Properties

Label 354.3.h.a.5.14
Level 354
Weight 3
Character 354.5
Analytic conductor 9.646
Analytic rank 0
Dimension 1120
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 354 = 2 \cdot 3 \cdot 59 \)
Weight: \( k \) = \( 3 \)
Character orbit: \([\chi]\) = 354.h (of order \(58\), degree \(28\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(9.64580135835\)
Analytic rank: \(0\)
Dimension: \(1120\)
Relative dimension: \(40\) over \(\Q(\zeta_{58})\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{58}]$

Embedding invariants

Embedding label 5.14
Character \(\chi\) = 354.5
Dual form 354.3.h.a.71.14

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.451561 + 1.34018i) q^{2} +(1.42759 + 2.63856i) q^{3} +(-1.59219 - 1.21035i) q^{4} +(5.73580 + 2.28535i) q^{5} +(-4.18080 + 0.721757i) q^{6} +(-0.923037 + 0.427042i) q^{7} +(2.34106 - 1.58728i) q^{8} +(-4.92400 + 7.53354i) q^{9} +O(q^{10})\) \(q+(-0.451561 + 1.34018i) q^{2} +(1.42759 + 2.63856i) q^{3} +(-1.59219 - 1.21035i) q^{4} +(5.73580 + 2.28535i) q^{5} +(-4.18080 + 0.721757i) q^{6} +(-0.923037 + 0.427042i) q^{7} +(2.34106 - 1.58728i) q^{8} +(-4.92400 + 7.53354i) q^{9} +(-5.65286 + 6.65506i) q^{10} +(17.2771 + 4.79696i) q^{11} +(0.920596 - 5.92895i) q^{12} +(6.00401 - 11.3248i) q^{13} +(-0.155508 - 1.42987i) q^{14} +(2.15831 + 18.3968i) q^{15} +(1.07011 + 3.85420i) q^{16} +(-9.57004 + 20.6853i) q^{17} +(-7.87284 - 10.0009i) q^{18} +(-22.0212 + 4.84723i) q^{19} +(-6.36639 - 10.5810i) q^{20} +(-2.44449 - 1.82585i) q^{21} +(-14.2305 + 20.9884i) q^{22} +(39.4352 + 6.46508i) q^{23} +(7.53019 + 3.91105i) q^{24} +(9.52671 + 9.02418i) q^{25} +(12.4661 + 13.1603i) q^{26} +(-26.9071 - 2.23750i) q^{27} +(1.98652 + 0.437265i) q^{28} +(-10.3165 - 30.6182i) q^{29} +(-25.6297 - 5.41474i) q^{30} +(4.55891 + 1.00349i) q^{31} +(-5.64856 - 0.306256i) q^{32} +(12.0075 + 52.4347i) q^{33} +(-23.4007 - 22.1663i) q^{34} +(-6.27030 + 0.339966i) q^{35} +(16.9581 - 6.03504i) q^{36} +(13.7690 - 20.3078i) q^{37} +(3.44772 - 31.7012i) q^{38} +(38.4523 - 0.325126i) q^{39} +(17.0553 - 3.75416i) q^{40} +(-6.52336 + 1.06945i) q^{41} +(3.55081 - 2.45159i) q^{42} +(-8.13038 - 29.2830i) q^{43} +(-21.7024 - 28.5490i) q^{44} +(-45.4599 + 31.9578i) q^{45} +(-26.4718 + 49.9311i) q^{46} +(-76.9875 + 30.6746i) q^{47} +(-8.64186 + 8.32576i) q^{48} +(-31.0523 + 36.5576i) q^{49} +(-16.3960 + 8.69258i) q^{50} +(-68.2415 + 4.27891i) q^{51} +(-23.2664 + 10.7642i) q^{52} +(-38.0906 + 32.3544i) q^{53} +(15.1489 - 35.0501i) q^{54} +(88.1353 + 66.9987i) q^{55} +(-1.48305 + 2.46485i) q^{56} +(-44.2268 - 51.1844i) q^{57} +45.6926 q^{58} +(-32.8169 - 49.0311i) q^{59} +(18.8301 - 31.9034i) q^{60} +(91.4257 + 30.8049i) q^{61} +(-3.40348 + 5.65663i) q^{62} +(1.32789 - 9.05649i) q^{63} +(2.96111 - 7.43181i) q^{64} +(60.3189 - 51.2354i) q^{65} +(-75.6943 - 7.58526i) q^{66} +(-64.1512 - 94.6159i) q^{67} +(40.2737 - 21.3518i) q^{68} +(39.2387 + 113.282i) q^{69} +(2.37580 - 8.55687i) q^{70} +(49.9915 - 19.9184i) q^{71} +(0.430442 + 25.4522i) q^{72} +(-23.0729 + 2.50933i) q^{73} +(20.9986 + 27.6232i) q^{74} +(-10.2107 + 38.0196i) q^{75} +(40.9286 + 18.9356i) q^{76} +(-17.9959 + 2.95028i) q^{77} +(-16.9278 + 51.6800i) q^{78} +(83.8658 - 50.4604i) q^{79} +(-2.67025 + 24.5525i) q^{80} +(-32.5084 - 74.1903i) q^{81} +(1.51243 - 9.22543i) q^{82} +(79.1416 - 4.29093i) q^{83} +(1.68217 + 5.86578i) q^{84} +(-102.165 + 96.7759i) q^{85} +(42.9160 + 2.32684i) q^{86} +(66.0603 - 70.9308i) q^{87} +(48.0608 - 16.1936i) q^{88} +(30.4206 + 90.2853i) q^{89} +(-22.3015 - 75.3555i) q^{90} +(-0.705769 + 13.0171i) q^{91} +(-54.9632 - 58.0240i) q^{92} +(3.86045 + 13.4615i) q^{93} +(-6.34512 - 117.029i) q^{94} +(-137.387 - 22.5234i) q^{95} +(-7.25572 - 15.3413i) q^{96} +(76.7901 + 8.35143i) q^{97} +(-34.9719 - 58.1238i) q^{98} +(-121.211 + 106.537i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 1120q + 80q^{4} - 8q^{6} - 8q^{7} + 24q^{9} + O(q^{10}) \) \( 1120q + 80q^{4} - 8q^{6} - 8q^{7} + 24q^{9} + 16q^{10} - 34q^{15} - 160q^{16} - 16q^{18} - 24q^{19} + 18q^{21} + 16q^{22} + 16q^{24} + 216q^{25} + 30q^{27} + 16q^{28} + 64q^{30} - 96q^{31} - 76q^{33} - 80q^{34} - 48q^{36} + 200q^{37} + 28q^{39} - 32q^{40} - 48q^{42} + 104q^{43} + 696q^{45} - 32q^{46} - 288q^{49} + 1800q^{51} + 852q^{54} - 360q^{55} + 76q^{57} + 128q^{58} - 280q^{60} + 32q^{61} - 1318q^{63} + 320q^{64} - 1512q^{66} + 344q^{67} - 2640q^{69} - 192q^{70} + 32q^{72} - 40q^{73} - 1014q^{75} + 48q^{76} - 96q^{78} - 32q^{79} - 336q^{81} + 80q^{82} - 36q^{84} - 168q^{85} + 162q^{87} - 32q^{88} - 112q^{90} - 88q^{91} + 316q^{93} + 400q^{94} - 32q^{96} + 184q^{97} + 148q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/354\mathbb{Z}\right)^\times\).

