Properties

Label 354.3.h.a.5.6
Level 354
Weight 3
Character 354.5
Analytic conductor 9.646
Analytic rank 0
Dimension 1120
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 354 = 2 \cdot 3 \cdot 59 \)
Weight: \( k \) = \( 3 \)
Character orbit: \([\chi]\) = 354.h (of order \(58\), degree \(28\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(9.64580135835\)
Analytic rank: \(0\)
Dimension: \(1120\)
Relative dimension: \(40\) over \(\Q(\zeta_{58})\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{58}]$

Embedding invariants

Embedding label 5.6
Character \(\chi\) = 354.5
Dual form 354.3.h.a.71.6

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.451561 + 1.34018i) q^{2} +(-1.79506 - 2.40370i) q^{3} +(-1.59219 - 1.21035i) q^{4} +(1.34145 + 0.534483i) q^{5} +(4.03197 - 1.32030i) q^{6} +(-2.67432 + 1.23727i) q^{7} +(2.34106 - 1.58728i) q^{8} +(-2.55552 + 8.62956i) q^{9} +O(q^{10})\) \(q+(-0.451561 + 1.34018i) q^{2} +(-1.79506 - 2.40370i) q^{3} +(-1.59219 - 1.21035i) q^{4} +(1.34145 + 0.534483i) q^{5} +(4.03197 - 1.32030i) q^{6} +(-2.67432 + 1.23727i) q^{7} +(2.34106 - 1.58728i) q^{8} +(-2.55552 + 8.62956i) q^{9} +(-1.32205 + 1.55644i) q^{10} +(6.19440 + 1.71987i) q^{11} +(-0.0512415 + 5.99978i) q^{12} +(-2.72893 + 5.14730i) q^{13} +(-0.450555 - 4.14279i) q^{14} +(-1.12325 - 4.18387i) q^{15} +(1.07011 + 3.85420i) q^{16} +(8.27961 - 17.8961i) q^{17} +(-10.4112 - 7.32164i) q^{18} +(26.8608 - 5.91251i) q^{19} +(-1.48893 - 2.47462i) q^{20} +(7.77460 + 4.20728i) q^{21} +(-5.10208 + 7.52501i) q^{22} +(-25.2869 - 4.14557i) q^{23} +(-8.01767 - 2.77794i) q^{24} +(-16.6361 - 15.7585i) q^{25} +(-5.66606 - 5.98158i) q^{26} +(25.3302 - 9.34788i) q^{27} +(5.75555 + 1.26689i) q^{28} +(-17.0250 - 50.5284i) q^{29} +(6.11438 + 0.383910i) q^{30} +(55.8016 + 12.2829i) q^{31} +(-5.64856 - 0.306256i) q^{32} +(-6.98528 - 17.9767i) q^{33} +(20.2453 + 19.1774i) q^{34} +(-4.24877 + 0.230362i) q^{35} +(14.5136 - 10.6468i) q^{36} +(36.8291 - 54.3189i) q^{37} +(-4.20543 + 38.6683i) q^{38} +(17.2711 - 2.68020i) q^{39} +(3.98879 - 0.877999i) q^{40} +(54.0965 - 8.86867i) q^{41} +(-9.14923 + 8.51955i) q^{42} +(8.91419 + 32.1060i) q^{43} +(-7.78100 - 10.2357i) q^{44} +(-8.04046 + 10.2103i) q^{45} +(16.9744 - 32.0171i) q^{46} +(-13.7791 + 5.49008i) q^{47} +(7.34341 - 9.49075i) q^{48} +(-26.1008 + 30.7282i) q^{49} +(28.6315 - 15.1795i) q^{50} +(-57.8792 + 12.2229i) q^{51} +(10.5750 - 4.89251i) q^{52} +(48.4669 - 41.1682i) q^{53} +(1.08978 + 38.1682i) q^{54} +(7.39025 + 5.61792i) q^{55} +(-4.29685 + 7.14141i) q^{56} +(-62.4286 - 53.9519i) q^{57} +75.4052 q^{58} +(-43.2424 - 40.1384i) q^{59} +(-3.27552 + 8.02103i) q^{60} +(70.0484 + 23.6021i) q^{61} +(-41.6591 + 69.2380i) q^{62} +(-3.84284 - 26.2401i) q^{63} +(2.96111 - 7.43181i) q^{64} +(-6.41187 + 5.44629i) q^{65} +(27.2464 - 1.24398i) q^{66} +(12.5056 + 18.4445i) q^{67} +(-34.8432 + 18.4727i) q^{68} +(35.4268 + 68.2236i) q^{69} +(1.60985 - 5.79816i) q^{70} +(89.5623 - 35.6849i) q^{71} +(7.71488 + 24.2586i) q^{72} +(-119.917 + 13.0417i) q^{73} +(56.1667 + 73.8860i) q^{74} +(-8.01597 + 68.2756i) q^{75} +(-49.9236 - 23.0971i) q^{76} +(-18.6937 + 3.06468i) q^{77} +(-4.20700 + 24.3568i) q^{78} +(-49.8936 + 30.0200i) q^{79} +(-0.624500 + 5.74218i) q^{80} +(-67.9386 - 44.1060i) q^{81} +(-12.5422 + 76.5040i) q^{82} +(-45.0173 + 2.44077i) q^{83} +(-7.28633 - 16.1087i) q^{84} +(20.6719 - 19.5814i) q^{85} +(-47.0533 - 2.55115i) q^{86} +(-90.8941 + 131.624i) q^{87} +(17.2313 - 5.80592i) q^{88} +(-2.16513 - 6.42589i) q^{89} +(-10.0529 - 15.3862i) q^{90} +(0.929410 - 17.1420i) q^{91} +(35.2438 + 37.2065i) q^{92} +(-70.6429 - 156.179i) q^{93} +(-1.13564 - 20.9456i) q^{94} +(39.1926 + 6.42530i) q^{95} +(9.40335 + 14.1272i) q^{96} +(115.988 + 12.6145i) q^{97} +(-29.3954 - 48.8555i) q^{98} +(-30.6716 + 49.0598i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 1120q + 80q^{4} - 8q^{6} - 8q^{7} + 24q^{9} + O(q^{10}) \) \( 1120q + 80q^{4} - 8q^{6} - 8q^{7} + 24q^{9} + 16q^{10} - 34q^{15} - 160q^{16} - 16q^{18} - 24q^{19} + 18q^{21} + 16q^{22} + 16q^{24} + 216q^{25} + 30q^{27} + 16q^{28} + 64q^{30} - 96q^{31} - 76q^{33} - 80q^{34} - 48q^{36} + 200q^{37} + 28q^{39} - 32q^{40} - 48q^{42} + 104q^{43} + 696q^{45} - 32q^{46} - 288q^{49} + 1800q^{51} + 852q^{54} - 360q^{55} + 76q^{57} + 128q^{58} - 280q^{60} + 32q^{61} - 1318q^{63} + 320q^{64} - 1512q^{66} + 344q^{67} - 2640q^{69} - 192q^{70} + 32q^{72} - 40q^{73} - 1014q^{75} + 48q^{76} - 96q^{78} - 32q^{79} - 336q^{81} + 80q^{82} - 36q^{84} - 168q^{85} + 162q^{87} - 32q^{88} - 112q^{90} - 88q^{91} + 316q^{93} + 400q^{94} - 32q^{96} + 184q^{97} + 148q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/354\mathbb{Z}\right)^\times\).

