Properties

Label 354.3.h.a.5.12
Level 354
Weight 3
Character 354.5
Analytic conductor 9.646
Analytic rank 0
Dimension 1120
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 354 = 2 \cdot 3 \cdot 59 \)
Weight: \( k \) = \( 3 \)
Character orbit: \([\chi]\) = 354.h (of order \(58\), degree \(28\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(9.64580135835\)
Analytic rank: \(0\)
Dimension: \(1120\)
Relative dimension: \(40\) over \(\Q(\zeta_{58})\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{58}]$

Embedding invariants

Embedding label 5.12
Character \(\chi\) = 354.5
Dual form 354.3.h.a.71.12

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.451561 + 1.34018i) q^{2} +(0.924357 + 2.85404i) q^{3} +(-1.59219 - 1.21035i) q^{4} +(-0.606021 - 0.241461i) q^{5} +(-4.24235 - 0.0499646i) q^{6} +(6.70675 - 3.10287i) q^{7} +(2.34106 - 1.58728i) q^{8} +(-7.29113 + 5.27631i) q^{9} +O(q^{10})\) \(q+(-0.451561 + 1.34018i) q^{2} +(0.924357 + 2.85404i) q^{3} +(-1.59219 - 1.21035i) q^{4} +(-0.606021 - 0.241461i) q^{5} +(-4.24235 - 0.0499646i) q^{6} +(6.70675 - 3.10287i) q^{7} +(2.34106 - 1.58728i) q^{8} +(-7.29113 + 5.27631i) q^{9} +(0.597257 - 0.703146i) q^{10} +(-16.9218 - 4.69831i) q^{11} +(1.98264 - 5.66296i) q^{12} +(-8.35854 + 15.7659i) q^{13} +(1.12992 + 10.3894i) q^{14} +(0.128960 - 1.95281i) q^{15} +(1.07011 + 3.85420i) q^{16} +(-7.23501 + 15.6382i) q^{17} +(-3.77884 - 12.1540i) q^{18} +(-23.1206 + 5.08922i) q^{19} +(0.672647 + 1.11795i) q^{20} +(15.0552 + 16.2732i) q^{21} +(13.9378 - 20.5567i) q^{22} +(2.68360 + 0.439954i) q^{23} +(6.69413 + 5.21427i) q^{24} +(-17.8409 - 16.8998i) q^{25} +(-17.3548 - 18.3212i) q^{26} +(-21.7984 - 15.9320i) q^{27} +(-14.4340 - 3.17715i) q^{28} +(9.66368 + 28.6808i) q^{29} +(2.55889 + 1.05464i) q^{30} +(11.7046 + 2.57639i) q^{31} +(-5.64856 - 0.306256i) q^{32} +(-2.23259 - 52.6384i) q^{33} +(-17.6911 - 16.7579i) q^{34} +(-4.81366 + 0.260989i) q^{35} +(17.9950 + 0.423935i) q^{36} +(13.2262 - 19.5072i) q^{37} +(3.61984 - 33.2839i) q^{38} +(-52.7228 - 9.28233i) q^{39} +(-1.80200 + 0.396649i) q^{40} +(-26.4294 + 4.33287i) q^{41} +(-28.6074 + 12.8284i) q^{42} +(5.94003 + 21.3941i) q^{43} +(21.2560 + 27.9618i) q^{44} +(5.69260 - 1.43703i) q^{45} +(-1.80143 + 3.39785i) q^{46} +(64.0593 - 25.5235i) q^{47} +(-10.0109 + 6.61681i) q^{48} +(3.63078 - 4.27448i) q^{49} +(30.7051 - 16.2788i) q^{50} +(-51.3199 - 6.19374i) q^{51} +(32.3906 - 14.9855i) q^{52} +(48.0630 - 40.8251i) q^{53} +(31.1951 - 22.0196i) q^{54} +(9.12050 + 6.93323i) q^{55} +(10.7758 - 17.9095i) q^{56} +(-35.8965 - 61.2828i) q^{57} -42.8013 q^{58} +(-47.3782 + 35.1611i) q^{59} +(-2.56891 + 2.95315i) q^{60} +(33.4868 + 11.2830i) q^{61} +(-8.73819 + 14.5230i) q^{62} +(-32.5281 + 58.0104i) q^{63} +(2.96111 - 7.43181i) q^{64} +(8.87230 - 7.53620i) q^{65} +(71.5533 + 20.7774i) q^{66} +(50.8644 + 75.0193i) q^{67} +(30.4472 - 16.1421i) q^{68} +(1.22496 + 8.06579i) q^{69} +(1.82388 - 6.56904i) q^{70} +(49.3167 - 19.6496i) q^{71} +(-8.69399 + 23.9252i) q^{72} +(-96.5565 + 10.5011i) q^{73} +(20.1708 + 26.5343i) q^{74} +(31.7414 - 66.5403i) q^{75} +(42.9720 + 19.8810i) q^{76} +(-128.069 + 20.9958i) q^{77} +(36.2476 - 66.4667i) q^{78} +(-102.580 + 61.7202i) q^{79} +(0.282127 - 2.59412i) q^{80} +(25.3211 - 76.9405i) q^{81} +(6.12761 - 37.3767i) q^{82} +(-59.2709 + 3.21357i) q^{83} +(-4.27440 - 44.1320i) q^{84} +(8.16059 - 7.73012i) q^{85} +(-31.3543 - 1.69998i) q^{86} +(-72.9235 + 54.0919i) q^{87} +(-47.0724 + 15.8605i) q^{88} +(-1.85596 - 5.50828i) q^{89} +(-0.644664 + 8.27804i) q^{90} +(-7.13912 + 131.673i) q^{91} +(-3.74029 - 3.94858i) q^{92} +(3.46615 + 35.7871i) q^{93} +(5.27961 + 97.3766i) q^{94} +(15.2404 + 2.49854i) q^{95} +(-4.34722 - 16.4043i) q^{96} +(-121.889 - 13.2562i) q^{97} +(4.08908 + 6.79610i) q^{98} +(148.169 - 55.0286i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 1120q + 80q^{4} - 8q^{6} - 8q^{7} + 24q^{9} + O(q^{10}) \) \( 1120q + 80q^{4} - 8q^{6} - 8q^{7} + 24q^{9} + 16q^{10} - 34q^{15} - 160q^{16} - 16q^{18} - 24q^{19} + 18q^{21} + 16q^{22} + 16q^{24} + 216q^{25} + 30q^{27} + 16q^{28} + 64q^{30} - 96q^{31} - 76q^{33} - 80q^{34} - 48q^{36} + 200q^{37} + 28q^{39} - 32q^{40} - 48q^{42} + 104q^{43} + 696q^{45} - 32q^{46} - 288q^{49} + 1800q^{51} + 852q^{54} - 360q^{55} + 76q^{57} + 128q^{58} - 280q^{60} + 32q^{61} - 1318q^{63} + 320q^{64} - 1512q^{66} + 344q^{67} - 2640q^{69} - 192q^{70} + 32q^{72} - 40q^{73} - 1014q^{75} + 48q^{76} - 96q^{78} - 32q^{79} - 336q^{81} + 80q^{82} - 36q^{84} - 168q^{85} + 162q^{87} - 32q^{88} - 112q^{90} - 88q^{91} + 316q^{93} + 400q^{94} - 32q^{96} + 184q^{97} + 148q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/354\mathbb{Z}\right)^\times\).

\(n\) \(61\) \(119\)
\(\chi(n)\) \(e\left(\frac{3}{29}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.451561 + 1.34018i −0.225780 + 0.670092i
\(3\) 0.924357 + 2.85404i 0.308119 + 0.951348i
\(4\) −1.59219 1.21035i −0.398047 0.302587i
\(5\) −0.606021 0.241461i −0.121204 0.0482922i 0.308748 0.951144i \(-0.400090\pi\)
−0.429952 + 0.902852i \(0.641469\pi\)
\(6\) −4.24235 0.0499646i −0.707058 0.00832744i
\(7\) 6.70675 3.10287i 0.958108 0.443268i 0.122423 0.992478i \(-0.460933\pi\)
0.835684 + 0.549210i \(0.185071\pi\)
\(8\) 2.34106 1.58728i 0.292632 0.198410i
\(9\) −7.29113 + 5.27631i −0.810125 + 0.586257i
\(10\) 0.597257 0.703146i 0.0597257 0.0703146i
\(11\) −16.9218 4.69831i −1.53834 0.427119i −0.608040 0.793907i \(-0.708044\pi\)
−0.930305 + 0.366788i \(0.880458\pi\)
\(12\) 1.98264 5.66296i 0.165220 0.471914i