\(n\) \(61\) \(119\)
\(\chi(n)\) \(e\left(\frac{3}{29}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.451561 + 1.34018i −0.225780 + 0.670092i
\(3\) 1.42759 + 2.63856i 0.475862 + 0.879520i
\(4\) −1.59219 1.21035i −0.398047 0.302587i
\(5\) 5.73580 + 2.28535i 1.14716 + 0.457071i 0.864740 0.502220i \(-0.167483\pi\)
0.282421 + 0.959291i \(0.408863\pi\)
\(6\) −4.18080 + 0.721757i −0.696800 + 0.120293i
\(7\) −0.923037 + 0.427042i −0.131862 + 0.0610060i −0.484711 0.874674i \(-0.661075\pi\)
0.352848 + 0.935680i \(0.385213\pi\)
\(8\) 2.34106 1.58728i 0.292632 0.198410i
\(9\) −4.92400 + 7.53354i −0.547111 + 0.837060i
\(10\) −5.65286 + 6.65506i −0.565286 + 0.665506i
\(11\) 17.2771 + 4.79696i 1.57065 + 0.436087i 0.940333 0.340255i \(-0.110513\pi\)
0.630312 + 0.776342i \(0.282927\pi\)
\(12\) 0.920596 5.92895i 0.0767163 0.494080i
\(13\) 6.00401 11.3248i 0.461847 0.871136i −0.537760 0.843098i \(-0.680729\pi\)
0.999607 0.0280381i \(-0.00892597\pi\)
\(14\) −0.155508 1.42987i −0.0111077 0.102134i
\(15\) 2.15831 + 18.3968i 0.143887 + 1.22645i
\(16\) 1.07011 + 3.85420i 0.0668821 + 0.240887i
\(17\) −9.57004 + 20.6853i −0.562944 + 1.21678i 0.391992 + 0.919969i \(0.371786\pi\)
−0.954935 + 0.296814i \(0.904076\pi\)
\(18\) −7.87284 10.0009i −0.437380 0.555606i
\(19\) −22.0212 + 4.84723i −1.15901 + 0.255117i −0.752539 0.658547i \(-0.771171\pi\)
−0.406470 + 0.913664i \(0.633240\pi\)
\(20\) −6.36639 10.5810i −0.318320 0.529051i
\(21\) −2.44449 1.82585i −0.116404 0.0869452i
\(22\) −14.2305 + 20.9884i −0.646839 + 0.954017i
\(23\) 39.4352 + 6.46508i 1.71458 + 0.281090i 0.937416 0.348213i \(-0.113211\pi\)
0.777160 + 0.629303i \(0.216660\pi\)
\(24\) 7.53019 + 3.91105i 0.313758 + 0.162960i
\(25\) 9.52671 + 9.02418i 0.381069 + 0.360967i
\(26\) 12.4661 + 13.1603i 0.479465 + 0.506166i
\(27\) −26.9071 2.23750i −0.996560 0.0828704i
\(28\) 1.98652 + 0.437265i 0.0709470 + 0.0156166i
\(29\) −10.3165 30.6182i −0.355741 1.05580i −0.964870 0.262729i \(-0.915377\pi\)
0.609129 0.793071i \(-0.291519\pi\)
\(30\) −25.6297 5.41474i −0.854323 0.180491i
\(31\) 4.55891 + 1.00349i 0.147061 + 0.0323707i 0.287891 0.957663i \(-0.407046\pi\)
−0.140830 + 0.990034i \(0.544977\pi\)
\(32\) −5.64856 0.306256i −0.176517 0.00957050i
\(33\) 12.0075 + 52.4347i 0.363862 + 1.58893i
\(34\) −23.4007 22.1663i −0.688255 0.651950i
\(35\) −6.27030 + 0.339966i −0.179151 + 0.00971331i
\(36\) 16.9581 6.03504i 0.471059 0.167640i
\(37\) 13.7690 20.3078i 0.372136 0.548859i −0.594802 0.803872i \(-0.702769\pi\)
0.966938 + 0.255013i \(0.0820798\pi\)
\(38\) 3.44772 31.7012i 0.0907294 0.834243i
\(39\) 38.4523 0.325126i 0.985957 0.00833655i
\(40\) 17.0553 3.75416i 0.426383 0.0938541i
\(41\) −6.52336 + 1.06945i −0.159106 + 0.0260842i −0.240809 0.970573i \(-0.577413\pi\)
0.0817022 + 0.996657i \(0.473964\pi\)
\(42\) 3.55081 2.45159i 0.0845431 0.0583711i
\(43\) −8.13038 29.2830i −0.189079 0.681000i −0.995921 0.0902327i \(-0.971239\pi\)
0.806842 0.590767i \(-0.201175\pi\)
\(44\) −21.7024 28.5490i −0.493235 0.648840i
\(45\) −45.4599 + 31.9578i −1.01022 + 0.710174i
\(46\) −26.4718 + 49.9311i −0.575474 + 1.08546i
\(47\) −76.9875 + 30.6746i −1.63803 + 0.652652i −0.993698 0.112092i \(-0.964245\pi\)
−0.644335 + 0.764743i \(0.722866\pi\)
\(48\) −8.64186 + 8.32576i −0.180039 + 0.173453i
\(49\) −31.0523 + 36.5576i −0.633720 + 0.746073i
\(50\) −16.3960 + 8.69258i −0.327919 + 0.173852i
\(51\) −68.2415 + 4.27891i −1.33807 + 0.0839002i
\(52\) −23.2664 + 10.7642i −0.447431 + 0.207004i
\(53\) −38.0906 + 32.3544i −0.718690 + 0.610461i −0.930260 0.366902i \(-0.880418\pi\)
0.211570 + 0.977363i \(0.432143\pi\)
\(54\) 15.1489 35.0501i 0.280534 0.649077i
\(55\) 88.1353 + 66.9987i 1.60246 + 1.21816i
\(56\) −1.48305 + 2.46485i −0.0264830 + 0.0440151i
\(57\) −44.2268 51.1844i −0.775909 0.897971i
\(58\) 45.6926 0.787803
\(59\) −32.8169 49.0311i −0.556219 0.831036i
\(60\) 18.8301 31.9034i 0.313835 0.531724i
\(61\) 91.4257 + 30.8049i 1.49878 + 0.504998i 0.944833 0.327553i \(-0.106224\pi\)
0.553949 + 0.832551i \(0.313120\pi\)
\(62\) −3.40348 + 5.65663i −0.0548949 + 0.0912360i
\(63\) 1.32789 9.05649i 0.0210777 0.143754i
\(64\) 2.96111 7.43181i 0.0462673 0.116122i
\(65\) 60.3189 51.2354i 0.927984 0.788236i
\(66\) −75.6943 7.58526i −1.14688 0.114928i
\(67\) −64.1512 94.6159i −0.957480 1.41218i −0.910605 0.413277i \(-0.864384\pi\)
−0.0468753 0.998901i \(-0.514926\pi\)
\(68\) 40.2737 21.3518i 0.592261 0.313997i
\(69\) 39.2387 + 113.282i 0.568676 + 1.64176i
\(70\) 2.37580 8.55687i 0.0339400 0.122241i
\(71\) 49.9915 19.9184i 0.704105 0.280541i 0.00952332 0.999955i \(-0.496969\pi\)
0.694582 + 0.719413i \(0.255589\pi\)
\(72\) 0.430442 + 25.4522i 0.00597836 + 0.353503i
\(73\) −23.0729 + 2.50933i −0.316067 + 0.0343744i −0.264778 0.964309i \(-0.585299\pi\)
−0.0512895 + 0.998684i \(0.516333\pi\)
\(74\) 20.9986 + 27.6232i 0.283765 + 0.373287i
\(75\) −10.2107 + 38.0196i −0.136142 + 0.506928i
\(76\) 40.9286 + 18.9356i 0.538535 + 0.249153i
\(77\) −17.9959 + 2.95028i −0.233713 + 0.0383153i
\(78\) −16.9278 + 51.6800i −0.217023 + 0.662564i
\(79\) 83.8658 50.4604i 1.06159 0.638739i 0.126075 0.992021i \(-0.459762\pi\)
0.935517 + 0.353282i \(0.114934\pi\)
\(80\) −2.67025 + 24.5525i −0.0333781 + 0.306906i
\(81\) −32.5084 74.1903i −0.401339 0.915930i
\(82\) 1.51243 9.22543i 0.0184443 0.112505i
\(83\) 79.1416 4.29093i 0.953513 0.0516980i 0.429187 0.903216i \(-0.358800\pi\)
0.524326 + 0.851518i \(0.324317\pi\)
\(84\) 1.68217 + 5.86578i 0.0200258 + 0.0698307i
\(85\) −102.165 + 96.7759i −1.20194 + 1.13854i
\(86\) 42.9160 + 2.32684i 0.499023 + 0.0270562i
\(87\) 66.0603 70.9308i 0.759314 0.815296i
\(88\) 48.0608 16.1936i 0.546145 0.184018i
\(89\) 30.4206 + 90.2853i 0.341805 + 1.01444i 0.971386 + 0.237506i \(0.0763300\pi\)
−0.629581 + 0.776935i \(0.716773\pi\)
\(90\) −22.3015 75.3555i −0.247794 0.837283i
\(91\) −0.705769 + 13.0171i −0.00775571 + 0.143046i
\(92\) −54.9632 58.0240i −0.597427 0.630696i
\(93\) 3.86045 + 13.4615i 0.0415103 + 0.144747i
\(94\) −6.34512 117.029i −0.0675013 1.24499i
\(95\) −137.387 22.5234i −1.44618 0.237089i
\(96\) −7.25572 15.3413i −0.0755805 0.159805i
\(97\) 76.7901 + 8.35143i 0.791651 + 0.0860972i 0.495005 0.868890i \(-0.335166\pi\)
0.296646 + 0.954987i \(0.404132\pi\)
\(98\) −34.9719 58.1238i −0.356856 0.593100i
\(99\) −121.211 + 106.537i −1.22435 + 1.07614i
\(100\) −4.24590 25.8988i −0.0424590 0.258988i
\(101\) 15.8770 34.3175i 0.157198 0.339777i −0.812934 0.582356i \(-0.802131\pi\)