\(n\) \(61\) \(119\)
\(\chi(n)\) \(e\left(\frac{3}{29}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.451561 + 1.34018i −0.225780 + 0.670092i
\(3\) −1.79506 2.40370i −0.598353 0.801232i
\(4\) −1.59219 1.21035i −0.398047 0.302587i
\(5\) 1.34145 + 0.534483i 0.268290 + 0.106897i 0.500404 0.865792i \(-0.333185\pi\)
−0.232114 + 0.972689i \(0.574564\pi\)
\(6\) 4.03197 1.32030i 0.671996 0.220049i
\(7\) −2.67432 + 1.23727i −0.382046 + 0.176753i −0.601506 0.798868i \(-0.705432\pi\)
0.219460 + 0.975621i \(0.429570\pi\)
\(8\) 2.34106 1.58728i 0.292632 0.198410i
\(9\) −2.55552 + 8.62956i −0.283947 + 0.958840i
\(10\) −1.32205 + 1.55644i −0.132205 + 0.155644i
\(11\) 6.19440 + 1.71987i 0.563127 + 0.156351i 0.537415 0.843318i \(-0.319401\pi\)
0.0257120 + 0.999669i \(0.491815\pi\)
\(12\) −0.0512415 + 5.99978i −0.00427013 + 0.499982i
\(13\) −2.72893 + 5.14730i −0.209917 + 0.395946i −0.966005 0.258525i \(-0.916764\pi\)
0.756087 + 0.654471i \(0.227109\pi\)
\(14\) −0.450555 4.14279i −0.0321825 0.295913i
\(15\) −1.12325 4.18387i −0.0748834 0.278925i
\(16\) 1.07011 + 3.85420i 0.0668821 + 0.240887i
\(17\) 8.27961 17.8961i 0.487036 1.05271i −0.495835 0.868417i \(-0.665138\pi\)
0.982871 0.184294i \(-0.0590000\pi\)
\(18\) −10.4112 7.32164i −0.578402 0.406758i
\(19\) 26.8608 5.91251i 1.41373 0.311185i 0.558528 0.829486i \(-0.311366\pi\)
0.855198 + 0.518301i \(0.173435\pi\)
\(20\) −1.48893 2.47462i −0.0744465 0.123731i
\(21\) 7.77460 + 4.20728i 0.370219 + 0.200347i
\(22\) −5.10208 + 7.52501i −0.231913 + 0.342046i
\(23\) −25.2869 4.14557i −1.09943 0.180242i −0.415359 0.909658i \(-0.636344\pi\)
−0.684071 + 0.729415i \(0.739792\pi\)
\(24\) −8.01767 2.77794i −0.334070 0.115747i
\(25\) −16.6361 15.7585i −0.665443 0.630341i
\(26\) −5.66606 5.98158i −0.217925 0.230061i
\(27\) 25.3302 9.34788i 0.938154 0.346218i
\(28\) 5.75555 + 1.26689i 0.205555 + 0.0452461i
\(29\) −17.0250 50.5284i −0.587069 1.74236i −0.666486 0.745517i \(-0.732202\pi\)
0.0794170 0.996841i \(-0.474694\pi\)
\(30\) 6.11438 + 0.383910i 0.203813 + 0.0127970i
\(31\) 55.8016 + 12.2829i 1.80005 + 0.396221i 0.983479 0.181022i \(-0.0579404\pi\)
0.816573 + 0.577243i \(0.195871\pi\)
\(32\) −5.64856 0.306256i −0.176517 0.00957050i
\(33\) −6.98528 17.9767i −0.211675 0.544749i
\(34\) 20.2453 + 19.1774i 0.595450 + 0.564040i
\(35\) −4.24877 + 0.230362i −0.121394 + 0.00658177i
\(36\) 14.5136 10.6468i 0.403157 0.295744i
\(37\) 36.8291 54.3189i 0.995381 1.46808i 0.115256 0.993336i \(-0.463231\pi\)
0.880125 0.474741i \(-0.157458\pi\)
\(38\) −4.20543 + 38.6683i −0.110669 + 1.01759i
\(39\) 17.2711 2.68020i 0.442850 0.0687231i
\(40\) 3.98879 0.877999i 0.0997197 0.0219500i
\(41\) 54.0965 8.86867i 1.31943 0.216309i 0.539397 0.842052i \(-0.318652\pi\)
0.780029 + 0.625743i \(0.215204\pi\)
\(42\) −9.14923 + 8.51955i −0.217839 + 0.202846i
\(43\) 8.91419 + 32.1060i 0.207307 + 0.746651i 0.991942 + 0.126694i \(0.0404365\pi\)
−0.784635 + 0.619958i \(0.787150\pi\)
\(44\) −7.78100 10.2357i −0.176841 0.232630i
\(45\) −8.04046 + 10.2103i −0.178677 + 0.226895i
\(46\) 16.9744 32.0171i 0.369009 0.696024i
\(47\) −13.7791 + 5.49008i −0.293172 + 0.116810i −0.512087 0.858934i \(-0.671127\pi\)
0.218915 + 0.975744i \(0.429748\pi\)
\(48\) 7.34341 9.49075i 0.152988 0.197724i
\(49\) −26.1008 + 30.7282i −0.532669 + 0.627106i
\(50\) 28.6315 15.1795i 0.572630 0.303589i
\(51\) −57.8792 + 12.2229i −1.13489 + 0.239664i
\(52\) 10.5750 4.89251i 0.203365 0.0940867i
\(53\) 48.4669 41.1682i 0.914470 0.776758i −0.0607136 0.998155i \(-0.519338\pi\)
0.975184 + 0.221397i \(0.0710618\pi\)
\(54\) 1.08978 + 38.1682i 0.0201811 + 0.706819i
\(55\) 7.39025 + 5.61792i 0.134368 + 0.102144i
\(56\) −4.29685 + 7.14141i −0.0767294 + 0.127525i
\(57\) −62.4286 53.9519i −1.09524 0.946525i
\(58\) 75.4052 1.30009
\(59\) −43.2424 40.1384i −0.732922 0.680313i
\(60\) −3.27552 + 8.02103i −0.0545920 + 0.133684i
\(61\) 70.0484 + 23.6021i 1.14833 + 0.386919i 0.828189 0.560449i \(-0.189371\pi\)
0.320146 + 0.947368i \(0.396268\pi\)
\(62\) −41.6591 + 69.2380i −0.671921 + 1.11674i
\(63\) −3.84284 26.2401i −0.0609975 0.416509i
\(64\) 2.96111 7.43181i 0.0462673 0.116122i
\(65\) −6.41187 + 5.44629i −0.0986442 + 0.0837891i
\(66\) 27.2464 1.24398i 0.412824 0.0188482i
\(67\) 12.5056 + 18.4445i 0.186651 + 0.275290i 0.909489 0.415727i \(-0.136473\pi\)
−0.722838 + 0.691018i \(0.757163\pi\)
\(68\) −34.8432 + 18.4727i −0.512400 + 0.271657i
\(69\) 35.4268 + 68.2236i 0.513431 + 0.988747i
\(70\) 1.60985 5.79816i 0.0229979 0.0828309i
\(71\) 89.5623 35.6849i 1.26144 0.502604i 0.358968 0.933350i \(-0.383129\pi\)
0.902473 + 0.430746i \(0.141750\pi\)
\(72\) 7.71488 + 24.2586i 0.107151 + 0.336925i
\(73\) −119.917 + 13.0417i −1.64270 + 0.178654i −0.882261 0.470760i \(-0.843980\pi\)
−0.760435 + 0.649414i \(0.775014\pi\)
\(74\) 56.1667 + 73.8860i 0.759009 + 0.998460i
\(75\) −8.01597 + 68.2756i −0.106880 + 0.910341i
\(76\) −49.9236 23.0971i −0.656889 0.303909i
\(77\) −18.6937 + 3.06468i −0.242776 + 0.0398011i
\(78\) −4.20700 + 24.3568i −0.0539359 + 0.312266i
\(79\) −49.8936 + 30.0200i −0.631564 + 0.380000i −0.795048 0.606546i \(-0.792554\pi\)
0.163484 + 0.986546i \(0.447727\pi\)
\(80\) −0.624500 + 5.74218i −0.00780625 + 0.0717773i
\(81\) −67.9386 44.1060i −0.838749 0.544519i
\(82\) −12.5422 + 76.5040i −0.152954 + 0.932975i
\(83\) −45.0173 + 2.44077i −0.542377 + 0.0294069i −0.323293 0.946299i \(-0.604790\pi\)
−0.219085 + 0.975706i \(0.570307\pi\)
\(84\) −7.28633 16.1087i −0.0867420 0.191771i
\(85\) 20.6719 19.5814i 0.243198 0.230370i
\(86\) −47.0533 2.55115i −0.547131 0.0296646i
\(87\) −90.8941 + 131.624i −1.04476 + 1.51292i
\(88\) 17.2313 5.80592i 0.195811 0.0659763i
\(89\) −2.16513 6.42589i −0.0243274 0.0722010i 0.934802 0.355170i \(-0.115577\pi\)
−0.959129 + 0.282969i \(0.908681\pi\)
\(90\) −10.0529 15.3862i −0.111699 0.170958i
\(91\) 0.929410 17.1420i 0.0102133 0.188373i
\(92\) 35.2438 + 37.2065i 0.383085 + 0.404418i
\(93\) −70.6429 156.179i −0.759601 1.67934i
\(94\) −1.13564 20.9456i −0.0120812 0.222825i
\(95\) 39.1926 + 6.42530i 0.412554 + 0.0676348i
\(96\) 9.40335 + 14.1272i 0.0979516 + 0.147158i
\(97\) 115.988 + 12.6145i 1.19575 + 0.130046i 0.684258 0.729240i \(-0.260126\pi\)
0.511496 + 0.859286i \(0.329092\pi\)
\(98\) −29.3954 48.8555i −0.299953 0.498525i
\(99\) −30.6716 + 49.0598i −0.309814 + 0.495553i
\(100\) 7.41442 + 45.2259i 0.0741442 + 0.452259i
\(101\) 27.5992 59.6547i 0.273259 0.590640i −0.721554 0.692358i \(-0.756572\pi\)
0.994813 + 0.101718i \(0.0324339\pi\)