\(13\) −8.35854 + 15.7659i −0.642965 + 1.21276i 0.321088 + 0.947049i \(0.395951\pi\)
−0.964053 + 0.265711i \(0.914393\pi\)
\(14\) 1.12992 + 10.3894i 0.0807084 + 0.742101i
\(15\) 0.128960 1.95281i 0.00859732 0.130187i
\(16\) 1.07011 + 3.85420i 0.0668821 + 0.240887i
\(17\) −7.23501 + 15.6382i −0.425589 + 0.919896i 0.569600 + 0.821922i \(0.307098\pi\)
−0.995189 + 0.0979736i \(0.968764\pi\)
\(18\) −3.77884 12.1540i −0.209936 0.675224i
\(19\) −23.1206 + 5.08922i −1.21687 + 0.267854i −0.776590 0.630006i \(-0.783052\pi\)
−0.440282 + 0.897860i \(0.645121\pi\)
\(20\) 0.672647 + 1.11795i 0.0336323 + 0.0558974i
\(21\) 15.0552 + 16.2732i 0.716913 + 0.774914i
\(22\) 13.9378 20.5567i 0.633537 0.934397i
\(23\) 2.68360 + 0.439954i 0.116678 + 0.0191284i 0.219838 0.975536i \(-0.429447\pi\)
−0.103160 + 0.994665i \(0.532895\pi\)
\(24\) 6.69413 + 5.21427i 0.278922 + 0.217261i
\(25\) −17.8409 16.8998i −0.713637 0.675993i
\(26\) −17.3548 18.3212i −0.667492 0.704663i
\(27\) −21.7984 15.9320i −0.807349 0.590074i
\(28\) −14.4340 3.17715i −0.515499 0.113470i
\(29\) 9.66368 + 28.6808i 0.333230 + 0.988992i 0.975021 + 0.222113i \(0.0712952\pi\)
−0.641791 + 0.766880i \(0.721808\pi\)
\(30\) 2.55889 + 1.05464i 0.0852963 + 0.0351547i
\(31\) 11.7046 + 2.57639i 0.377569 + 0.0831092i 0.399700 0.916646i \(-0.369114\pi\)
−0.0221313 + 0.999755i \(0.507045\pi\)
\(32\) −5.64856 0.306256i −0.176517 0.00957050i
\(33\) −2.23259 52.6384i −0.0676543 1.59510i
\(34\) −17.6911 16.7579i −0.520325 0.492878i
\(35\) −4.81366 + 0.260989i −0.137533 + 0.00745683i
\(36\) 17.9950 + 0.423935i 0.499861 + 0.0117760i
\(37\) 13.2262 19.5072i 0.357466 0.527222i −0.605855 0.795575i \(-0.707169\pi\)
0.963321 + 0.268353i \(0.0864792\pi\)
\(38\) 3.61984 33.2839i 0.0952590 0.875892i
\(39\) −52.7228 9.28233i −1.35187 0.238008i
\(40\) −1.80200 + 0.396649i −0.0450499 + 0.00991623i
\(41\) −26.4294 + 4.33287i −0.644618 + 0.105680i −0.475219 0.879868i \(-0.657631\pi\)
−0.169400 + 0.985547i \(0.554183\pi\)
\(42\) −28.6074 + 12.8284i −0.681129 + 0.305437i
\(43\) 5.94003 + 21.3941i 0.138140 + 0.497536i 0.999953 0.00969024i \(-0.00308455\pi\)
−0.861813 + 0.507226i \(0.830671\pi\)
\(44\) 21.2560 + 27.9618i 0.483092 + 0.635496i
\(45\) 5.69260 1.43703i 0.126502 0.0319341i
\(46\) −1.80143 + 3.39785i −0.0391615 + 0.0738663i
\(47\) 64.0593 25.5235i 1.36296 0.543054i 0.429936 0.902860i \(-0.358536\pi\)
0.933027 + 0.359805i \(0.117157\pi\)
\(48\) −10.0109 + 6.61681i −0.208560 + 0.137850i
\(49\) 3.63078 4.27448i 0.0740975 0.0872344i
\(50\) 30.7051 16.2788i 0.614103 0.325577i
\(51\) −51.3199 6.19374i −1.00627 0.121446i
\(52\) 32.3906 14.9855i 0.622895 0.288182i
\(53\) 48.0630 40.8251i 0.906849 0.770284i −0.0669357 0.997757i \(-0.521322\pi\)
0.973784 + 0.227473i \(0.0730464\pi\)