0.970132 + 0.242578i \(0.0779932\pi\)
\(102\) 25.0806 93.3883i 0.245889 0.915572i
\(103\) 111.256 84.5749i 1.08016 0.821116i 0.0954697 0.995432i \(-0.469565\pi\)
0.984690 + 0.174317i \(0.0557716\pi\)
\(104\) −3.91980 36.0420i −0.0376904 0.346557i
\(105\) −9.84841 16.0592i −0.0937943 0.152945i
\(106\) −26.1607 65.6584i −0.246799 0.619418i
\(107\) 188.809 + 52.4227i 1.76457 + 0.489931i 0.989819 0.142331i \(-0.0454598\pi\)
0.774754 + 0.632263i \(0.217874\pi\)
\(108\) 40.1330 + 36.1295i 0.371602 + 0.334533i
\(109\) 4.26506 + 8.04476i 0.0391290 + 0.0738051i 0.902306 0.431097i \(-0.141873\pi\)
−0.863177 + 0.504902i \(0.831529\pi\)
\(110\) −129.589 + 87.8635i −1.17808 + 0.798759i
\(111\) 73.2398 + 7.33929i 0.659818 + 0.0661198i
\(112\) −2.63366 3.10058i −0.0235148 0.0276838i
\(113\) −85.3871 34.0213i −0.755638 0.301074i −0.0396754 0.999213i \(-0.512632\pi\)
−0.715962 + 0.698139i \(0.754012\pi\)
\(114\) 88.5675 36.1592i 0.776908 0.317186i
\(115\) 211.418 + 127.206i 1.83842 + 1.10614i
\(116\) −20.6330 + 61.2364i −0.177870 + 0.527900i
\(117\) 55.7519 + 100.995i 0.476512 + 0.863202i
\(118\) 80.5295 21.8402i 0.682454 0.185086i
\(119\) 23.1801i 0.194791i
\(120\) 34.2535 + 39.6421i 0.285446 + 0.330351i
\(121\) 171.807 + 103.373i 1.41990 + 0.854323i
\(122\) −82.5685 + 108.617i −0.676791 + 0.890303i
\(123\) −12.1345 15.6856i −0.0986542 0.127525i
\(124\) −6.04405 7.11561i −0.0487424 0.0573839i
\(125\) −30.7934 66.5588i −0.246347 0.532470i
\(126\) 11.5377 + 5.86917i 0.0915693 + 0.0465807i
\(127\) −31.3263 59.0877i −0.246664 0.465257i 0.729005 0.684509i \(-0.239983\pi\)
−0.975668 + 0.219251i \(0.929638\pi\)
\(128\) 8.62288 + 7.32434i 0.0673662 + 0.0572214i
\(129\) 65.6581 63.2565i 0.508978 0.490360i
\(130\) 41.4272 + 103.974i 0.318671 + 0.799803i
\(131\) −37.7681 20.0234i −0.288306 0.152850i 0.317979 0.948098i \(-0.396996\pi\)
−0.606285 + 0.795248i \(0.707341\pi\)
\(132\) 44.3462 98.0191i 0.335956 0.742569i
\(133\) 18.2564 13.8781i 0.137266 0.104347i
\(134\) 155.771 43.2496i 1.16247 0.322758i
\(135\) −149.221 74.3261i −1.10534 0.550564i
\(136\) 10.4293 + 63.6158i 0.0766859 + 0.467763i
\(137\) 2.16944 + 9.85585i 0.0158353 + 0.0719405i 0.983876 0.178854i \(-0.0572391\pi\)
−0.968040 + 0.250795i \(0.919308\pi\)
\(138\) −169.537 + 1.43348i −1.22853 + 0.0103876i
\(139\) 109.981 + 11.9611i 0.791227 + 0.0860512i 0.494803 0.869005i \(-0.335240\pi\)
0.296424 + 0.955056i \(0.404206\pi\)
\(140\) 10.3950 + 7.04796i 0.0742497 + 0.0503426i
\(141\) −190.843 159.346i −1.35350 1.13011i
\(142\) 4.12018 + 75.9922i 0.0290153 + 0.535156i
\(143\) 158.056 166.858i 1.10529 1.16684i
\(144\) −34.3050 10.9163i −0.238229 0.0758079i
\(145\) 10.8001 199.197i 0.0744837 1.37377i
\(146\) 7.05586 32.0551i 0.0483278 0.219555i
\(147\) −140.789 29.7443i −0.957750 0.202342i
\(148\) −46.5024 + 15.6685i −0.314205 + 0.105868i
\(149\) −0.211124 + 0.959147i −0.00141694 + 0.00643723i −0.977324 0.211751i \(-0.932084\pi\)
0.975907 + 0.218188i \(0.0700146\pi\)
\(150\) −46.3425 30.8523i −0.308950 0.205682i
\(151\) 203.820 193.069i 1.34980 1.27860i 0.421476 0.906840i \(-0.361512\pi\)
0.928328 0.371763i \(-0.121246\pi\)
\(152\) −43.8590 + 46.3013i −0.288546 + 0.304614i
\(153\) −108.711 173.951i −0.710527 1.13693i
\(154\) 4.17232 25.4500i 0.0270930 0.165260i
\(155\) 23.8557 + 16.1745i 0.153907 + 0.104352i
\(156\) −61.6168 46.0231i −0.394979 0.295020i
\(157\) −76.5042 + 46.0310i −0.487288 + 0.293191i −0.737917 0.674892i \(-0.764190\pi\)
0.250629 + 0.968083i \(0.419363\pi\)
\(158\) 29.7557 + 135.181i 0.188327 + 0.855579i
\(159\) −139.747 54.3156i −0.878910 0.341607i
\(160\) −31.6991 14.6656i −0.198119 0.0916598i
\(161\) −39.1610 + 10.8730i −0.243236 + 0.0675342i
\(162\) 114.108 10.0659i 0.704372 0.0621351i
\(163\) −89.2385 + 9.70527i −0.547475 + 0.0595415i −0.377677 0.925937i \(-0.623277\pi\)
−0.169798 + 0.985479i \(0.554312\pi\)
\(164\) 11.6808 + 6.19278i 0.0712245 + 0.0377608i
\(165\) −50.9595 + 328.197i −0.308845 + 1.98907i
\(166\) −29.9866 + 108.002i −0.180642 + 0.650614i
\(167\) 91.5858 + 77.7937i 0.548418 + 0.465831i 0.878245 0.478211i \(-0.158715\pi\)
−0.329827 + 0.944041i \(0.606990\pi\)
\(168\) −8.62082 0.394335i −0.0513144 0.00234723i
\(169\) 2.63834 + 3.89126i 0.0156115 + 0.0230252i
\(170\) −83.5638 180.620i −0.491552 1.06247i
\(171\) 71.9155 189.765i 0.420558 1.10974i
\(172\) −22.4975 + 56.4646i −0.130800 + 0.328282i
\(173\) −63.7134 + 83.8135i −0.368285 + 0.484471i −0.942487 0.334243i \(-0.891519\pi\)
0.574202 + 0.818714i \(0.305313\pi\)
\(174\) 65.2300 + 120.563i 0.374885 + 0.692888i
\(175\) −12.6472 4.26134i −0.0722698 0.0243505i
\(176\) 71.7227i 0.407515i
\(177\) 82.5226 156.586i 0.466229 0.884664i
\(178\) −134.736 −0.756942
\(179\) 23.7441 70.4699i 0.132648 0.393686i −0.860660 0.509181i \(-0.829949\pi\)
0.993308 + 0.115494i \(0.0368451\pi\)
\(180\) 111.061 + 4.13951i 0.617004 + 0.0229973i
\(181\) −214.602 163.137i −1.18565 0.901307i −0.188909 0.981995i \(-0.560495\pi\)
−0.996739 + 0.0806877i \(0.974288\pi\)
\(182\) −17.1267 6.82389i −0.0941026 0.0374939i
\(183\) 49.2374 + 285.209i 0.269057 + 1.55852i
\(184\) 102.582 47.4595i 0.557511 0.257932i
\(185\) 125.387 85.0144i 0.677767 0.459537i
\(186\) −19.7841 0.904969i −0.106366 0.00486543i
\(187\) −264.569 + 311.475i −1.41481 + 1.66564i
\(188\) 159.705 + 44.3420i 0.849497 + 0.235862i
\(189\) 25.7918 9.42519i 0.136464 0.0498687i
\(190\) 92.2239 173.953i 0.485389 0.915541i
\(191\) −17.9846 165.366i −0.0941603 0.865790i −0.942017 0.335565i \(-0.891073\pi\)
0.847857 0.530225i \(-0.177893\pi\)
\(192\) 23.8365 2.79649i 0.124149 0.0145651i
\(193\) −3.05594 11.0065i −0.0158339 0.0570285i 0.955211 0.295925i \(-0.0956280\pi\)
−0.971045 + 0.238897i \(0.923214\pi\)
\(194\) −45.8678 + 99.1417i −0.236432 + 0.511040i
\(195\) 221.298 + 86.0123i 1.13486 + 0.441089i
\(196\) 93.6885 20.6224i 0.478002 0.105216i
\(197\) 89.2245 + 148.292i 0.452916 + 0.752753i 0.996228 0.0867787i \(-0.0276573\pi\)
−0.543311 + 0.839531i \(0.682830\pi\)
\(198\) −88.0459 210.553i −0.444676 1.06340i
\(199\) −56.5261 + 83.3697i −0.284051 + 0.418943i −0.942769 0.333446i \(-0.891788\pi\)
0.658718 + 0.752390i \(0.271099\pi\)
\(200\) 36.6265 + 6.00460i 0.183132 + 0.0300230i
\(201\) 158.069 304.339i 0.786411 1.51412i
\(202\) 38.8224 + 36.7745i 0.192190 + 0.182052i
\(203\) 22.5978 + 23.8562i 0.111319 + 0.117518i
\(204\) 113.832 + 75.7831i 0.558001 + 0.371486i
\(205\) −39.8608 8.77403i −0.194443 0.0428001i
\(206\) 63.1070 + 187.295i 0.306344 + 0.909198i