\(102\) 9.75506 83.0881i 0.0956378 0.814589i
\(103\) −21.7862 + 16.5614i −0.211516 + 0.160791i −0.705569 0.708642i \(-0.749308\pi\)
0.494052 + 0.869432i \(0.335515\pi\)
\(104\) 1.78162 + 16.3817i 0.0171309 + 0.157516i
\(105\) 8.18053 + 9.79925i 0.0779098 + 0.0933262i
\(106\) 33.2872 + 83.5445i 0.314030 + 0.788156i
\(107\) 122.513 + 34.0156i 1.14498 + 0.317903i 0.787679 0.616086i \(-0.211283\pi\)
0.357303 + 0.933989i \(0.383696\pi\)
\(108\) −51.6445 15.7748i −0.478190 0.146063i
\(109\) −7.38405 13.9278i −0.0677435 0.127778i 0.847327 0.531071i \(-0.178210\pi\)
−0.915071 + 0.403293i \(0.867865\pi\)
\(110\) −10.8662 + 7.36746i −0.0987835 + 0.0669769i
\(111\) −196.677 + 8.97960i −1.77186 + 0.0808973i
\(112\) −7.63052 8.98335i −0.0681297 0.0802085i
\(113\) −28.9911 11.5511i −0.256558 0.102222i 0.238313 0.971188i \(-0.423406\pi\)
−0.494871 + 0.868966i \(0.664785\pi\)
\(114\) 100.496 59.3033i 0.881542 0.520204i
\(115\) −31.7054 19.0765i −0.275699 0.165883i
\(116\) −34.0500 + 101.057i −0.293535 + 0.871179i
\(117\) −37.4451 36.7035i −0.320044 0.313705i
\(118\) 73.3195 39.8278i 0.621351 0.337524i
\(119\) 58.1040i 0.488269i
\(120\) −9.27056 8.01178i −0.0772547 0.0667648i
\(121\) −68.2671 41.0750i −0.564191 0.339462i
\(122\) −63.2622 + 83.2200i −0.518543 + 0.682131i
\(123\) −118.424 114.112i −0.962797 0.927738i
\(124\) −73.9800 87.0960i −0.596613 0.702387i
\(125\) −29.0519 62.7947i −0.232415 0.502358i
\(126\) 36.9018 + 6.69888i 0.292872 + 0.0531657i
\(127\) 34.8922 + 65.8137i 0.274742 + 0.518218i 0.982034 0.188703i \(-0.0604284\pi\)
−0.707292 + 0.706921i \(0.750084\pi\)
\(128\) 8.62288 + 7.32434i 0.0673662 + 0.0572214i
\(129\) 61.1716 79.0592i 0.474199 0.612862i
\(130\) −4.40369 11.0524i −0.0338745 0.0850186i
\(131\) −128.604 68.1816i −0.981711 0.520470i −0.101389 0.994847i \(-0.532329\pi\)
−0.880322 + 0.474377i \(0.842673\pi\)
\(132\) −10.6362 + 37.0769i −0.0805775 + 0.280886i
\(133\) −64.5190 + 49.0461i −0.485105 + 0.368767i
\(134\) −30.3660 + 8.43108i −0.226612 + 0.0629185i
\(135\) 38.9755 + 0.998812i 0.288707 + 0.00739861i
\(136\) −9.02299 55.0378i −0.0663455 0.404690i
\(137\) −38.9177 176.805i −0.284071 1.29055i −0.875118 0.483909i \(-0.839217\pi\)
0.591048 0.806637i \(-0.298714\pi\)
\(138\) −107.429 + 16.6713i −0.778474 + 0.120807i
\(139\) 100.700 + 10.9518i 0.724462 + 0.0787900i 0.462917 0.886401i \(-0.346803\pi\)
0.261545 + 0.965191i \(0.415768\pi\)
\(140\) 7.04366 + 4.77572i 0.0503118 + 0.0341123i
\(141\) 37.9307 + 23.2657i 0.269012 + 0.165005i
\(142\) 7.38151 + 136.144i 0.0519824 + 0.958760i
\(143\) −25.7567 + 27.1910i −0.180117 + 0.190147i
\(144\) −35.9947 0.614876i −0.249964 0.00426997i
\(145\) 4.16837 76.8810i 0.0287474 0.530214i
\(146\) 36.6714 166.600i 0.251174 1.14109i
\(147\) 120.714 + 7.57938i 0.821182 + 0.0515604i
\(148\) −124.384 + 41.9097i −0.840429 + 0.283174i
\(149\) −50.8883 + 231.188i −0.341533 + 1.55160i 0.422465 + 0.906379i \(0.361165\pi\)
−0.763998 + 0.645219i \(0.776766\pi\)
\(150\) −87.8821 41.5734i −0.585881 0.277156i
\(151\) 45.1124 42.7327i 0.298757 0.282998i −0.523606 0.851960i \(-0.675414\pi\)
0.822363 + 0.568962i \(0.192655\pi\)
\(152\) 53.4979 56.4770i 0.351960 0.371559i
\(153\) 133.277 + 117.183i 0.871089 + 0.765903i
\(154\) 4.33412 26.4370i 0.0281436 0.171669i
\(155\) 68.2902 + 46.3019i 0.440582 + 0.298722i
\(156\) −30.7429 16.6367i −0.197070 0.106646i
\(157\) −190.214 + 114.448i −1.21156 + 0.728969i −0.970397 0.241517i \(-0.922355\pi\)
−0.241159 + 0.970486i \(0.577528\pi\)
\(158\) −17.7023 80.4224i −0.112040 0.509003i
\(159\) −185.957 42.6005i −1.16954 0.267927i
\(160\) −7.41358 3.42989i −0.0463349 0.0214368i
\(161\) 72.7545 20.2002i 0.451891 0.125467i
\(162\) 89.7886 71.1337i 0.554251 0.439097i
\(163\) −111.994 + 12.1800i −0.687077 + 0.0747242i −0.444997 0.895532i \(-0.646795\pi\)
−0.242080 + 0.970256i \(0.577830\pi\)
\(164\) −96.8658 51.3550i −0.590645 0.313140i
\(165\) 0.237841 27.8484i 0.00144146 0.168778i
\(166\) 17.0570 61.4337i 0.102753 0.370082i
\(167\) 142.170 + 120.760i 0.851315 + 0.723113i 0.962673 0.270667i \(-0.0872443\pi\)
−0.111358 + 0.993780i \(0.535520\pi\)
\(168\) 24.8789 2.49095i 0.148089 0.0148271i
\(169\) 75.7929 + 111.786i 0.448479 + 0.661457i
\(170\) 16.9081 + 36.5463i 0.0994595 + 0.214978i
\(171\) −17.6209 + 246.906i −0.103046 + 1.44390i
\(172\) 24.6664 61.9080i 0.143409 0.359930i
\(173\) 44.9649 59.1503i 0.259912 0.341909i −0.647565 0.762011i \(-0.724212\pi\)
0.907477 + 0.420102i \(0.138006\pi\)
\(174\) −135.357 181.251i −0.777913 1.04167i
\(175\) 63.9878 + 21.5600i 0.365644 + 0.123200i
\(176\) 25.7149i 0.146107i
\(177\) −18.8580 + 175.993i −0.106542 + 0.994308i
\(178\) 9.58957 0.0538740
\(179\) −78.5356 + 233.085i −0.438746 + 1.30215i 0.469210 + 0.883087i \(0.344539\pi\)
−0.907956 + 0.419066i \(0.862358\pi\)
\(180\) 25.1599 6.52487i 0.139777 0.0362493i
\(181\) 212.199 + 161.309i 1.17237 + 0.891212i 0.995661 0.0930518i \(-0.0296622\pi\)
0.176708 + 0.984263i \(0.443455\pi\)
\(182\) 22.5537 + 8.98622i 0.123921 + 0.0493748i
\(183\) −69.0089 210.742i −0.377098 1.15160i
\(184\) −65.7782 + 30.4323i −0.357490 + 0.165393i
\(185\) 78.4370 53.1816i 0.423984 0.287468i
\(186\) 241.208 24.1504i 1.29682 0.129841i
\(187\) 82.0661 96.6157i 0.438856 0.516661i
\(188\) 28.5838 + 7.93624i 0.152041 + 0.0422140i
\(189\) −56.1751 + 56.3396i −0.297223 + 0.298093i
\(190\) −26.3089 + 49.6239i −0.138468 + 0.261178i
\(191\) 2.41365 + 22.1931i 0.0126369 + 0.116194i 0.998757 0.0498370i \(-0.0158702\pi\)
−0.986120 + 0.166031i \(0.946905\pi\)
\(192\) −23.1792 + 6.22295i −0.120725 + 0.0324112i
\(193\) −54.5552 196.490i −0.282670 1.01808i −0.959445 0.281895i \(-0.909037\pi\)
0.676776 0.736189i \(-0.263377\pi\)
\(194\) −69.2814 + 149.749i −0.357120 + 0.771903i
\(195\) 24.6009 + 5.63577i 0.126159 + 0.0289014i
\(196\) 78.7491 17.3340i 0.401781 0.0884388i
\(197\) 42.5958 + 70.7947i 0.216222 + 0.359364i 0.945917 0.324409i \(-0.105165\pi\)
−0.729695 + 0.683773i \(0.760338\pi\)
\(198\) −51.8990 63.2590i −0.262116 0.319490i
\(199\) 106.642 157.286i 0.535891 0.790379i −0.459306 0.888278i \(-0.651902\pi\)
0.995196 + 0.0978987i \(0.0312121\pi\)
\(200\) −63.9591 10.4856i −0.319796 0.0524278i
\(201\) 21.8865 63.1687i 0.108888 0.314272i
\(202\) 67.4855 + 63.9257i 0.334087 + 0.316464i
\(203\) 108.048 + 114.065i 0.532255 + 0.561895i
\(204\) 106.948 + 50.5929i 0.524257 + 0.248004i
\(205\) 77.3080 + 17.0168i 0.377112 + 0.0830086i
\(206\) −12.3576 36.6760i −0.0599883 0.178039i