\(54\) 31.1951 22.0196i 0.577687 0.407771i
\(55\) 9.12050 + 6.93323i 0.165827 + 0.126059i
\(56\) 10.7758 17.9095i 0.192425 0.319812i
\(57\) −35.8965 61.2828i −0.629764 1.07514i
\(58\) −42.8013 −0.737953
\(59\) −47.3782 + 35.1611i −0.803020 + 0.595952i
\(60\) −2.56891 + 2.95315i −0.0428151 + 0.0492191i
\(61\) 33.4868 + 11.2830i 0.548964 + 0.184968i 0.580097 0.814548i \(-0.303015\pi\)
−0.0311323 + 0.999515i \(0.509911\pi\)
\(62\) −8.73819 + 14.5230i −0.140938 + 0.234242i
\(63\) −32.5281 + 58.0104i −0.516318 + 0.920800i
\(64\) 2.96111 7.43181i 0.0462673 0.116122i
\(65\) 8.87230 7.53620i 0.136497 0.115941i
\(66\) 71.5533 + 20.7774i 1.08414 + 0.314808i
\(67\) 50.8644 + 75.0193i 0.759170 + 1.11969i 0.989209 + 0.146510i \(0.0468041\pi\)
−0.230039 + 0.973181i \(0.573886\pi\)
\(68\) 30.4472 16.1421i 0.447753 0.237384i
\(69\) 1.22496 + 8.06579i 0.0177530 + 0.116895i
\(70\) 1.82388 6.56904i 0.0260555 0.0938434i
\(71\) 49.3167 19.6496i 0.694601 0.276754i 0.00400184 0.999992i \(-0.498726\pi\)
0.690599 + 0.723238i \(0.257347\pi\)
\(72\) −8.69399 + 23.9252i −0.120750 + 0.332294i
\(73\) −96.5565 + 10.5011i −1.32269 + 0.143851i −0.742070 0.670322i \(-0.766156\pi\)
−0.580621 + 0.814174i \(0.697190\pi\)
\(74\) 20.1708 + 26.5343i 0.272579 + 0.358571i
\(75\) 31.7414 66.5403i 0.423219 0.887203i
\(76\) 42.9720 + 19.8810i 0.565421 + 0.261592i
\(77\) −128.069 + 20.9958i −1.66323 + 0.272672i
\(78\) 36.2476 66.4667i 0.464712 0.852137i
\(79\) −102.580 + 61.7202i −1.29848 + 0.781269i −0.985692 0.168555i \(-0.946090\pi\)
−0.312787 + 0.949823i \(0.601262\pi\)
\(80\) 0.282127 2.59412i 0.00352659 0.0324265i
\(81\) 25.3211 76.9405i 0.312606 0.949883i
\(82\) 6.12761 37.3767i 0.0747269 0.455814i
\(83\) −59.2709 + 3.21357i −0.714107 + 0.0387178i −0.407613 0.913155i \(-0.633639\pi\)
−0.306494 + 0.951873i \(0.599156\pi\)
\(84\) −4.27440 44.1320i −0.0508857 0.525381i
\(85\) 8.16059 7.73012i 0.0960070 0.0909426i
\(86\) −31.3543 1.69998i −0.364584 0.0197672i
\(87\) −72.9235 + 54.0919i −0.838201 + 0.621745i
\(88\) −47.0724 + 15.8605i −0.534914 + 0.180233i
\(89\) −1.85596 5.50828i −0.0208534 0.0618908i 0.936721 0.350077i \(-0.113844\pi\)
−0.957574 + 0.288186i \(0.906948\pi\)
\(90\) −0.644664 + 8.27804i −0.00716293 + 0.0919782i
\(91\) −7.13912 + 131.673i −0.0784519 + 1.44696i
\(92\) −3.74029 3.94858i −0.0406554 0.0429193i
\(93\) 3.46615 + 35.7871i 0.0372704 + 0.384807i
\(94\) 5.27961 + 97.3766i 0.0561660 + 1.03592i
\(95\) 15.2404 + 2.49854i 0.160425 + 0.0263004i
\(96\) −4.34722 16.4043i −0.0452835 0.170878i
\(97\) −121.889 13.2562i −1.25659 0.136662i −0.544505 0.838758i \(-0.683282\pi\)
−0.712083 + 0.702096i \(0.752248\pi\)
\(98\) 4.08908 + 6.79610i 0.0417253 + 0.0693480i
\(99\) 148.169 55.0286i 1.49665 0.555845i
\(100\) 7.95140 + 48.5014i 0.0795140 + 0.485014i