\(207\) −242.884 + 265.253i −1.17335 + 1.28141i
\(208\) 50.0729 + 11.0219i 0.240735 + 0.0529898i
\(209\) −403.714 21.8887i −1.93165 0.104731i
\(210\) 25.9695 5.94696i 0.123664 0.0283189i
\(211\) −139.207 131.863i −0.659747 0.624945i 0.282737 0.959198i \(-0.408758\pi\)
−0.942484 + 0.334252i \(0.891516\pi\)
\(212\) 99.8074 5.41140i 0.470790 0.0255255i
\(213\) 123.923 + 103.470i 0.581799 + 0.485776i
\(214\) −155.515 + 229.367i −0.726705 + 1.07181i
\(215\) 20.2877 186.542i 0.0943614 0.867639i
\(216\) −66.5427 + 37.4709i −0.308068 + 0.173477i
\(217\) −4.63657 + 1.02059i −0.0213667 + 0.00470316i
\(218\) −12.7074 + 2.08327i −0.0582908 + 0.00955629i
\(219\) −39.5596 57.2970i −0.180637 0.261630i
\(220\) −59.2360 213.349i −0.269255 0.969767i
\(221\) 176.798 + 232.573i 0.799990 + 1.05237i
\(222\) −42.9082 + 94.8407i −0.193280 + 0.427210i
\(223\) −140.959 + 265.877i −0.632103 + 1.19227i 0.336033 + 0.941850i \(0.390915\pi\)
−0.968137 + 0.250423i \(0.919430\pi\)
\(224\) 5.34461 2.12949i 0.0238599 0.00950664i
\(225\) −114.894 + 27.3348i −0.510638 + 0.121488i
\(226\) 84.1522 99.0717i 0.372355 0.438370i
\(227\) 225.124 119.353i 0.991735 0.525785i 0.108190 0.994130i \(-0.465495\pi\)
0.883545 + 0.468346i \(0.155150\pi\)
\(228\) 8.46639 + 135.025i 0.0371333 + 0.592214i
\(229\) −153.324 + 70.9352i −0.669536 + 0.309761i −0.725049 0.688697i \(-0.758183\pi\)
0.0555124 + 0.998458i \(0.482321\pi\)
\(230\) −265.947 + 225.898i −1.15629 + 0.982163i
\(231\) −33.4752 43.2715i −0.144914 0.187322i
\(232\) −72.7511 55.3039i −0.313582 0.238379i
\(233\) 10.9897 18.2650i 0.0471659 0.0783904i −0.832377 0.554209i \(-0.813021\pi\)
0.879543 + 0.475819i \(0.157848\pi\)
\(234\) −160.527 + 29.1125i −0.686012 + 0.124413i
\(235\) −511.688 −2.17739
\(236\) −7.09407 + 117.787i −0.0300596 + 0.499096i
\(237\) 252.868 + 149.248i 1.06695 + 0.629740i
\(238\) 31.0656 + 10.4672i 0.130528 + 0.0439799i
\(239\) 98.4338 163.598i 0.411857 0.684511i −0.579607 0.814896i \(-0.696794\pi\)
0.991463 + 0.130385i \(0.0416214\pi\)
\(240\) −68.5953 + 28.0052i −0.285814 + 0.116688i
\(241\) −75.9014 + 190.498i −0.314943 + 0.790448i 0.683240 + 0.730194i \(0.260570\pi\)
−0.998183 + 0.0602542i \(0.980809\pi\)
\(242\) −216.121 + 183.574i −0.893060 + 0.758572i
\(243\) 149.347 191.688i 0.614597 0.788841i
\(244\) −108.282 159.704i −0.443779 0.654525i
\(245\) −261.657 + 138.722i −1.06799 + 0.566211i
\(246\) 26.5010 9.17944i 0.107728 0.0373148i
\(247\) −77.3217 + 278.488i −0.313043 + 1.12748i
\(248\) 12.2655 4.88701i 0.0494576 0.0197057i
\(249\) 124.303 + 202.694i 0.499210 + 0.814033i
\(250\) 103.106 11.2135i 0.412424 0.0448538i
\(251\) −47.4542 62.4249i −0.189060 0.248705i 0.691791 0.722098i \(-0.256822\pi\)
−0.880851 + 0.473393i \(0.843029\pi\)
\(252\) −13.0758 + 12.8124i −0.0518879 + 0.0508429i
\(253\) 650.314 + 300.867i 2.57041 + 1.18920i
\(254\) 93.3341 15.3013i 0.367457 0.0602415i
\(255\) −401.199 131.413i −1.57333 0.515345i
\(256\) −13.7097 + 8.24886i −0.0535536 + 0.0322221i
\(257\) −47.6637 + 438.260i −0.185462 + 1.70529i 0.418449 + 0.908240i \(0.362574\pi\)
−0.603910 + 0.797052i \(0.706392\pi\)
\(258\) 55.1267 + 116.558i 0.213669 + 0.451776i
\(259\) −4.03703 + 24.6248i −0.0155870 + 0.0950764i
\(260\) −158.052 + 8.56931i −0.607891 + 0.0329589i
\(261\) 281.462 + 73.0445i 1.07840 + 0.279864i
\(262\) 43.8896 41.5744i 0.167517 0.158681i
\(263\) −285.347 15.4710i −1.08497 0.0588252i −0.497032 0.867732i \(-0.665577\pi\)
−0.587936 + 0.808907i \(0.700059\pi\)
\(264\) 111.339 + 103.694i 0.421737 + 0.392779i
\(265\) −292.421 + 98.5282i −1.10348 + 0.371805i
\(266\) 10.3554 + 30.7337i 0.0389301 + 0.115540i
\(267\) −194.795 + 209.157i −0.729569 + 0.783358i
\(268\) −12.3776 + 228.291i −0.0461851 + 0.851834i
\(269\) −276.081 291.455i −1.02632 1.08348i −0.996472 0.0839231i \(-0.973255\pi\)
−0.0298521 0.999554i \(-0.509504\pi\)
\(270\) 166.993 166.420i 0.618492 0.616371i
\(271\) −14.3752 265.134i −0.0530449 0.978355i −0.897025 0.441980i \(-0.854276\pi\)
0.843980 0.536375i \(-0.180207\pi\)
\(272\) −89.9663 14.7492i −0.330759 0.0542251i
\(273\) −35.3541 + 16.7209i −0.129502 + 0.0612486i
\(274\) −14.1883 1.54307i −0.0517821 0.00563164i
\(275\) 121.305 + 201.611i 0.441110 + 0.733131i
\(276\) 74.6351 227.858i 0.270417 0.825573i
\(277\) −7.90276 48.2047i −0.0285298 0.174024i 0.968718 0.248164i \(-0.0798272\pi\)
−0.997248 + 0.0741397i \(0.976379\pi\)
\(278\) −65.6930 + 141.993i −0.236306 + 0.510766i
\(279\) −30.0079 + 29.4035i −0.107555 + 0.105389i
\(280\) −14.1395 + 10.7486i −0.0504983 + 0.0383878i
\(281\) −50.6373 465.602i −0.180204 1.65695i −0.639594 0.768713i \(-0.720897\pi\)
0.459390 0.888235i \(-0.348068\pi\)
\(282\) 299.730 183.811i 1.06287 0.651811i
\(283\) −78.0039 195.775i −0.275632 0.691785i −0.999997 0.00236797i \(-0.999246\pi\)
0.724365 0.689417i \(-0.242133\pi\)
\(284\) −103.704 28.7933i −0.365155 0.101385i
\(285\) −136.702 394.657i −0.479656 1.38476i
\(286\) 152.249 + 287.171i 0.532338 + 1.00410i
\(287\) 5.56460 3.77289i 0.0193889 0.0131460i
\(288\) 30.1207 41.0456i 0.104586 0.142520i
\(289\) −149.202 175.654i −0.516268 0.607798i
\(290\) 262.083 + 104.424i 0.903736 + 0.360081i
\(291\) 87.5887 + 214.538i 0.300992 + 0.737243i
\(292\) 39.7736 + 23.9310i 0.136211 + 0.0819553i
\(293\) 9.57174 28.4079i 0.0326680 0.0969553i −0.930078 0.367361i \(-0.880261\pi\)
0.962746 + 0.270406i \(0.0871579\pi\)
\(294\) 103.438 175.252i 0.351829 0.596096i
\(295\) −76.1781 356.231i −0.258231 1.20756i
\(296\) 69.3970i 0.234449i
\(297\) −454.144 167.730i −1.52910 0.564747i
\(298\) −1.19010 0.716058i −0.00399362 0.00240288i
\(299\) 309.985 407.779i 1.03674 1.36381i
\(300\) 62.2742 48.1758i 0.207581 0.160586i
\(301\) 20.0097 + 23.5573i 0.0664775 + 0.0782633i
\(302\) 166.711 + 360.339i 0.552022 + 1.19318i
\(303\) 113.215 7.09883i 0.373645 0.0234285i
\(304\) −42.2473 79.6869i −0.138971 0.262128i
\(305\) 454.000 + 385.631i 1.48852 + 1.26436i
\(306\) 282.215 67.1430i 0.922273 0.219422i
\(307\) −168.287 422.370i −0.548168 1.37580i −0.898418 0.439141i \(-0.855283\pi\)
0.350251 0.936656i \(-0.386096\pi\)
\(308\) 32.2237 + 17.0839i 0.104622 + 0.0554673i
\(309\) 381.984 + 172.819i 1.23619 + 0.559284i
\(310\) −32.4491 + 24.6672i −0.104675 + 0.0795716i
\(311\) −74.0457 + 20.5587i −0.238089 + 0.0661051i −0.384523 0.923115i \(-0.625634\pi\)
0.146434 + 0.989220i \(0.453220\pi\)
\(312\) 89.5031 61.7956i 0.286869 0.198063i
\(313\) 36.9757 + 225.542i 0.118133 + 0.720581i 0.977771 + 0.209677i \(0.0672411\pi\)