\(207\) 100.396 207.621i 0.485003 1.00300i
\(208\) −22.7590 5.00963i −0.109418 0.0240848i
\(209\) 176.555 + 9.57254i 0.844761 + 0.0458016i
\(210\) −16.8268 + 6.53845i −0.0801277 + 0.0311355i
\(211\) 237.057 + 224.553i 1.12349 + 1.06423i 0.997389 + 0.0722135i \(0.0230063\pi\)
0.126105 + 0.992017i \(0.459752\pi\)
\(212\) −126.996 + 6.88553i −0.599039 + 0.0324789i
\(213\) −246.545 151.224i −1.15749 0.709973i
\(214\) −100.909 + 148.830i −0.471538 + 0.695467i
\(215\) −5.20217 + 47.8332i −0.0241961 + 0.222480i
\(216\) 44.4617 62.0899i 0.205841 0.287453i
\(217\) −164.429 + 36.1935i −0.757736 + 0.166790i
\(218\) 22.0001 3.60674i 0.100918 0.0165447i
\(219\) 246.606 + 264.833i 1.12606 + 1.20928i
\(220\) −4.96701 17.8895i −0.0225773 0.0813161i
\(221\) 69.5221 + 91.4548i 0.314580 + 0.413823i
\(222\) 76.7770 267.638i 0.345842 1.20557i
\(223\) 47.5409 89.6716i 0.213188 0.402115i −0.753737 0.657176i \(-0.771751\pi\)
0.966925 + 0.255061i \(0.0820957\pi\)
\(224\) 15.4850 6.16978i 0.0691294 0.0275437i
\(225\) 178.503 103.291i 0.793346 0.459070i
\(226\) 28.5718 33.6373i 0.126424 0.148838i
\(227\) −244.896 + 129.835i −1.07884 + 0.571962i −0.910391 0.413749i \(-0.864219\pi\)
−0.168444 + 0.985711i \(0.553874\pi\)
\(228\) 34.0974 + 161.462i 0.149550 + 0.708166i
\(229\) 2.79650 1.29380i 0.0122118 0.00564977i −0.413774 0.910380i \(-0.635790\pi\)
0.425985 + 0.904730i \(0.359927\pi\)
\(230\) 39.8829 33.8769i 0.173404 0.147291i
\(231\) 40.9230 + 39.4328i 0.177156 + 0.170705i
\(232\) −120.059 91.2665i −0.517496 0.393390i
\(233\) 21.1650 35.1765i 0.0908369 0.150972i −0.808107 0.589035i \(-0.799508\pi\)
0.898944 + 0.438063i \(0.144335\pi\)
\(234\) 66.0981 33.6095i 0.282471 0.143630i
\(235\) −21.4183 −0.0911418
\(236\) 20.2684 + 116.246i 0.0858832 + 0.492569i
\(237\) 161.721 + 66.0414i 0.682367 + 0.278656i
\(238\) −77.8701 26.2375i −0.327185 0.110242i
\(239\) 19.4246 32.2840i 0.0812746 0.135079i −0.813554 0.581490i \(-0.802470\pi\)
0.894829 + 0.446410i \(0.147298\pi\)
\(240\) 14.9235 8.80645i 0.0621812 0.0366935i
\(241\) 159.598 400.560i 0.662232 1.66208i −0.0840624 0.996460i \(-0.526790\pi\)
0.746294 0.665616i \(-0.231831\pi\)
\(242\) 85.8747 72.9427i 0.354854 0.301416i
\(243\) 15.9364 + 242.477i 0.0655819 + 0.997847i
\(244\) −82.9634 122.362i −0.340014 0.501483i
\(245\) −51.4367 + 27.2700i −0.209946 + 0.111306i
\(246\) 206.406 107.182i 0.839050 0.435698i
\(247\) −42.8677 + 154.395i −0.173553 + 0.625083i
\(248\) 150.131 59.8177i 0.605367 0.241200i
\(249\) 86.6757 + 103.827i 0.348095 + 0.416975i
\(250\) 97.2752 10.5793i 0.389101 0.0423172i
\(251\) −273.633 359.958i −1.09017 1.43410i −0.890926 0.454148i \(-0.849944\pi\)
−0.199246 0.979949i \(-0.563849\pi\)
\(252\) −25.6411 + 46.4303i −0.101751 + 0.184247i
\(253\) −149.507 69.1694i −0.590937 0.273397i
\(254\) −103.958 + 17.0431i −0.409285 + 0.0670988i
\(255\) −84.1751 14.5391i −0.330098 0.0570159i
\(256\) −13.7097 + 8.24886i −0.0535536 + 0.0322221i
\(257\) 37.5284 345.068i 0.146025 1.34268i −0.660211 0.751081i \(-0.729533\pi\)
0.806235 0.591595i \(-0.201502\pi\)
\(258\) 78.3312 + 117.681i 0.303609 + 0.456129i
\(259\) −31.2856 + 190.834i −0.120794 + 0.736810i
\(260\) 16.8008 0.910913i 0.0646185 0.00350351i
\(261\) 479.546 17.7920i 1.83734 0.0681684i
\(262\) 149.448 141.565i 0.570414 0.540325i
\(263\) 142.174 + 7.70848i 0.540587 + 0.0293098i 0.322411 0.946600i \(-0.395507\pi\)
0.218176 + 0.975909i \(0.429989\pi\)
\(264\) −44.8870 30.9970i −0.170026 0.117413i
\(265\) 87.0197 29.3204i 0.328376 0.110643i
\(266\) −36.5965 108.615i −0.137581 0.408326i
\(267\) −11.5593 + 16.7392i −0.0432934 + 0.0626936i
\(268\) 2.41289 44.5032i 0.00900333 0.166057i
\(269\) −75.3352 79.5304i −0.280056 0.295652i 0.570758 0.821118i \(-0.306649\pi\)
−0.850814 + 0.525466i \(0.823891\pi\)
\(270\) −18.9384 + 51.7833i −0.0701422 + 0.191790i
\(271\) −1.31172 24.1932i −0.00484028 0.0892737i 0.995115 0.0987216i \(-0.0314753\pi\)
−0.999955 + 0.00944795i \(0.996993\pi\)
\(272\) 77.8352 + 12.7604i 0.286159 + 0.0469134i
\(273\) −42.8724 + 28.5368i −0.157042 + 0.104531i
\(274\) 254.525 + 27.6812i 0.928922 + 0.101026i
\(275\) −75.9479 126.226i −0.276174 0.459005i
\(276\) 26.1683 151.503i 0.0948126 0.548925i
\(277\) 34.9032 + 212.900i 0.126004 + 0.768592i 0.971926 + 0.235286i \(0.0756026\pi\)
−0.845922 + 0.533307i \(0.820949\pi\)
\(278\) −60.1497 + 130.011i −0.216366 + 0.467667i
\(279\) −248.598 + 450.154i −0.891031 + 1.61346i
\(280\) −9.58098 + 7.28327i −0.0342178 + 0.0260117i
\(281\) −3.80515 34.9878i −0.0135415 0.124512i 0.985416 0.170163i \(-0.0544293\pi\)
−0.998957 + 0.0456510i \(0.985464\pi\)
\(282\) −48.3083 + 40.3283i −0.171306 + 0.143008i
\(283\) −22.6579 56.8671i −0.0800634 0.200944i 0.883496 0.468439i \(-0.155183\pi\)
−0.963559 + 0.267495i \(0.913804\pi\)
\(284\) −185.791 51.5846i −0.654194 0.181636i
\(285\) −54.9086 105.741i −0.192662 0.371021i
\(286\) −24.8103 46.7971i −0.0867492 0.163626i
\(287\) −133.698 + 90.6498i −0.465848 + 0.315853i
\(288\) 17.0779 47.9619i 0.0592981 0.166534i
\(289\) −64.6234 76.0805i −0.223610 0.263254i
\(290\) 101.152 + 40.3028i 0.348801 + 0.138975i
\(291\) −177.884 301.444i −0.611286 1.03589i
\(292\) 206.715 + 124.376i 0.707928 + 0.425946i
\(293\) −105.424 + 312.886i −0.359808 + 1.06787i 0.603013 + 0.797731i \(0.293967\pi\)
−0.962821 + 0.270140i \(0.912930\pi\)
\(294\) −64.6673 + 158.356i −0.219957 + 0.538626i
\(295\) −36.5543 76.9561i −0.123913 0.260868i
\(296\) 185.622i 0.627100i
\(297\) 172.982 14.3400i 0.582432 0.0482829i
\(298\) −286.855 172.595i −0.962602 0.579178i
\(299\) 90.3446 118.846i 0.302156 0.397479i
\(300\) 95.4001 99.0053i 0.318000 0.330018i
\(301\) −63.5633 74.8325i −0.211174 0.248613i
\(302\) 36.8987 + 79.7553i 0.122181 + 0.264090i
\(303\) −192.934 + 40.7436i −0.636746 + 0.134467i
\(304\) 51.5321 + 97.1998i 0.169513 + 0.319736i
\(305\) 81.3517 + 69.1007i 0.266727 + 0.226560i
\(306\) −217.230 + 125.700i −0.709901 + 0.410784i
\(307\) −166.741 418.489i −0.543132 1.36316i −0.902793 0.430075i \(-0.858487\pi\)
0.359662 0.933083i \(-0.382892\pi\)
\(308\) 33.4733 + 17.7464i 0.108679 + 0.0576182i
\(309\) 78.9162 + 22.6386i 0.255392 + 0.0732642i
\(310\) −92.8902 + 70.6133i −0.299646 + 0.227785i
\(311\) −132.924 + 36.9060i −0.427407 + 0.118669i −0.474569 0.880218i \(-0.657396\pi\)
0.0471621 + 0.998887i \(0.484982\pi\)
\(312\) 36.1785 33.6886i 0.115957 0.107976i
\(313\) 55.2456 + 336.983i 0.176503 + 1.07662i 0.915323 + 0.402720i \(0.131935\pi\)
