 63.8943i 0.0689932 0.0907590i
\(705\) −82.2508 466.931i −0.116668 0.662313i
\(706\) 505.378 + 170.282i 0.715833 + 0.241192i
\(707\) 68.3345i 0.0966542i
\(708\) −325.281 139.672i −0.459437 0.197277i
\(709\) 619.583 0.873883 0.436942 0.899490i \(-0.356062\pi\)
0.436942 + 0.899490i \(0.356062\pi\)
\(710\) −146.336 + 434.310i −0.206107 + 0.611704i
\(711\) 335.091 414.025i 0.471296 0.582314i
\(712\) 44.5066 + 33.8330i 0.0625093 + 0.0475183i
\(713\) 330.607 + 131.726i 0.463685 + 0.184749i
\(714\) 44.1883 291.136i 0.0618884 0.407754i
\(715\) −347.757 + 160.890i −0.486374 + 0.225020i
\(716\) 92.4799 62.7029i 0.129162 0.0875739i
\(717\) 638.040 + 245.486i 0.889875 + 0.342379i
\(718\) 448.432 527.935i 0.624557 0.735285i
\(719\) −1115.55 309.730i −1.55152 0.430778i −0.617083 0.786898i \(-0.711686\pi\)
−0.934440 + 0.356119i \(0.884100\pi\)
\(720\) 44.5304 + 181.656i 0.0618478 + 0.252300i
\(721\) −295.803 + 557.943i −0.410267 + 0.773846i
\(722\) −33.8988 311.694i −0.0469513 0.431710i
\(723\) −1010.95 209.982i −1.39828 0.290431i
\(724\) −124.162 447.191i −0.171495 0.617668i
\(725\) −35.1660 + 76.0101i −0.0485049 + 0.104842i
\(726\) −66.4598 55.1072i −0.0915424 0.0759053i
\(727\) 36.9234 8.12746i 0.0507888 0.0111794i −0.189503 0.981880i \(-0.560688\pi\)
0.240292 + 0.970701i \(0.422757\pi\)
\(728\) 64.7229 + 107.570i 0.0889050 + 0.147761i
\(729\) −365.143 + 630.961i −0.500882 + 0.865516i
\(730\) 249.991 368.709i 0.342453 0.505081i
\(731\) −306.871 50.3090i −0.419796 0.0688221i
\(732\) 311.396 302.062i 0.425405 0.412652i
\(733\) −292.566 277.133i −0.399135 0.378080i 0.461639 0.887068i \(-0.347261\pi\)
−0.860774 + 0.508987i \(0.830020\pi\)
\(734\) 0.706480 + 0.745822i 0.000962507 + 0.00101611i
\(735\) −120.178 154.257i −0.163507 0.209874i
\(736\) −229.764 50.5748i −0.312179 0.0687158i
\(737\) −218.439 648.303i −0.296389 0.879651i
\(738\) −166.205 882.131i −0.225210 1.19530i
\(739\) 504.699 + 111.093i 0.682948 + 0.150328i 0.542876 0.839813i \(-0.317335\pi\)
0.140072 + 0.990141i \(0.455266\pi\)
\(740\) −329.345 17.8565i −0.445060 0.0241305i
\(741\) 259.083 + 25.0699i 0.349639 + 0.0338325i
\(742\) 28.8082 + 27.2886i 0.0388251 + 0.0367771i
\(743\) −710.174 + 38.5045i −0.955819 + 0.0518230i −0.525445 0.850828i \(-0.676101\pi\)
−0.430374 + 0.902651i \(0.641618\pi\)
\(744\) −38.1697 61.7673i −0.0513034 0.0830205i
\(745\) −95.1146 + 140.283i −0.127671 + 0.188300i
\(746\) −27.5524 + 253.340i −0.0369335 + 0.339598i
\(747\) 1113.23 474.467i 1.49027 0.635163i
\(748\) 225.267 49.5850i 0.301159 0.0662901i
\(749\) 106.215 17.4130i 0.141808 0.0232483i
\(750\) 141.465 + 487.014i 0.188620 + 0.649352i
\(751\) −159.407 574.131i −0.212259 0.764488i −0.990617 0.136667i \(-0.956361\pi\)