−0.859638 + 0.510904i \(0.829311\pi\)
\(314\) −27.1438 123.315i −0.0864452 0.392724i
\(315\) 28.3138 48.9115i 0.0898851 0.155275i
\(316\) −194.605 21.1645i −0.615837 0.0669763i
\(317\) 60.6305 + 41.1085i 0.191264 + 0.129680i 0.653060 0.757306i \(-0.273485\pi\)
−0.461797 + 0.886986i \(0.652795\pi\)
\(318\) 135.897 162.759i 0.427349 0.511822i
\(319\) −31.3644 578.482i −0.0983209 1.81342i
\(320\) 33.9686 35.8603i 0.106152 0.112063i
\(321\) 131.221 + 573.023i 0.408789 + 1.78512i
\(322\) 3.11175 57.3928i 0.00966381 0.178239i
\(323\) 110.477 501.903i 0.342035 1.55388i
\(324\) −38.0366 + 157.471i −0.117397 + 0.486023i
\(325\) 159.395 53.7065i 0.490447 0.165251i
\(326\) 27.2897 123.978i 0.0837108 0.380302i
\(327\) −15.1378 + 22.7382i −0.0462931 + 0.0695358i
\(328\) −13.5741 + 12.8580i −0.0413843 + 0.0392013i
\(329\) 57.9630 61.1907i 0.176179 0.185990i
\(330\) −416.833 216.496i −1.26313 0.656048i
\(331\) 20.9936 128.055i 0.0634247 0.386873i −0.935970 0.352080i \(-0.885474\pi\)
0.999395 0.0347932i \(-0.0110773\pi\)
\(332\) −131.202 88.9570i −0.395186 0.267943i
\(333\) 85.1909 + 203.725i 0.255828 + 0.611787i
\(334\) −145.614 + 87.6133i −0.435971 + 0.262315i
\(335\) −151.728 689.306i −0.452919 2.05763i
\(336\) 4.42130 11.3754i 0.0131586 0.0338554i
\(337\) −206.155 95.3775i −0.611736 0.283019i 0.0894570 0.995991i \(-0.471487\pi\)
−0.701193 + 0.712971i \(0.747349\pi\)
\(338\) −6.40638 + 1.77872i −0.0189538 + 0.00526249i
\(339\) −32.1300 273.867i −0.0947788 0.807868i
\(340\) 279.798 30.4299i 0.822937 0.0894997i
\(341\) 73.9509 + 39.2063i 0.216865 + 0.114975i
\(342\) 221.846 + 182.070i 0.648672 + 0.532370i
\(343\) 26.3830 95.0229i 0.0769183 0.277035i
\(344\) −65.5139 55.6480i −0.190447 0.161768i
\(345\) −33.8234 + 739.436i −0.0980388 + 2.14329i
\(346\) −83.5551 123.235i −0.241489 0.356169i
\(347\) 156.943 + 339.226i 0.452285 + 0.977597i 0.990844 + 0.135010i \(0.0431066\pi\)
−0.538560 + 0.842587i \(0.681031\pi\)
\(348\) −191.031 + 32.9789i −0.548941 + 0.0947670i
\(349\) −199.369 + 500.378i −0.571257 + 1.43375i 0.305210 + 0.952285i \(0.401273\pi\)
−0.876467 + 0.481462i \(0.840106\pi\)
\(350\) 11.4220 15.0253i 0.0326342 0.0429295i
\(351\) −186.890 + 291.283i −0.532450 + 0.829866i
\(352\) −96.1216 32.3871i −0.273073 0.0920089i
\(353\) 371.907i 1.05356i 0.850001 + 0.526781i \(0.176601\pi\)
−0.850001 + 0.526781i \(0.823399\pi\)
\(354\) 172.589 + 181.303i 0.487541 + 0.512156i
\(355\) 332.262 0.935949
\(356\) 60.8413 180.571i 0.170903 0.507221i
\(357\) 61.1621 33.0916i 0.171322 0.0926935i
\(358\) 83.7207 + 63.6428i 0.233857 + 0.177773i
\(359\) −25.2799 10.0724i −0.0704174 0.0280569i 0.334664 0.942338i \(-0.391377\pi\)
−0.405081 + 0.914281i \(0.632757\pi\)
\(360\) −55.6983 + 146.973i −0.154718 + 0.408257i
\(361\) 133.802 61.9033i 0.370642 0.171477i
\(362\) 315.539 213.941i 0.871655 0.590996i
\(363\) −27.4864 + 600.898i −0.0757201 + 1.65537i
\(364\) 16.8790 19.8715i 0.0463709 0.0545920i
\(365\) −138.076 38.3367i −0.378292 0.105032i
\(366\) −404.466 62.8019i −1.10510 0.171590i
\(367\) 105.066 198.176i 0.286285 0.539990i −0.698104 0.715996i \(-0.745973\pi\)
0.984389 + 0.176006i \(0.0563177\pi\)
\(368\) 17.2825 + 158.910i 0.0469632 + 0.431820i
\(369\) 24.0643 54.4100i 0.0652149 0.147453i
\(370\) 57.3152 + 206.431i 0.154906 + 0.557921i
\(371\) 21.3423 46.1306i 0.0575264 0.124341i
\(372\) 10.1466 26.1057i 0.0272757 0.0701767i
\(373\) 498.101 109.640i 1.33539 0.293942i 0.510814 0.859691i \(-0.329344\pi\)
0.824577 + 0.565749i \(0.191413\pi\)
\(374\) −297.965 495.221i −0.796697 1.32412i
\(375\) 131.659 176.269i 0.351091 0.470049i
\(376\) −131.543 + 194.012i −0.349849 + 0.515988i
\(377\) −408.685 67.0004i −1.08404 0.177720i
\(378\) 0.984935 + 38.8218i 0.00260565 + 0.102703i
\(379\) −159.076 150.685i −0.419726 0.397585i 0.448477 0.893794i \(-0.351966\pi\)
−0.868203 + 0.496209i \(0.834725\pi\)
\(380\) 191.484 + 202.147i 0.503905 + 0.531967i
\(381\) 111.185 167.009i 0.291825 0.438344i
\(382\) 229.742 + 50.5700i 0.601418 + 0.132382i
\(383\) 174.974 + 519.303i 0.456850 + 1.35588i 0.890574 + 0.454838i \(0.150303\pi\)
−0.433724 + 0.901046i \(0.642801\pi\)
\(384\) −7.01582 + 33.2081i −0.0182704 + 0.0864794i
\(385\) −109.963 24.2048i −0.285619 0.0628695i
\(386\) 16.1307 + 0.874580i 0.0417893 + 0.00226575i
\(387\) 260.639 + 82.9389i 0.673485 + 0.214312i
\(388\) −112.156 106.240i −0.289062 0.273814i
\(389\) −207.926 + 11.2734i −0.534515 + 0.0289805i −0.319421 0.947613i \(-0.603488\pi\)
−0.215094 + 0.976593i \(0.569006\pi\)
\(390\) −215.202 + 257.740i −0.551799 + 0.660873i
\(391\) −511.129 + 753.859i −1.30724 + 1.92803i
\(392\) −14.6682 + 134.872i −0.0374189 + 0.344061i
\(393\) −1.08429 128.238i −0.00275901 0.326306i
\(394\) −239.029 + 52.6143i −0.606673 + 0.133539i
\(395\) 596.357 97.7678i 1.50977 0.247513i
\(396\) 321.937 22.9205i 0.812973 0.0578800i
\(397\) −84.5789 304.626i −0.213045 0.767319i −0.990397 0.138253i \(-0.955851\pi\)
0.777352 0.629066i \(-0.216563\pi\)
\(398\) −86.2058 113.402i −0.216598 0.284929i
\(399\) 62.6808 + 28.3583i 0.157095 + 0.0710735i
\(400\) −24.5863 + 46.3748i −0.0614658 + 0.115937i
\(401\) −159.863 + 63.6952i −0.398661 + 0.158841i −0.560848 0.827919i \(-0.689525\pi\)
0.162187 + 0.986760i \(0.448145\pi\)
\(402\) 336.493 + 349.268i 0.837047 + 0.868827i
\(403\) 38.7360 45.6036i 0.0961192 0.113160i
\(404\) −66.8152 + 35.4232i −0.165384 + 0.0876812i
\(405\) −16.9110 499.834i −0.0417556 1.23416i
\(406\) −42.1759 + 19.5126i −0.103882 + 0.0480607i
\(407\) 335.304 284.810i 0.823844 0.699779i
\(408\) −152.965 + 118.335i −0.374915 + 0.290037i
\(409\) 14.6573 + 11.1422i 0.0358369 + 0.0272425i 0.622939 0.782270i \(-0.285938\pi\)
−0.587102 + 0.809513i \(0.699731\pi\)
\(410\) 29.7584 49.4588i 0.0725814 0.120631i
\(411\) −22.9082 + 19.7943i −0.0557377 + 0.0481612i
\(412\) −279.506 −0.678413
\(413\) 51.2296 + 31.2433i 0.124043 + 0.0756496i
\(414\) −245.811 445.287i −0.593746 1.07557i
\(415\) 463.747 + 156.255i 1.11746 + 0.376517i
\(416\) −37.3823 + 62.1299i −0.0898613 + 0.149351i
\(417\) 125.447 + 307.266i 0.300831 + 0.736849i
\(418\) 211.636 531.167i 0.506307 1.27073i
\(419\) 241.548 205.173i 0.576487 0.489672i −0.311060 0.950390i \(-0.600684\pi\)
0.887547 + 0.460718i \(0.152408\pi\)
\(420\) −3.75677 + 37.4893i −0.00894469 + 0.0892602i
\(421\) −57.7009 85.1025i −0.137057 0.202144i 0.752966 0.658059i \(-0.228622\pi\)
−0.890023 + 0.455915i \(0.849312\pi\)
\(422\) 239.582 127.018i 0.567729 0.300991i
\(423\) 147.998 731.031i 0.349877 1.72820i