\(101\) 12.2314 26.4378i 0.121103 0.261760i −0.837537 0.546380i \(-0.816005\pi\)
0.958640 + 0.284620i \(0.0918675\pi\)
\(102\) 31.4748 65.9813i 0.308576 0.646875i
\(103\) 93.4993 71.0763i 0.907760 0.690061i −0.0433015 0.999062i \(-0.513788\pi\)
0.951062 + 0.309001i \(0.0999945\pi\)
\(104\) 5.45699 + 50.1762i 0.0524710 + 0.482463i
\(105\) −5.19441 13.4971i −0.0494706 0.128544i
\(106\) 33.0097 + 82.8482i 0.311413 + 0.781587i
\(107\) 156.068 + 43.3320i 1.45858 + 0.404972i 0.904133 0.427250i \(-0.140518\pi\)
0.554443 + 0.832222i \(0.312931\pi\)
\(108\) 15.4239 + 51.7504i 0.142814 + 0.479170i
\(109\) 84.4939 + 159.372i 0.775173 + 1.46213i 0.883708 + 0.468039i \(0.155039\pi\)
−0.108535 + 0.994093i \(0.534616\pi\)
\(110\) −13.4103 + 9.09238i −0.121911 + 0.0826580i
\(111\) 67.9002 + 19.7166i 0.611714 + 0.177627i
\(112\) 19.1361 + 22.5287i 0.170858 + 0.201149i
\(113\) 27.1621 + 10.8224i 0.240373 + 0.0957733i 0.487214 0.873283i \(-0.338013\pi\)
−0.246841 + 0.969056i \(0.579393\pi\)
\(114\) 98.3397 20.4350i 0.862629 0.179255i
\(115\) −1.52009 0.914606i −0.0132181 0.00795310i
\(116\) 19.3274 57.3616i 0.166615 0.494496i
\(117\) −22.2425 159.053i −0.190107 1.35943i
\(118\) −25.7283 79.3729i −0.218036 0.672652i
\(119\) 127.331i 1.07001i
\(120\) −2.79774 4.77633i −0.0233145 0.0398027i
\(121\) 160.593 + 96.6256i 1.32722 + 0.798559i
\(122\) −30.2427 + 39.7835i −0.247891 + 0.326095i
\(123\) −36.7964 71.4254i −0.299157 0.580694i
\(124\) −15.5176 18.2688i −0.125142 0.147329i
\(125\) 13.5792 + 29.3510i 0.108634 + 0.234808i
\(126\) −63.0562 69.7888i −0.500446 0.553879i
\(127\) 50.3651 + 94.9987i 0.396576 + 0.748021i 0.998731 0.0503578i \(-0.0160362\pi\)
−0.602156 + 0.798379i \(0.705691\pi\)
\(128\) 8.62288 + 7.32434i 0.0673662 + 0.0572214i
\(129\) −55.5689 + 36.7289i −0.430766 + 0.284720i
\(130\) 6.09351 + 15.2936i 0.0468732 + 0.117643i
\(131\) 66.4295 + 35.2187i 0.507095 + 0.268845i 0.702254 0.711927i \(-0.252177\pi\)
−0.195158 + 0.980772i \(0.562522\pi\)
\(132\) −60.1561 + 86.5124i −0.455728 + 0.655397i
\(133\) −139.273 + 105.872i −1.04716 + 0.796033i
\(134\) −123.508 + 34.2918i −0.921702 + 0.255909i
\(135\) 9.36336 + 14.9186i 0.0693582 + 0.110508i
\(136\) 7.88461 + 48.0940i 0.0579750 + 0.353632i
\(137\) −29.3590 133.379i −0.214299 0.973572i −0.953806 0.300423i \(-0.902872\pi\)
0.739507 0.673149i \(-0.235059\pi\)
\(138\) −11.3628 2.00052i −0.0823390 0.0144965i
\(139\) 79.1066 + 8.60336i 0.569112 + 0.0618947i 0.388151 0.921596i \(-0.373114\pi\)
0.180961 + 0.983490i \(0.442079\pi\)
\(140\) 7.98013 + 5.41066i 0.0570009 + 0.0386476i
\(141\) 132.059 + 159.235i 0.936588 + 1.12933i
\(142\) 4.06456 + 74.9664i 0.0286237 + 0.527932i
\(143\) 215.514 227.516i 1.50709 1.59102i
\(144\) −28.1383 22.4552i −0.195405 0.155939i