−0.738820 + 0.673903i \(0.764616\pi\)
\(314\) −67.4883 306.602i −0.214931 0.976441i
\(315\) 8.86991 37.2538i 0.0281584 0.118266i
\(316\) 115.774 + 12.5912i 0.366375 + 0.0398457i
\(317\) −296.399 200.963i −0.935011 0.633953i −0.00441095 0.999990i \(-0.501404\pi\)
−0.930600 + 0.366037i \(0.880714\pi\)
\(318\) 141.063 229.980i 0.443595 0.723206i
\(319\) −18.5575 342.274i −0.0581741 1.07296i
\(320\) 7.94436 8.38676i 0.0248261 0.0262086i
\(321\) −138.155 355.544i −0.430390 1.10761i
\(322\) −5.78109 + 106.626i −0.0179537 + 0.331137i
\(323\) 116.586 529.656i 0.360948 1.63980i
\(324\) 54.7873 + 152.454i 0.169097 + 0.470538i
\(325\) 126.512 42.6270i 0.389269 0.131160i
\(326\) 34.2484 155.592i 0.105056 0.477276i
\(327\) −20.2234 + 42.7502i −0.0618452 + 0.130735i
\(328\) 112.566 106.628i 0.343189 0.325086i
\(329\) 30.0569 31.7307i 0.0913584 0.0964459i
\(330\) 37.2146 + 12.8940i 0.112772 + 0.0390727i
\(331\) −84.6725 + 516.479i −0.255808 + 1.56036i 0.476368 + 0.879246i \(0.341953\pi\)
−0.732176 + 0.681115i \(0.761495\pi\)
\(332\) 74.6301 + 50.6005i 0.224790 + 0.152411i
\(333\) 374.630 + 456.632i 1.12502 + 1.37127i
\(334\) −226.039 + 136.003i −0.676762 + 0.407194i
\(335\) 6.91747 + 31.4264i 0.0206492 + 0.0938102i
\(336\) −7.89600 + 34.4671i −0.0235000 + 0.102581i
\(337\) −505.357 233.803i −1.49958 0.693778i −0.513198 0.858270i \(-0.671539\pi\)
−0.986378 + 0.164493i \(0.947401\pi\)
\(338\) −184.039 + 51.0982i −0.544495 + 0.151178i
\(339\) 24.2754 + 90.4207i 0.0716088 + 0.266728i
\(340\) −56.6138 + 6.15712i −0.166511 + 0.0181092i
\(341\) 324.532 + 172.056i 0.951708 + 0.504564i
\(342\) −322.943 135.109i −0.944278 0.395054i
\(343\) 70.4102 253.595i 0.205278 0.739343i
\(344\) 71.8298 + 61.0127i 0.208807 + 0.177363i
\(345\) 11.0590 + 110.454i 0.0320549 + 0.320156i
\(346\) 58.9679 + 86.9711i 0.170427 + 0.251362i
\(347\) −5.48628 11.8584i −0.0158106 0.0341741i 0.899509 0.436902i \(-0.143924\pi\)
−0.915320 + 0.402728i \(0.868062\pi\)
\(348\) 304.032 99.5571i 0.873655 0.286084i
\(349\) −28.4776 + 71.4735i −0.0815978 + 0.204795i −0.964115 0.265485i \(-0.914468\pi\)
0.882517 + 0.470280i \(0.155847\pi\)
\(350\) −57.7887 + 76.0197i −0.165111 + 0.217199i
\(351\) −21.0078 + 155.892i −0.0598512 + 0.444136i
\(352\) −34.4627 11.6118i −0.0979054 0.0329882i
\(353\) 437.063i 1.23814i −0.785337 0.619069i \(-0.787510\pi\)
0.785337 0.619069i \(-0.212490\pi\)
\(354\) −227.347 104.744i −0.642223 0.295888i
\(355\) 139.217 0.392159
\(356\) −4.33027 + 12.8518i −0.0121637 + 0.0361005i
\(357\) 139.664 104.300i 0.391217 0.292157i
\(358\) −276.914 210.504i −0.773502 0.588001i
\(359\) 409.981 + 163.351i 1.14201 + 0.455018i 0.862967 0.505261i \(-0.168604\pi\)
0.279042 + 0.960279i \(0.409983\pi\)
\(360\) −2.61668 + 36.6652i −0.00726857 + 0.101848i
\(361\) 358.910 166.049i 0.994210 0.459971i
\(362\) −312.005 + 211.544i −0.861892 + 0.584377i
\(363\) 23.8118 + 237.825i 0.0655972 + 0.655167i
\(364\) −22.2275 + 26.1683i −0.0610647 + 0.0718909i
\(365\) −167.833 46.5987i −0.459817 0.127668i
\(366\) 313.595 + 2.67828i 0.856817 + 0.00731770i
\(367\) −186.426 + 351.637i −0.507973 + 0.958139i 0.488365 + 0.872639i \(0.337593\pi\)
−0.996338 + 0.0854994i \(0.972751\pi\)
\(368\) −11.0820 101.897i −0.0301140 0.276894i
\(369\) −61.7119 + 489.493i −0.167241 + 1.32654i
\(370\) 35.8541 + 129.135i 0.0969029 + 0.349013i
\(371\) −78.6798 + 170.064i −0.212075 + 0.458393i
\(372\) −76.5538 + 334.168i −0.205790 + 0.898301i
\(373\) −382.944 + 84.2924i −1.02666 + 0.225985i −0.696210 0.717838i \(-0.745132\pi\)
−0.330451 + 0.943823i \(0.607201\pi\)
\(374\) 92.4249 + 153.611i 0.247126 + 0.410726i
\(375\) −98.7895 + 182.552i −0.263439 + 0.486806i
\(376\) −23.5433 + 34.7238i −0.0626152 + 0.0923505i
\(377\) 306.545 + 50.2555i 0.813117 + 0.133304i
\(378\) −50.1389 100.726i −0.132643 0.266470i
\(379\) −387.020 366.605i −1.02116 0.967296i −0.0216892 0.999765i \(-0.506904\pi\)
−0.999473 + 0.0324688i \(0.989663\pi\)
\(380\) −54.6251 57.6670i −0.143750 0.151755i
\(381\) 95.5625 202.010i 0.250820 0.530209i
\(382\) −30.8328 6.78681i −0.0807141 0.0177665i
\(383\) −23.5595 69.9222i −0.0615132 0.182565i 0.912490 0.409099i \(-0.134157\pi\)
−0.974003 + 0.226534i \(0.927260\pi\)
\(384\) 2.12691 33.8744i 0.00553883 0.0882146i
\(385\) −26.7148 5.88037i −0.0693891 0.0152737i
\(386\) 287.968 + 15.6132i 0.746031 + 0.0404486i
\(387\) −299.841 5.12200i −0.774783 0.0132351i
\(388\) −169.407 160.471i −0.436615 0.413584i
\(389\) 552.842 29.9742i 1.42119 0.0770546i 0.672559 0.740044i \(-0.265195\pi\)
0.748629 + 0.662989i \(0.230712\pi\)
\(390\) −18.6618 + 30.4249i −0.0478507 + 0.0780125i
\(391\) −283.555 + 418.213i −0.725205 + 1.06960i
\(392\) −12.3293 + 113.366i −0.0314522 + 0.289198i
\(393\) 66.9642 + 431.515i 0.170392 + 1.09800i
\(394\) −114.113 + 25.1181i −0.289626 + 0.0637514i
\(395\) −82.9750 + 13.6031i −0.210063 + 0.0344381i
\(396\) 108.214 40.9890i 0.273268 0.103508i
\(397\) −175.906 633.556i −0.443088 1.59586i −0.761671 0.647964i \(-0.775621\pi\)
0.318583 0.947895i \(-0.396793\pi\)
\(398\) 162.636 + 213.944i 0.408633 + 0.537548i
\(399\) 233.707 + 67.0435i 0.585733 + 0.168029i
\(400\) 42.9340 80.9821i 0.107335 0.202455i
\(401\) −268.762 + 107.084i −0.670228 + 0.267043i −0.680330 0.732906i \(-0.738164\pi\)
0.0101021 + 0.999949i \(0.496784\pi\)
\(402\) 74.7746 + 57.8564i 0.186006 + 0.143921i
\(403\) −215.502 + 253.709i −0.534745 + 0.629550i
\(404\) −116.146 + 61.5767i −0.287490 + 0.152418i
\(405\) −67.5625 95.4782i −0.166821 0.235749i
\(406\) −201.658 + 93.2968i −0.496694 + 0.229795i
\(407\) 321.555 273.131i 0.790062 0.671085i
\(408\) −116.097 + 120.485i −0.284553 + 0.295306i
\(409\) −367.459 279.335i −0.898432 0.682970i 0.0504077 0.998729i \(-0.483948\pi\)
−0.948840 + 0.315759i \(0.897741\pi\)
\(410\) −57.7148 + 95.9228i −0.140768 + 0.233958i
\(411\) −355.125 + 410.921i −0.864052 + 0.999809i
\(412\) 54.7328 0.132847
\(413\) 165.306 + 53.8405i 0.400257 + 0.130364i
\(414\) 232.915 + 228.302i 0.562597 + 0.551454i
\(415\) −61.6931 20.7868i −0.148658 0.0500888i
\(416\) 16.9909 28.2391i 0.0408435 0.0678824i
\(417\) −154.438 261.712i −0.370355 0.627607i
\(418\) −92.5543 + 232.294i −0.221422 + 0.555727i
\(419\) −500.906 + 425.473i −1.19548 + 1.01545i −0.196088 + 0.980586i \(0.562824\pi\)
−0.999392 + 0.0348634i \(0.988900\pi\)
\(420\) −1.16441 25.5035i −0.00277240 0.0607227i
\(421\) 401.236 + 591.779i 0.953055 + 1.40565i 0.913683 + 0.406427i \(0.133225\pi\)
0.0393720 + 0.999225i \(0.487464\pi\)