\(424\) −37.8168 + 136.204i −0.0891906 + 0.321235i
\(425\) −277.839 + 110.701i −0.653739 + 0.260473i
\(426\) −194.628 + 119.357i −0.456873 + 0.280180i
\(427\) −97.5442 + 10.6086i −0.228441 + 0.0248444i
\(428\) −237.170 311.992i −0.554135 0.728953i
\(429\) 665.904 + 178.837i 1.55222 + 0.416870i
\(430\) 240.840 + 111.424i 0.560093 + 0.259127i
\(431\) −757.915 + 124.254i −1.75850 + 0.288292i −0.952705 0.303898i \(-0.901712\pi\)
−0.805799 + 0.592190i \(0.798264\pi\)
\(432\) −20.1699 106.100i −0.0466896 0.245601i
\(433\) 179.692 108.117i 0.414993 0.249693i −0.292713 0.956200i \(-0.594558\pi\)
0.707706 + 0.706507i \(0.249730\pi\)
\(434\) 0.725919 6.67471i 0.00167262 0.0153795i
\(435\) 541.011 255.874i 1.24370 0.588215i
\(436\) 2.94619 17.9710i 0.00675732 0.0412178i
\(437\) −899.748 + 48.7829i −2.05892 + 0.111631i
\(438\) 94.6521 27.1441i 0.216101 0.0619727i
\(439\) 16.4835 15.6140i 0.0375479 0.0355672i −0.668696 0.743536i \(-0.733147\pi\)
0.706243 + 0.707969i \(0.250388\pi\)
\(440\) 312.675 + 16.9528i 0.710626 + 0.0385290i
\(441\) −122.507 413.943i −0.277793 0.938647i
\(442\) −391.526 + 131.920i −0.885805 + 0.298463i
\(443\) 131.248 + 389.529i 0.296270 + 0.879298i 0.987632 + 0.156789i \(0.0501144\pi\)
−0.691362 + 0.722508i \(0.742989\pi\)
\(444\) −107.728 100.331i −0.242631 0.225971i
\(445\) −31.8468 + 587.380i −0.0715659 + 1.31996i
\(446\) −292.672 308.971i −0.656216 0.692759i
\(447\) −2.83217 + 0.812200i −0.00633594 + 0.00181700i
\(448\) 0.440490 + 8.12435i 0.000983236 + 0.0181347i
\(449\) 648.927 + 106.386i 1.44527 + 0.236940i 0.832810 0.553559i \(-0.186731\pi\)
0.612463 + 0.790500i \(0.290179\pi\)
\(450\) 15.2477 166.322i 0.0338839 0.369604i
\(451\) −117.835 12.8153i −0.261275 0.0284153i
\(452\) 94.7744 + 157.516i 0.209678 + 0.348487i
\(453\) 800.395 + 262.170i 1.76688 + 0.578742i
\(454\) 58.2981 + 355.603i 0.128410 + 0.783266i
\(455\) −33.7969 + 73.0509i −0.0742790 + 0.160551i
\(456\) −184.781 49.6254i −0.405222 0.108828i
\(457\) 289.620 220.163i 0.633741 0.481758i −0.238299 0.971192i \(-0.576590\pi\)
0.872040 + 0.489434i \(0.162797\pi\)
\(458\) −25.8312 237.514i −0.0563999 0.518589i
\(459\) 303.786 535.169i 0.661843 1.16595i
\(460\) −182.653 458.425i −0.397072 0.996575i
\(461\) −87.6935 24.3480i −0.190225 0.0528156i 0.171110 0.985252i \(-0.445265\pi\)
−0.361334 + 0.932436i \(0.617679\pi\)
\(462\) 73.1078 25.3232i 0.158242 0.0548121i
\(463\) 206.080 + 388.709i 0.445098 + 0.839544i 0.999971 + 0.00760866i \(0.00242194\pi\)
−0.554873 + 0.831935i \(0.687233\pi\)
\(464\) 106.969 72.5267i 0.230536 0.156308i
\(465\) −8.62150 + 86.0351i −0.0185409 + 0.185022i
\(466\) 19.5159 + 22.9759i 0.0418796 + 0.0493045i
\(467\) −472.690 188.337i −1.01218 0.403291i −0.195703 0.980663i \(-0.562699\pi\)
−0.816481 + 0.577372i \(0.804078\pi\)
\(468\) 33.4714 228.281i 0.0715201 0.487781i
\(469\) 99.6189 + 59.9387i 0.212407 + 0.127801i
\(470\) 231.058 685.756i 0.491613 1.45905i
\(471\) −230.672 136.148i −0.489749 0.289061i
\(472\) −154.652 62.6951i −0.327653 0.132829i
\(473\) 544.926i 1.15206i
\(474\) −314.206 + 271.495i −0.662881 + 0.572775i
\(475\) −253.532 152.545i −0.533751 0.321147i
\(476\) −28.0560 + 36.9070i −0.0589412 + 0.0775358i
\(477\) −56.1853 446.270i −0.117789 0.935577i
\(478\) 174.803 + 205.794i 0.365696 + 0.430531i
\(479\) 252.991 + 546.832i 0.528166 + 1.14161i 0.969685 + 0.244360i \(0.0785778\pi\)
−0.441519 + 0.897252i \(0.645560\pi\)
\(480\) −6.55720 104.576i −0.0136608 0.217867i
\(481\) −147.312 277.859i −0.306261 0.577670i
\(482\) −221.028 187.743i −0.458565 0.389509i
\(483\) −84.5948 87.8066i −0.175145 0.181794i
\(484\) −148.432 372.536i −0.306678 0.769703i
\(485\) 421.367 + 223.395i 0.868798 + 0.460608i
\(486\) 189.459 + 286.711i 0.389833 + 0.589941i
\(487\) 30.7303 23.3605i 0.0631011 0.0479682i −0.573148 0.819452i \(-0.694278\pi\)
0.636249 + 0.771483i \(0.280485\pi\)
\(488\) 262.929 73.0018i 0.538788 0.149594i
\(489\) −153.003 221.606i −0.312891 0.453182i
\(490\) −67.7587 413.310i −0.138283 0.843489i
\(491\) −180.694 820.900i −0.368012 1.67189i −0.688961 0.724798i \(-0.741933\pi\)
0.320950 0.947096i \(-0.395998\pi\)
\(492\) 0.335347 + 39.6613i 0.000681600 + 0.0806123i
\(493\) 732.076 + 79.6181i 1.48494 + 0.161497i
\(494\) −338.309 229.379i −0.684836 0.464331i
\(495\) −938.715 + 334.069i −1.89639 + 0.674887i
\(496\) 1.01089 + 18.6448i 0.00203809 + 0.0375903i
\(497\) −37.6380 + 39.7339i −0.0757303 + 0.0799475i
\(498\) −327.778 + 75.0606i −0.658189 + 0.150724i
\(499\) −19.4049 + 357.903i −0.0388876 + 0.717240i 0.912468 + 0.409147i \(0.134174\pi\)
−0.951356 + 0.308093i \(0.900309\pi\)
\(500\) −31.5305 + 143.245i −0.0630611 + 0.286489i
\(501\) −74.5168 + 352.712i −0.148736 + 0.704016i
\(502\) 105.089 35.4087i 0.209341 0.0705352i
\(503\) −10.2458 + 46.5472i −0.0203694 + 0.0925391i −0.985709 0.168459i \(-0.946121\pi\)
0.965339 + 0.260999i \(0.0840518\pi\)
\(504\) −11.2665 23.3095i −0.0223541 0.0462490i
\(505\) 169.495 160.554i 0.335633 0.317929i
\(506\) −696.873 + 735.680i −1.37722 + 1.45391i
\(507\) −6.50087 + 12.5165i −0.0128222 + 0.0246874i
\(508\) −21.6394 + 131.994i −0.0425972 + 0.259831i
\(509\) −233.883 158.577i −0.459495 0.311546i 0.309387 0.950936i \(-0.399876\pi\)
−0.768882 + 0.639391i \(0.779187\pi\)
\(510\) 357.283 478.339i 0.700555 0.937919i
\(511\) 20.2256 12.1693i 0.0395804 0.0238147i
\(512\) −4.86423 22.0984i −0.00950044 0.0431609i
\(513\) 603.372 81.1526i 1.17616 0.158192i
\(514\) −565.826 261.779i −1.10083 0.509298i
\(515\) 831.428 230.845i 1.61442 0.448243i
\(516\) −181.102 + 21.2469i −0.350974 + 0.0411761i
\(517\) −1477.27 + 160.662i −2.85738 + 0.310759i
\(518\) −31.1788 16.5299i −0.0601907 0.0319111i
\(519\) −312.103 48.4606i −0.601355 0.0933731i
\(520\) 59.8854 215.688i 0.115164 0.414784i
\(521\) −189.159 160.673i −0.363070 0.308394i 0.447220 0.894424i \(-0.352414\pi\)
−0.810289 + 0.586030i \(0.800690\pi\)
\(522\) −224.990 + 344.227i −0.431016 + 0.659438i
\(523\) −424.977 626.794i −0.812576 1.19846i −0.977246 0.212111i \(-0.931966\pi\)
0.164670 0.986349i \(-0.447344\pi\)
\(524\) 35.8985 + 77.5934i 0.0685087 + 0.148079i
\(525\) −6.81117 39.4539i −0.0129737 0.0751502i
\(526\) 149.585 375.431i 0.284383 0.713747i
\(527\) −64.3864 + 84.6989i −0.122175 + 0.160719i
\(528\) −189.245 + 102.390i −0.358418 + 0.193921i
\(529\) 1012.03 + 340.993i 1.91310 + 0.644600i
\(530\) 436.390i 0.823377i
\(531\) 530.968 5.79844i 0.999940 0.0109199i
\(532\) −45.8649 −0.0862123