\(422\) −407.988 + 216.301i −0.966795 + 0.512562i
\(423\) −12.1643 132.937i −0.0287573 0.314273i
\(424\) 48.1186 173.307i 0.113487 0.408744i
\(425\) −419.756 + 167.246i −0.987661 + 0.393520i
\(426\) 313.998 262.129i 0.737085 0.615327i
\(427\) −216.534 + 23.5495i −0.507106 + 0.0551511i
\(428\) −153.893 202.443i −0.359563 0.472997i
\(429\) 111.594 + 13.1018i 0.260126 + 0.0305404i
\(430\) −61.7561 28.5714i −0.143619 0.0664452i
\(431\) 636.040 104.274i 1.47573 0.241934i 0.630440 0.776238i \(-0.282875\pi\)
0.845292 + 0.534304i \(0.179426\pi\)
\(432\) 63.1348 + 87.6242i 0.146145 + 0.202834i
\(433\) 17.6457 10.6170i 0.0407521 0.0245197i −0.495032 0.868875i \(-0.664844\pi\)
0.535784 + 0.844355i \(0.320016\pi\)
\(434\) 25.7436 236.708i 0.0593170 0.545411i
\(435\) −192.281 + 127.987i −0.442026 + 0.294222i
\(436\) −5.10070 + 31.1129i −0.0116989 + 0.0713599i
\(437\) −703.737 + 38.1555i −1.61038 + 0.0873123i
\(438\) −466.283 + 210.910i −1.06457 + 0.481529i
\(439\) −356.335 + 337.538i −0.811697 + 0.768880i −0.976056 0.217521i \(-0.930203\pi\)
0.164359 + 0.986401i \(0.447444\pi\)
\(440\) 26.2182 + 1.42151i 0.0595868 + 0.00323070i
\(441\) −198.470 303.765i −0.450045 0.688809i
\(442\) −153.960 + 51.8751i −0.348325 + 0.117364i
\(443\) −56.3562 167.259i −0.127215 0.377560i 0.865052 0.501682i \(-0.167285\pi\)
−0.992267 + 0.124122i \(0.960389\pi\)
\(444\) 324.014 + 223.750i 0.729761 + 0.503941i
\(445\) 0.530107 9.77725i 0.00119125 0.0219714i
\(446\) 98.7088 + 104.206i 0.221320 + 0.233645i
\(447\) 647.054 292.676i 1.44755 0.654757i
\(448\) 1.27623 + 23.5388i 0.00284874 + 0.0525419i
\(449\) 33.5968 + 5.50791i 0.0748258 + 0.0122671i 0.199079 0.979984i \(-0.436205\pi\)
−0.124253 + 0.992251i \(0.539653\pi\)
\(450\) 57.8237 + 285.869i 0.128497 + 0.635264i
\(451\) 350.348 + 38.1026i 0.776825 + 0.0844848i
\(452\) 32.1783 + 53.4808i 0.0711910 + 0.118320i
\(453\) −183.696 31.7287i −0.405510 0.0700413i
\(454\) −63.4182 386.834i −0.139688 0.852057i
\(455\) 10.4089 22.4984i 0.0228766 0.0494470i
\(456\) −231.786 27.2131i −0.508302 0.0596778i
\(457\) 261.187 198.549i 0.571525 0.434462i −0.279080 0.960268i \(-0.590029\pi\)
0.850605 + 0.525806i \(0.176236\pi\)
\(458\) 0.471139 + 4.33205i 0.00102869 + 0.00945862i
\(459\) 42.4334 530.708i 0.0924474 1.15623i
\(460\) 27.3917 + 68.7479i 0.0595471 + 0.149452i
\(461\) 404.515 + 112.313i 0.877473 + 0.243629i 0.676923 0.736054i \(-0.263313\pi\)
0.200551 + 0.979683i \(0.435727\pi\)
\(462\) −71.3264 + 37.0380i −0.154386 + 0.0801688i
\(463\) 37.4112 + 70.5651i 0.0808018 + 0.152408i 0.920620 0.390459i \(-0.127684\pi\)
−0.839819 + 0.542867i \(0.817339\pi\)
\(464\) 176.528 119.689i 0.380448 0.257950i
\(465\) −11.2892 247.264i −0.0242779 0.531750i
\(466\) 37.5857 + 44.2493i 0.0806560 + 0.0949556i
\(467\) 357.397 + 142.400i 0.765304 + 0.304925i 0.719932 0.694045i \(-0.244173\pi\)
0.0453727 + 0.998970i \(0.485552\pi\)
\(468\) 15.1956 + 103.760i 0.0324693 + 0.221710i
\(469\) −56.2649 33.8535i −0.119968 0.0721823i
\(470\) 9.67167 28.7045i 0.0205780 0.0610734i
\(471\) 616.545 + 251.776i 1.30901 + 0.534557i
\(472\) −164.944 25.3288i −0.349457 0.0536627i
\(473\) 214.209i 0.452872i
\(474\) −161.534 + 186.914i −0.340790 + 0.394333i
\(475\) −540.030 324.925i −1.13691 0.684054i
\(476\) 70.3261 92.5124i 0.147744 0.194354i
\(477\) 231.405 + 523.454i 0.485126 + 1.09739i
\(478\) 34.4951 + 40.6108i 0.0721655 + 0.0849598i
\(479\) 180.649 + 390.467i 0.377138 + 0.815170i 0.999474 + 0.0324203i \(0.0103215\pi\)
−0.622336 + 0.782750i \(0.713816\pi\)
\(480\) 5.06341 + 23.9769i 0.0105488 + 0.0499518i
\(481\) 179.092 + 337.803i 0.372332 + 0.702292i
\(482\) 464.757 + 394.768i 0.964225 + 0.819020i
\(483\) −179.154 138.619i −0.370919 0.286996i
\(484\) 58.9789 + 148.026i 0.121857 + 0.305839i
\(485\) 148.850 + 78.9154i 0.306908 + 0.162712i
\(486\) −332.160 88.1353i −0.683457 0.181348i
\(487\) 128.820 97.9266i 0.264518 0.201081i −0.464505 0.885570i \(-0.653768\pi\)
0.729023 + 0.684489i \(0.239975\pi\)
\(488\) 201.450 55.9324i 0.412808 0.114616i
\(489\) 230.312 + 247.335i 0.470986 + 0.505797i
\(490\) −13.3200 81.2486i −0.0271837 0.165814i
\(491\) 5.23807 + 23.7968i 0.0106682 + 0.0484659i 0.981654 0.190671i \(-0.0610665\pi\)
−0.970986 + 0.239137i \(0.923135\pi\)
\(492\) 50.4381 + 325.021i 0.102516 + 0.660613i
\(493\) −1045.22 113.675i −2.12012 0.230577i
\(494\) −187.561 127.169i −0.379678 0.257428i
\(495\) −67.3661 + 49.4179i −0.136093 + 0.0998341i
\(496\) 12.3734 + 228.215i 0.0249464 + 0.460110i
\(497\) −195.366 + 206.246i −0.393091 + 0.414982i
\(498\) −178.286 + 69.2773i −0.358004 + 0.139111i
\(499\) 20.0512 369.823i 0.0401829 0.741129i −0.907136 0.420837i \(-0.861736\pi\)
0.947319 0.320292i \(-0.103781\pi\)
\(500\) −29.7474 + 135.144i −0.0594948 + 0.270288i
\(501\) 35.0674 558.504i 0.0699947 1.11478i
\(502\) 605.972 204.176i 1.20712 0.406725i
\(503\) −103.901 + 472.025i −0.206562 + 0.938420i 0.753241 + 0.657745i \(0.228489\pi\)
−0.959803 + 0.280675i \(0.909442\pi\)
\(504\) −50.6466 55.3299i −0.100489 0.109782i
\(505\) 68.9074 65.2726i 0.136450 0.129253i
\(506\) 160.211 169.133i 0.316623 0.334255i
\(507\) 132.647 382.846i 0.261632 0.755121i
\(508\) 24.1026 147.019i 0.0474460 0.289408i
\(509\) −290.146 196.724i −0.570032 0.386491i 0.241849 0.970314i \(-0.422246\pi\)
−0.811881 + 0.583823i \(0.801556\pi\)
\(510\) 57.4951 106.245i 0.112736 0.208323i
\(511\) 304.560 183.248i 0.596008 0.358606i
\(512\) −4.86423 22.0984i −0.00950044 0.0431609i
\(513\) 625.119 400.856i 1.21856 0.781396i
\(514\) 445.508 + 206.114i 0.866747 + 0.401000i
\(515\) −38.0769 + 10.5720i −0.0739358 + 0.0205282i
\(516\) −193.086 + 51.8380i −0.374197 + 0.100461i
\(517\) −94.7952 + 10.3096i −0.183356 + 0.0199412i
\(518\) −241.625 128.101i −0.466457 0.247300i
\(519\) −222.894 1.90364i −0.429468 0.00366790i
\(520\) −6.36579 + 22.9275i −0.0122419 + 0.0440913i
\(521\) −616.463 523.629i −1.18323 1.00505i −0.999758 0.0220210i \(-0.992990\pi\)
−0.183474 0.983025i \(-0.558734\pi\)
\(522\) −192.699 + 650.714i −0.369156 + 1.24658i
\(523\) −33.9766 50.1118i −0.0649648 0.0958160i 0.793819 0.608154i \(-0.208090\pi\)
−0.858784 + 0.512338i \(0.828779\pi\)
\(524\) 122.238 + 264.214i 0.233279 + 0.504224i
\(525\) −63.0382 192.509i −0.120073 0.366683i
\(526\) −74.5312 + 187.059i −0.141694 + 0.355626i
\(527\) 681.831 896.933i 1.29380 1.70196i
\(528\) 61.8108 46.1598i 0.117066 0.0874238i
\(529\) 120.932 + 40.7468i 0.228605 + 0.0770262i
\(530\) 129.862i 0.245023i
\(531\) 456.884 270.588i 0.860422 0.509583i
\(532\) 162.089 0.304679
\(533\) −101.976 + 302.653i −0.191324 + 0.567829i
\(534\) −17.2138 23.0504i −0.0322357 0.0431656i
\(535\) 146.165 + 111.111i 0.273205 + 0.207685i
\(536\) 58.5529 + 23.3296i 0.109240 + 0.0435254i
\(537\) 701.242 229.626i 1.30585 0.427610i
\(538\) 140.604 65.0502i 0.261345 0.120911i
\(539\) −214.527 + 145.453i −0.398009 + 0.269857i
\(540\) −60.8473 48.7642i −0.112680 0.0903041i
\(541\) −117.676 + 138.539i −0.217516 + 0.256080i −0.860088 0.510146i \(-0.829591\pi\)
0.642572 + 0.766225i \(0.277867\pi\)
\(542\) 33.0156 + 9.16674i 0.0609144 + 0.0169128i
\(543\) 6.82922 799.621i 0.0125768 1.47260i
\(544\) −52.2487 + 98.5514i −0.0960453 + 0.181161i
\(545\) −2.46117 22.6301i −0.00451591 0.0415231i
\(546\) −18.8851 70.3431i −0.0345881 0.128833i
\(547\) 26.2331 + 94.4831i 0.0479581 + 0.172730i 0.983651 0.180087i \(-0.0576379\pi\)
−0.935693 + 0.352816i \(0.885224\pi\)
\(548\) −152.031 + 328.610i −0.277429 + 0.599653i
\(549\) −382.686 + 544.172i −0.697059 + 0.991205i
\(550\) 203.462 44.7853i 0.369930 0.0814278i
\(551\) −756.055 1256.57i −1.37215 2.28053i
\(552\) 191.226 + 103.483i 0.346424 + 0.187470i
\(553\) 96.2886 142.015i 0.174120 0.256808i
\(554\) −301.086 49.3606i −0.543477 0.0890985i
\(555\) −268.632 93.0746i −0.484021 0.167702i
\(556\) −147.078 139.320i −0.264529 0.250575i
\(557\) −603.902 637.532i −1.08421 1.14458i −0.988816 0.149141i \(-0.952349\pi\)
−0.0953893 0.995440i \(-0.530410\pi\)
\(558\) −491.033 536.439i −0.879987 0.961360i
\(559\) −189.585 41.7309i −0.339151 0.0746528i
\(560\) −5.43453 16.1291i −0.00970452 0.0288020i
\(561\) −379.548 23.8311i −0.676557 0.0424797i
\(562\) 48.6083 + 10.6995i 0.0864917 + 0.0190383i
\(563\) −517.164 28.0398i −0.918587 0.0498043i −0.411221 0.911535i \(-0.634898\pi\)
−0.507365 + 0.861731i \(0.669380\pi\)
\(564\) −32.2332 82.9527i −0.0571511 0.147079i
\(565\) −32.7163 30.9905i −0.0579049 0.0548504i
\(566\) 86.4439 4.68685i 0.152728 0.00828065i
\(567\) 236.261 + 33.8951i 0.416686 + 0.0597796i
\(568\) 153.029 225.701i 0.269417 0.397360i
\(569\) −48.7172 + 447.947i −0.0856189 + 0.787253i 0.870081 + 0.492909i \(0.164067\pi\)
−0.955700 + 0.294344i \(0.904899\pi\)
\(570\) 166.507 25.8392i 0.292117 0.0453319i
\(571\) −181.339 + 39.9158i −0.317582 + 0.0699051i −0.370901 0.928672i \(-0.620951\pi\)
0.0533189 + 0.998578i \(0.483020\pi\)
\(572\) 73.9201 12.1186i 0.129231 0.0211863i
\(573\) 49.0129 45.6397i 0.0855374 0.0796504i
\(574\) −61.1144 220.114i −0.106471 0.383474i
\(575\) 355.346 + 467.450i 0.617993 + 0.812956i
\(576\) 56.5661 + 44.5452i 0.0982051 + 0.0773354i
\(577\) −307.615 + 580.224i −0.533129 + 1.00559i 0.459929 + 0.887956i \(0.347875\pi\)
−0.993057 + 0.117632i \(0.962470\pi\)
\(578\) 131.143 52.2522i 0.226891 0.0904018i
\(579\) −374.373 + 483.846i −0.646586 + 0.835658i
\(580\) −99.6896 + 117.364i −0.171879 + 0.202351i
\(581\) 117.371 62.2261i 0.202015 0.107102i
\(582\) 484.316 102.277i 0.832158 0.175734i
\(583\) 371.027 171.655i 0.636410 0.294435i
\(584\) −260.031 + 220.873i −0.445259 + 0.378207i
\(585\) −30.6134 69.2497i −0.0523307 0.118376i
\(586\) −371.720 282.574i −0.634334 0.482209i
\(587\) −126.219 + 209.777i −0.215023 + 0.357372i −0.945531 0.325533i \(-0.894456\pi\)
0.730507 + 0.682905i \(0.239284\pi\)
\(588\) −183.025 158.174i −0.311267 0.269003i
\(589\) 1571.50 2.66808
\(590\) 119.642 14.2391i 0.202783 0.0241341i
\(591\) 93.7071 229.468i 0.158557 0.388271i
\(592\) 248.767 + 83.8194i 0.420215 + 0.141587i
\(593\) 128.872 214.187i 0.217322 0.361192i −0.728948 0.684569i \(-0.759990\pi\)
0.946270 + 0.323377i \(0.104818\pi\)
\(594\) −58.8937 + 238.303i −0.0991476 + 0.401184i
\(595\) −31.0556 + 77.9438i −0.0521943 + 0.130998i
\(596\) 360.842 306.502i 0.605439 0.514265i
\(597\) −569.496 + 26.0013i −0.953930 + 0.0435533i
\(598\) 118.480 + 174.745i 0.198127 + 0.292215i
\(599\) 155.189 82.2758i 0.259079 0.137355i −0.333807 0.942642i \(-0.608333\pi\)
0.592886 + 0.805286i \(0.297988\pi\)
\(600\) 89.6063 + 172.561i 0.149344 + 0.287601i
\(601\) 30.7514 110.756i 0.0511670 0.184287i −0.933551 0.358446i \(-0.883307\pi\)
0.984718 + 0.174159i \(0.0557206\pi\)
\(602\) 128.992 51.3951i 0.214272 0.0853739i
\(603\) −191.126 + 60.7831i −0.316958 + 0.100801i
\(604\) −123.549 + 13.4367i −0.204551 + 0.0222462i
\(605\) −69.6232 91.5877i −0.115080 0.151385i
\(606\) 32.5174 276.965i 0.0536591 0.457038i
\(607\) 754.696 + 349.159i 1.24332 + 0.575221i 0.927580 0.373624i \(-0.121885\pi\)
0.315741 + 0.948846i \(0.397747\pi\)
\(608\) −153.536 + 25.1709i −0.252526 + 0.0413995i
\(609\) 80.2246 464.467i 0.131732 0.762671i
\(610\) −129.343 + 77.8230i −0.212038 + 0.127579i
\(611\) 9.34296 85.9071i 0.0152913 0.140601i
\(612\) −70.3687 347.889i −0.114982 0.568446i
\(613\) 88.8922 542.218i 0.145012 0.884532i −0.809666 0.586891i \(-0.800352\pi\)
0.954678 0.297641i \(-0.0962000\pi\)
\(614\) 636.147 34.4909i 1.03607 0.0561741i
\(615\) −97.8693 216.371i −0.159137 0.351823i
\(616\) −38.8986 + 36.8468i −0.0631472 + 0.0598162i
\(617\) 812.891 + 44.0736i 1.31749 + 0.0714322i 0.699431 0.714700i \(-0.253437\pi\)
0.618058 + 0.786133i \(0.287920\pi\)
\(618\) −65.9754 + 95.5395i −0.106756 + 0.154595i
\(619\) 277.554 93.5190i 0.448392 0.151081i −0.0860414 0.996292i \(-0.527422\pi\)
0.534433 + 0.845211i \(0.320525\pi\)
\(620\) −52.6893 156.376i −0.0849827 0.252220i
\(621\) −679.273 + 131.371i −1.09384 + 0.211547i
\(622\) 10.5621 194.807i 0.0169809 0.313195i
\(623\) 13.7408 + 14.5060i 0.0220559 + 0.0232842i
\(624\) 28.8121 + 63.6983i 0.0461733 + 0.102081i
\(625\) 25.6056 + 472.267i 0.0409689 + 0.755627i
\(626\) −476.566 78.1291i −0.761288 0.124807i
\(627\) −293.918 441.568i −0.468768 0.704256i
\(628\) 441.379 + 48.0028i 0.702832 + 0.0764376i
\(629\) −667.164 1108.84i −1.06067 1.76286i
\(630\) 45.9216 + 28.7096i 0.0728914 + 0.0455708i
\(631\) −42.4469 258.915i −0.0672693 0.410325i −0.998899 0.0469153i \(-0.985061\pi\)
0.931630 0.363409i \(-0.118387\pi\)
\(632\) −69.1538 + 149.473i −0.109421 + 0.236509i
\(633\) 114.224 972.899i 0.180449 1.53697i
\(634\) 403.170 306.482i 0.635914 0.483409i
\(635\) 11.6299 + 106.935i 0.0183148 + 0.168402i
\(636\) 244.516 + 292.900i 0.384460 + 0.460535i
\(637\) −86.9403 218.204i −0.136484 0.342549i
\(638\) 467.090 + 129.687i 0.732115 + 0.203271i
\(639\) 79.0666 + 864.077i 0.123735 + 1.35223i
\(640\) 7.65244 + 14.4340i 0.0119569 + 0.0225532i
\(641\) −82.8716 + 56.1884i −0.129285 + 0.0876573i −0.624115 0.781332i \(-0.714540\pi\)