\(533\) −27.0551 + 80.2966i −0.0507600 + 0.150650i
\(534\) −192.347 355.508i −0.360200 0.665745i
\(535\) 963.169 + 732.182i 1.80032 + 1.36856i
\(536\) −300.363 119.676i −0.560379 0.223276i
\(537\) 219.836 37.9516i 0.409377 0.0706734i
\(538\) 515.271 238.390i 0.957753 0.443104i
\(539\) −711.859 + 482.652i −1.32070 + 0.895459i
\(540\) 147.626 + 298.950i 0.273382 + 0.553611i
\(541\) 402.807 474.221i 0.744559 0.876563i −0.251259 0.967920i \(-0.580845\pi\)
0.995818 + 0.0913569i \(0.0291204\pi\)
\(542\) 361.820 + 100.459i 0.667565 + 0.185348i
\(543\) 124.082 799.133i 0.228512 1.47170i
\(544\) 60.3919 113.911i 0.111015 0.209396i
\(545\) 6.07844 + 55.8903i 0.0111531 + 0.102551i
\(546\) −6.44454 54.9314i −0.0118032 0.100607i
\(547\) 261.890 + 943.243i 0.478775 + 1.72439i 0.669557 + 0.742761i \(0.266484\pi\)
−0.190781 + 0.981633i \(0.561102\pi\)
\(548\) 8.47486 18.3181i 0.0154651 0.0334272i
\(549\) −682.250 + 537.076i −1.24271 + 0.978280i
\(550\) −324.972 + 71.5318i −0.590859 + 0.130058i
\(551\) 375.594 + 624.243i 0.681659 + 1.13293i
\(552\) 271.669 + 202.916i 0.492155 + 0.367602i
\(553\) −55.8625 + 82.3910i −0.101017 + 0.148989i
\(554\) 68.1718 + 11.1762i 0.123054 + 0.0201736i
\(555\) 403.316 + 209.476i 0.726696 + 0.377433i
\(556\) −160.632 152.159i −0.288907 0.273668i
\(557\) 97.7832 + 103.229i 0.175553 + 0.185329i 0.807834 0.589410i \(-0.200640\pi\)
−0.632281 + 0.774739i \(0.717881\pi\)
\(558\) −25.8557 53.4936i −0.0463364 0.0958666i
\(559\) −380.438 83.7408i −0.680569 0.149805i
\(560\) −8.02023 23.8032i −0.0143218 0.0425057i
\(561\) −1199.54 253.425i −2.13822 0.451737i
\(562\) 646.859 + 142.384i 1.15099 + 0.253353i
\(563\) −188.594 10.2253i −0.334981 0.0181621i −0.114118 0.993467i \(-0.536404\pi\)
−0.220862 + 0.975305i \(0.570887\pi\)
\(564\) 110.994 + 484.695i 0.196798 + 0.859388i
\(565\) −412.013 390.279i −0.729226 0.690759i
\(566\) 297.598 16.1353i 0.525792 0.0285076i
\(567\) 61.6889 + 54.5979i 0.108799 + 0.0962926i
\(568\) 85.4169 125.981i 0.150382 0.221797i
\(569\) −61.7253 + 567.555i −0.108480 + 0.997460i 0.805747 + 0.592259i \(0.201764\pi\)
−0.914228 + 0.405201i \(0.867202\pi\)
\(570\) 590.643 4.99405i 1.03621 0.00876149i
\(571\) −705.641 + 155.323i −1.23580 + 0.272020i −0.784373 0.620289i \(-0.787015\pi\)
−0.451425 + 0.892309i \(0.649084\pi\)
\(572\) −453.612 + 74.3659i −0.793028 + 0.130010i
\(573\) 410.653 283.527i 0.716672 0.494812i
\(574\) 2.54362 + 9.16128i 0.00443139 + 0.0159604i
\(575\) 317.346 + 417.462i 0.551906 + 0.726020i
\(576\) 41.4074 + 58.9019i 0.0718878 + 0.102260i
\(577\) 245.555 463.165i 0.425571 0.802713i −0.574302 0.818644i \(-0.694726\pi\)
0.999873 + 0.0159309i \(0.00507119\pi\)
\(578\) 302.782 120.639i 0.523844 0.208718i
\(579\) 24.6787 23.7760i 0.0426230 0.0410639i
\(580\) −258.293 + 304.087i −0.445333 + 0.524287i
\(581\) −71.2182 + 37.7575i −0.122579 + 0.0649871i
\(582\) −327.072 + 20.5082i −0.561979 + 0.0352374i
\(583\) −813.297 + 376.271i −1.39502 + 0.645406i
\(584\) −50.0321 + 42.4976i −0.0856713 + 0.0727699i
\(585\) 88.9732 + 706.698i 0.152091 + 1.20803i
\(586\) 33.7496 + 25.6558i 0.0575932 + 0.0437812i
\(587\) −569.963 + 947.286i −0.970976 + 1.61377i −0.197153 + 0.980373i \(0.563170\pi\)
−0.773823 + 0.633402i \(0.781658\pi\)
\(588\) 188.162 + 217.762i 0.320003 + 0.370344i
\(589\) −105.257 −0.178704
\(590\) 511.814 + 58.7673i 0.867482 + 0.0996056i
\(591\) −263.902 + 447.124i −0.446535 + 0.756555i
\(592\) 93.0047 + 31.3369i 0.157103 + 0.0529340i
\(593\) 81.7359 135.846i 0.137835 0.229083i −0.780250 0.625468i \(-0.784908\pi\)
0.918084 + 0.396385i \(0.129736\pi\)
\(594\) 429.862 532.896i 0.723674 0.897131i
\(595\) 52.9747 132.957i 0.0890332 0.223456i
\(596\) 1.49705 1.27161i 0.00251183 0.00213357i
\(597\) −300.672 30.1301i −0.503638 0.0504691i
\(598\) 406.521 + 599.574i 0.679801 + 1.00263i
\(599\) −418.912 + 222.093i −0.699353 + 0.370773i −0.779837 0.625983i \(-0.784698\pi\)
0.0804844 + 0.996756i \(0.474353\pi\)
\(600\) 36.4439 + 105.213i 0.0607398 + 0.175355i
\(601\) 158.485 570.812i 0.263702 0.949770i −0.706548 0.707665i \(-0.749748\pi\)
0.970250 0.242105i \(-0.0778378\pi\)
\(602\) −40.6067 + 16.1792i −0.0674529 + 0.0268757i
\(603\) 1028.67 17.3967i 1.70593 0.0288502i
\(604\) −558.201 + 60.7080i −0.924173 + 0.100510i
\(605\) 749.210 + 985.569i 1.23836 + 1.62904i
\(606\) −41.6095 + 154.934i −0.0686625 + 0.255666i
\(607\) 512.428 + 237.074i 0.844197 + 0.390567i 0.793812 0.608163i \(-0.208093\pi\)
0.0503849 + 0.998730i \(0.483955\pi\)
\(608\) 125.872 20.6357i 0.207027 0.0339403i
\(609\) −30.6857 + 93.6823i −0.0503870 + 0.153830i
\(610\) −721.824 + 434.307i −1.18332 + 0.711979i
\(611\) −114.851 + 1056.04i −0.187972 + 1.72838i
\(612\) −37.4534 + 408.540i −0.0611983 + 0.667549i
\(613\) −44.6456 + 272.326i −0.0728313 + 0.444251i 0.925087 + 0.379756i \(0.123992\pi\)
−0.997918 + 0.0644953i \(0.979456\pi\)
\(614\) 642.045 34.8107i 1.04568 0.0566949i
\(615\) −33.7539 117.701i −0.0548844 0.191383i
\(616\) −37.4465 + 35.4712i −0.0607898 + 0.0575832i
\(617\) −750.620 40.6975i −1.21656 0.0659602i −0.565348 0.824852i \(-0.691258\pi\)
−0.651216 + 0.758892i \(0.725741\pi\)
\(618\) −404.098 + 433.891i −0.653880 + 0.702089i
\(619\) −291.254 + 98.1349i −0.470523 + 0.158538i −0.544567 0.838717i \(-0.683306\pi\)
0.0740439 + 0.997255i \(0.476410\pi\)
\(620\) −18.4058 54.6265i −0.0296868 0.0881073i
\(621\) −1046.62 262.193i −1.68538 0.422211i
\(622\) 5.88369 108.518i 0.00945932 0.174467i
\(623\) −66.6350 70.3457i −0.106958 0.112914i
\(624\) 42.4015 + 147.855i 0.0679511 + 0.236947i
\(625\) −42.2751 779.718i −0.0676401 1.24755i
\(626\) −318.964 52.2916i −0.509528 0.0835328i
\(627\) −518.581 1096.47i −0.827083 1.74876i
\(628\) 177.522 + 19.3067i 0.282679 + 0.0307432i
\(629\) 288.303 + 479.163i 0.458351 + 0.761785i
\(630\) 52.7651 + 60.0322i 0.0837541 + 0.0952893i
\(631\) 178.039 + 1085.99i 0.282154 + 1.72106i 0.624102 + 0.781343i \(0.285465\pi\)
−0.341948 + 0.939719i \(0.611087\pi\)
\(632\) 116.240 251.249i 0.183924 0.397546i
\(633\) 149.200 555.551i 0.235704 0.877648i
\(634\) −82.4713 + 62.6931i −0.130081 + 0.0988850i
\(635\) −44.6453 410.507i −0.0703076 0.646468i
\(636\) 156.762 + 255.623i 0.246481 + 0.401922i
\(637\) 227.568 + 571.152i 0.357250 + 0.896629i
\(638\) 789.435 + 219.185i 1.23736 + 0.343551i
\(639\) −96.1018 + 474.691i −0.150394 + 0.742866i
\(640\) 32.7204 + 61.7173i 0.0511257 + 0.0964333i
\(641\) −460.628 + 312.314i −0.718609 + 0.487229i −0.864857 0.502019i \(-0.832591\pi\)