0.494830 + 0.868990i \(0.335230\pi\)
\(642\) 538.880 24.6035i 0.839377 0.0383232i
\(643\) 401.658 + 472.869i 0.624663 + 0.735410i 0.979927 0.199356i \(-0.0638850\pi\)
−0.355264 + 0.934766i \(0.615609\pi\)
\(644\) −140.288 55.8958i −0.217838 0.0867947i
\(645\) 124.315 73.3589i 0.192736 0.113735i
\(646\) 657.191 + 395.419i 1.01732 + 0.612104i
\(647\) −303.010 + 899.303i −0.468331 + 1.38996i 0.410079 + 0.912050i \(0.365501\pi\)
−0.878410 + 0.477908i \(0.841395\pi\)
\(648\) −229.057 + 4.58266i −0.353483 + 0.00707200i
\(649\) −198.828 323.005i −0.306360 0.497696i
\(650\) 188.799i 0.290459i
\(651\) 382.157 + 330.267i 0.587031 + 0.507323i
\(652\) 193.057 + 116.158i 0.296099 + 0.178157i
\(653\) 50.5586 66.5088i 0.0774252 0.101851i −0.755750 0.654860i \(-0.772727\pi\)
0.833175 + 0.553009i \(0.186521\pi\)
\(654\) −48.1611 46.4074i −0.0736408 0.0709593i
\(655\) −136.074 160.199i −0.207747 0.244579i
\(656\) 92.0710 + 199.008i 0.140352 + 0.303366i
\(657\) 193.905 1068.16i 0.295137 1.62581i
\(658\) 28.9525 + 54.6101i 0.0440007 + 0.0829941i
\(659\) 256.191 + 217.611i 0.388757 + 0.330214i 0.820357 0.571852i \(-0.193775\pi\)
−0.431600 + 0.902065i \(0.642051\pi\)
\(660\) −34.0850 + 44.0520i −0.0516439 + 0.0667454i
\(661\) 459.968 + 1154.43i 0.695867 + 1.74649i 0.664852 + 0.746975i \(0.268495\pi\)
0.0310152 + 0.999519i \(0.490126\pi\)
\(662\) −653.943 346.699i −0.987829 0.523714i
\(663\) 95.0332 331.277i 0.143338 0.499664i
\(664\) −101.514 + 77.1689i −0.152883 + 0.116218i
\(665\) −112.763 + 31.3086i −0.169569 + 0.0470806i
\(666\) −781.139 + 295.877i −1.17288 + 0.444259i
\(667\) 221.040 + 1348.28i 0.331394 + 2.02142i
\(668\) −80.1988 364.347i −0.120058 0.545430i
\(669\) −300.882 + 46.6920i −0.449749 + 0.0697937i
\(670\) −45.2408 4.92024i −0.0675236 0.00734364i
\(671\) 393.315 + 266.674i 0.586163 + 0.397428i
\(672\) −42.6268 26.1461i −0.0634327 0.0389079i
\(673\) 14.4559 + 266.623i 0.0214798 + 0.396171i 0.989428 + 0.145023i \(0.0463255\pi\)
−0.967949 + 0.251148i \(0.919192\pi\)
\(674\) 541.539 571.695i 0.803470 0.848213i
\(675\) −568.703 243.654i −0.842523 0.360969i
\(676\) 14.6238 269.720i 0.0216329 0.398995i
\(677\) −262.584 + 1192.93i −0.387864 + 1.76209i 0.227437 + 0.973793i \(0.426965\pi\)
−0.615301 + 0.788292i \(0.710966\pi\)
\(678\) −132.142 8.29695i −0.194900 0.0122374i
\(679\) −325.797 + 109.774i −0.479819 + 0.161670i
\(680\) 17.3129 78.6532i 0.0254601 0.115667i
\(681\) 751.688 + 355.593i 1.10380 + 0.522162i
\(682\) −377.133 + 357.239i −0.552981 + 0.523811i
\(683\) 154.515 163.120i 0.226230 0.238828i −0.602992 0.797747i \(-0.706025\pi\)
0.829222 + 0.558919i \(0.188784\pi\)
\(684\) 326.899 371.793i 0.477922 0.543558i
\(685\) 42.2930 257.976i 0.0617416 0.376607i
\(686\) 308.069 + 208.876i 0.449080 + 0.304484i
\(687\) −8.12978 4.39949i −0.0118337 0.00640391i
\(688\) −114.204 + 68.7141i −0.165994 + 0.0998752i
\(689\) 79.6423 + 361.819i 0.115591 + 0.525136i
\(690\) −153.022 35.0555i −0.221771 0.0508051i
\(691\) 943.496 + 436.508i 1.36541 + 0.631704i 0.959370 0.282153i \(-0.0910484\pi\)
0.406037 + 0.913857i \(0.366911\pi\)
\(692\) −143.185 + 39.7551i −0.206915 + 0.0574495i
\(693\) 21.3254 169.151i 0.0307725 0.244085i
\(694\) 18.3698 1.99784i 0.0264695 0.00287873i
\(695\) 129.231 + 68.5139i 0.185944 + 0.0985812i
\(696\) −3.86388 + 452.415i −0.00555155 + 0.650021i
\(697\) 289.183 1041.54i 0.414897 1.49432i
\(698\) −82.9283 70.4399i −0.118808 0.100917i
\(699\) −122.546 + 12.2697i −0.175316 + 0.0175532i
\(700\) −75.7853 111.775i −0.108265 0.159679i
\(701\) 278.896 + 602.823i 0.397854 + 0.859947i 0.998187 + 0.0601966i \(0.0191728\pi\)
−0.600333 + 0.799750i \(0.704965\pi\)
\(702\) −199.437 98.5488i −0.284099 0.140383i
\(703\) 668.098 1676.80i 0.950353 2.38521i
\(704\) 31.1240 40.9429i 0.0442102 0.0581575i
\(705\) 38.4472 + 51.4831i 0.0545350 + 0.0730257i
\(706\) 585.744 + 197.360i 0.829666 + 0.279547i
\(707\) 193.683i 0.273951i
\(708\) 243.038 257.388i 0.343274 0.363543i
\(709\) −134.039 −0.189054 −0.0945268 0.995522i \(-0.530134\pi\)
−0.0945268 + 0.995522i \(0.530134\pi\)
\(710\) −62.8647 + 186.576i −0.0885418 + 0.262783i
\(711\) −131.555 507.276i −0.185028 0.713469i
\(712\) −15.2684 11.6067i −0.0214443 0.0163016i
\(713\) −1360.13 541.925i −1.90761 0.760063i
\(714\) 76.7145 + 234.274i 0.107443 + 0.328115i
\(715\) −49.0846 + 22.7089i −0.0686497 + 0.0317608i
\(716\) 407.158 276.060i 0.568656 0.385558i
\(717\) −112.469 + 11.2608i −0.156861 + 0.0157054i
\(718\) −404.052 + 475.687i −0.562747 + 0.662517i
\(719\) 424.717 + 117.922i 0.590705 + 0.164009i 0.550003 0.835163i \(-0.314627\pi\)
0.0407026 + 0.999171i \(0.487040\pi\)
\(720\) −47.9566 20.0634i −0.0666064 0.0278659i
\(721\) 37.7723 71.2460i 0.0523887 0.0988156i
\(722\) 60.4672 + 555.987i 0.0837496 + 0.770065i
\(723\) −1249.31 + 335.405i −1.72796 + 0.463907i
\(724\) −142.619 513.669i −0.196988 0.709487i
\(725\) −513.024 + 1108.88i −0.707619 + 1.52949i
\(726\) −329.482 75.4804i −0.453832 0.103967i
\(727\) 79.0248 17.3947i 0.108700 0.0239267i −0.160287 0.987070i \(-0.551242\pi\)
0.268987 + 0.963144i \(0.413311\pi\)
\(728\) −25.0332 41.6056i −0.0343863 0.0571505i
\(729\) 554.234 473.567i 0.760266 0.649612i
\(730\) 138.238 203.885i 0.189367 0.279295i
\(731\) 648.378 + 106.296i 0.886974 + 0.145412i
\(732\) −145.197 + 419.066i −0.198356 + 0.572494i
\(733\) 199.526 + 189.001i 0.272204 + 0.257846i 0.811609 0.584201i \(-0.198592\pi\)
−0.539405 + 0.842047i \(0.681351\pi\)
\(734\) −387.076 408.631i −0.527351 0.556718i
\(735\) 157.881 + 74.6869i 0.214804 + 0.101615i
\(736\) 141.565 + 31.1608i 0.192344 + 0.0423380i
\(737\) 45.7430 + 135.760i 0.0620664 + 0.184207i
\(738\) −628.144 303.741i −0.851143 0.411573i
\(739\) 792.053 + 174.344i 1.07179 + 0.235919i 0.715611 0.698499i \(-0.246148\pi\)
0.356179 + 0.934418i \(0.384079\pi\)
\(740\) −189.255 10.2611i −0.255749 0.0138663i
\(741\) 448.070 174.108i 0.604683 0.234964i
\(742\) −192.388 182.240i −0.259283 0.245606i
\(743\) 256.016 13.8808i 0.344571 0.0186821i 0.118958 0.992899i \(-0.462045\pi\)
0.225612 + 0.974217i \(0.427562\pi\)
\(744\) −413.278 253.493i −0.555481 0.340717i
\(745\) −191.830 + 282.929i −0.257491 + 0.379770i
\(746\) 59.9552 551.279i 0.0803689 0.738980i
\(747\) 93.9799 394.717i 0.125810 0.528403i
\(748\) −247.603 + 54.5016i −0.331020 + 0.0728630i
\(749\) −369.726 + 60.6135i −0.493626 + 0.0809258i
\(750\) −200.044 214.830i −0.266726 0.286439i
\(751\) −99.4899 358.330i −0.132477 0.477137i 0.867311 0.497767i