0.146248 + 0.989248i \(0.453280\pi\)
\(642\) −827.210 82.8940i −1.28849 0.129118i
\(643\) 427.997 + 503.877i 0.665625 + 0.783634i 0.986548 0.163471i \(-0.0522689\pi\)
−0.320923 + 0.947105i \(0.603993\pi\)
\(644\) 75.5118 + 30.0866i 0.117254 + 0.0467184i
\(645\) 521.166 212.775i 0.808009 0.329883i
\(646\) 622.755 + 374.699i 0.964017 + 0.580030i
\(647\) 210.430 624.533i 0.325239 0.965275i −0.652922 0.757425i \(-0.726457\pi\)
0.978161 0.207850i \(-0.0666465\pi\)
\(648\) −193.865 122.084i −0.299174 0.188401i
\(649\) −331.781 1004.54i −0.511219 1.54782i
\(650\) 237.871i 0.365955i
\(651\) −9.31198 10.7769i −0.0143041 0.0165544i
\(652\) 153.831 + 92.5571i 0.235937 + 0.141959i
\(653\) −266.942 + 351.156i −0.408793 + 0.537758i −0.953708 0.300733i \(-0.902769\pi\)
0.544915 + 0.838491i \(0.316562\pi\)
\(654\) −23.6377 30.5552i −0.0361433 0.0467204i
\(655\) −170.870 201.163i −0.260870 0.307120i
\(656\) −11.1026 23.9979i −0.0169247 0.0365822i
\(657\) 94.7069 186.177i 0.144151 0.283374i
\(658\) 55.8331 + 105.312i 0.0848527 + 0.160049i
\(659\) −686.034 582.722i −1.04102 0.884252i −0.0476122 0.998866i \(-0.515161\pi\)
−0.993410 + 0.114614i \(0.963437\pi\)
\(660\) 478.369 460.871i 0.724802 0.698290i
\(661\) −408.316 1024.80i −0.617725 1.55037i −0.820804 0.571210i \(-0.806474\pi\)
0.203079 0.979162i \(-0.434905\pi\)
\(662\) 162.137 + 85.9599i 0.244921 + 0.129849i
\(663\) −361.265 + 798.510i −0.544895 + 1.20439i
\(664\) 178.464 135.665i 0.268771 0.204315i
\(665\) 136.431 37.8800i 0.205160 0.0569624i
\(666\) −311.498 + 22.1772i −0.467715 + 0.0332992i
\(667\) −208.884 1274.13i −0.313169 1.91024i
\(668\) −51.6642 234.713i −0.0773416 0.351367i
\(669\) −902.763 + 7.63312i −1.34942 + 0.0114097i
\(670\) 992.312 + 107.920i 1.48106 + 0.161075i
\(671\) 1431.80 + 970.785i 2.13383 + 1.44677i
\(672\) 13.2487 + 11.0621i 0.0197153 + 0.0164614i
\(673\) 71.6401 + 1321.32i 0.106449 + 1.96333i 0.235980 + 0.971758i \(0.424170\pi\)
−0.129531 + 0.991575i \(0.541347\pi\)
\(674\) 220.915 233.217i 0.327767 0.346019i
\(675\) −236.145 264.131i −0.349844 0.391305i
\(676\) 0.509053 9.38893i 0.000753037 0.0138889i
\(677\) 101.669 461.889i 0.150176 0.682258i −0.840018 0.542559i \(-0.817455\pi\)
0.990194 0.139699i \(-0.0446135\pi\)
\(678\) 381.541 + 80.6075i 0.562745 + 0.118890i
\(679\) −74.4465 + 25.0839i −0.109641 + 0.0369425i
\(680\) −85.5643 + 388.722i −0.125830 + 0.571650i
\(681\) 636.304 + 423.616i 0.934367 + 0.622050i
\(682\) −85.9370 + 81.4038i −0.126007 + 0.119360i
\(683\) 793.465 837.651i 1.16174 1.22643i 0.192233 0.981349i \(-0.438427\pi\)
0.969503 0.245080i \(-0.0788143\pi\)
\(684\) −344.185 + 215.099i −0.503194 + 0.314472i
\(685\) −10.0806 + 61.4891i −0.0147163 + 0.0897652i
\(686\) 115.435 + 78.2666i 0.168272 + 0.114091i
\(687\) −406.050 303.288i −0.591047 0.441468i
\(688\) 104.162 62.6723i 0.151398 0.0910934i
\(689\) 137.710 + 625.623i 0.199870 + 0.908017i
\(690\) −975.707 379.230i −1.41407 0.549608i
\(691\) 319.639 + 147.881i 0.462574 + 0.214009i 0.637313 0.770605i \(-0.280046\pi\)
−0.174739 + 0.984615i \(0.555908\pi\)
\(692\) 202.887 56.3313i 0.293190 0.0814037i
\(693\) 66.3858 150.100i 0.0957948 0.216594i
\(694\) −525.495 + 57.1510i −0.757197 + 0.0823501i
\(695\) 603.492 + 319.951i 0.868333 + 0.460361i
\(696\) 42.0644 270.909i 0.0604373 0.389237i
\(697\) 40.3069 145.172i 0.0578292 0.208282i
\(698\) −580.571 493.142i −0.831764 0.706507i
\(699\) 63.8819 + 2.92210i 0.0913904 + 0.00418039i
\(700\) 14.9790 + 22.0924i 0.0213986 + 0.0315605i
\(701\) −226.920 490.479i −0.323709 0.699685i 0.675584 0.737283i \(-0.263891\pi\)
−0.999293 + 0.0375980i \(0.988029\pi\)
\(702\) −305.981 381.999i −0.435870 0.544158i
\(703\) −204.774 + 513.943i −0.291285 + 0.731071i
\(704\) 86.8094 114.196i 0.123309 0.162210i
\(705\) −730.478 1350.12i −1.03614 1.91506i
\(706\) −498.424 167.939i −0.705983 0.237873i
\(707\) 38.4564i 0.0543938i
\(708\) −320.914 + 149.432i −0.453269 + 0.211062i
\(709\) −866.974 −1.22281 −0.611406 0.791317i \(-0.709396\pi\)
−0.611406 + 0.791317i \(0.709396\pi\)
\(710\) −150.036 + 445.292i −0.211319 + 0.627172i
\(711\) −32.8099 + 880.273i −0.0461462 + 1.23808i
\(712\) 214.524 + 163.077i 0.301298 + 0.229041i
\(713\) 173.294 + 69.0466i 0.243049 + 0.0968395i
\(714\) 16.7304 + 96.9113i 0.0234319 + 0.135730i
\(715\) 1287.91 595.851i 1.80127 0.833358i
\(716\) −123.098 + 83.4626i −0.171925 + 0.116568i
\(717\) 572.186 + 26.1730i 0.798028 + 0.0365035i
\(718\) 24.9143 29.3313i 0.0346995 0.0408515i
\(719\) 320.634 + 89.0236i 0.445944 + 0.123816i 0.483239 0.875488i \(-0.339460\pi\)
−0.0372946 + 0.999304i \(0.511874\pi\)
\(720\) −171.819 141.013i −0.238638 0.195851i
\(721\) −66.5767 + 125.577i −0.0923394 + 0.174171i
\(722\) 22.5422 + 207.272i 0.0312219 + 0.287080i
\(723\) −610.996 + 71.6819i −0.845085 + 0.0991451i
\(724\) 144.235 + 519.487i 0.199220 + 0.717524i
\(725\) 178.022 384.789i 0.245548 0.530743i
\(726\) −792.903 308.179i −1.09215 0.424489i
\(727\) 154.139 33.9285i 0.212021 0.0466693i −0.107690 0.994185i \(-0.534345\pi\)
0.319711 + 0.947515i \(0.396414\pi\)
\(728\) 19.0096 + 31.5941i 0.0261120 + 0.0433986i
\(729\) 718.987 + 120.409i 0.986265 + 0.165171i
\(730\) 113.728 167.736i 0.155792 0.229776i
\(731\) 683.536 + 112.060i 0.935070 + 0.153297i
\(732\) 266.807 513.700i 0.364490 0.701776i
\(733\) 118.628 + 112.371i 0.161839 + 0.153302i 0.764334 0.644821i \(-0.223068\pi\)
−0.602495 + 0.798123i \(0.705827\pi\)
\(734\) 218.149 + 230.297i 0.297206 + 0.313756i
\(735\) −739.563 492.360i −1.00621 0.669878i
\(736\) −220.772 48.5956i −0.299962 0.0660267i
\(737\) −654.477 1942.42i −0.888029 2.63558i
\(738\) 62.0529 + 56.8200i 0.0840826 + 0.0769919i
\(739\) 1242.70 + 273.539i 1.68160 + 0.370148i 0.950161 0.311759i \(-0.100918\pi\)
0.731439 + 0.681907i \(0.238849\pi\)
\(740\) −302.536 16.4030i −0.408833 0.0221663i
\(741\) −845.190 + 193.547i −1.14061 + 0.261197i
\(742\) 52.1862 + 49.4333i 0.0703317 + 0.0666218i
\(743\) −1359.91 + 73.7320i −1.83029 + 0.0992356i −0.936805 0.349853i \(-0.886232\pi\)
−0.893487 + 0.449088i \(0.851749\pi\)
\(744\) 30.4047 + 25.3866i 0.0408665 + 0.0341217i
\(745\) −3.40296 + 5.01899i −0.00456773 + 0.00673689i
\(746\) −77.9846 + 717.056i −0.104537 + 0.961201i
\(747\) −357.367 + 617.345i −0.478403 + 0.826432i
\(748\) 798.237 175.705i 1.06716 0.234900i
\(749\) −196.665 + 32.2415i −0.262570 + 0.0430461i
\(750\) 176.780 + 256.043i 0.235707 + 0.341391i
\(751\) 160.782 + 579.086i 0.214091 + 0.771086i 0.990100 + 0.140364i