\(145\) 1.06889 19.7146i 0.00737167 0.135963i
\(146\) 29.5276 134.145i 0.202244 0.918804i
\(147\) 15.5557 + 6.41125i 0.105821 + 0.0436140i
\(148\) −44.6692 + 15.0508i −0.301819 + 0.101695i
\(149\) −2.21997 + 10.0854i −0.0148991 + 0.0676874i −0.983484 0.180998i \(-0.942067\pi\)
0.968584 + 0.248685i \(0.0799984\pi\)
\(150\) 74.8430 + 72.5863i 0.498953 + 0.483909i
\(151\) −186.346 + 176.516i −1.23408 + 1.16898i −0.254686 + 0.967024i \(0.581972\pi\)
−0.979394 + 0.201959i \(0.935269\pi\)
\(152\) −46.0486 + 48.6129i −0.302951 + 0.319822i
\(153\) −29.7607 152.194i −0.194515 0.994735i
\(154\) 29.6925 181.116i 0.192808 1.17608i
\(155\) −6.47116 4.38756i −0.0417494 0.0283068i
\(156\) 72.7096 + 78.5921i 0.466087 + 0.503796i
\(157\) 38.5998 23.2247i 0.245858 0.147928i −0.387291 0.921957i \(-0.626589\pi\)
0.633150 + 0.774029i \(0.281762\pi\)
\(158\) −36.3955 165.346i −0.230351 1.04650i
\(159\) 160.944 + 99.4369i 1.01223 + 0.625389i
\(160\) 3.34920 + 1.54950i 0.0209325 + 0.00968440i
\(161\) 19.3634 5.37621i 0.120269 0.0333926i
\(162\) 91.6804 + 68.6782i 0.565929 + 0.423940i
\(163\) 184.593 20.0757i 1.13247 0.123164i 0.477370 0.878703i \(-0.341590\pi\)
0.655104 + 0.755539i \(0.272625\pi\)
\(164\) 47.3247 + 25.0900i 0.288565 + 0.152988i
\(165\) −11.3571 + 32.4391i −0.0688311 + 0.196601i
\(166\) 22.4576 80.8850i 0.135287 0.487259i
\(167\) −147.166 125.004i −0.881235 0.748528i 0.0876206 0.996154i \(-0.472074\pi\)
−0.968856 + 0.247626i \(0.920350\pi\)
\(168\) 61.0751 + 14.1998i 0.363542 + 0.0845225i
\(169\) −83.8571 123.680i −0.496196 0.731834i
\(170\) 6.67479 + 14.4273i 0.0392635 + 0.0848666i
\(171\) 141.723 159.097i 0.828788 0.930395i
\(172\) 16.4366 41.2528i 0.0955618 0.239842i
\(173\) −136.883 + 180.067i −0.791233 + 1.04085i 0.206814 + 0.978380i \(0.433690\pi\)
−0.998047 + 0.0624686i \(0.980103\pi\)
\(174\) −39.5637 122.157i −0.227377 0.702050i
\(175\) −172.093 57.9848i −0.983387 0.331342i
\(176\) 70.2477i 0.399135i
\(177\) −144.146 102.718i −0.814383 0.580328i
\(178\) 8.22019 0.0461808
\(179\) −38.3503 + 113.820i −0.214247 + 0.635863i 0.785606 + 0.618727i \(0.212351\pi\)
−0.999853 + 0.0171361i \(0.994545\pi\)
\(180\) −10.8030 4.60200i −0.0600166 0.0255667i
\(181\) −73.4640 55.8459i −0.405878 0.308541i 0.382242 0.924062i \(-0.375152\pi\)
−0.788120 + 0.615522i \(0.788945\pi\)
\(182\) −173.243 69.0262i −0.951883 0.379265i
\(183\) −1.24845 + 106.002i −0.00682215 + 0.579248i
\(184\) 6.98079 3.22966i 0.0379391 0.0175525i
\(185\) −12.7256 + 8.62818i −0.0687871 + 0.0466388i
\(186\) −49.5264 11.5147i −0.266271 0.0619072i
\(187\) 195.903 230.634i 1.04761 1.23334i
\(188\) −132.887 36.8958i −0.706844 0.196254i
\(189\) −195.632 39.2142i −1.03509 0.207482i
\(190\) −10.2305 + 19.2967i −0.0538446 + 0.101562i
\(191\) 16.6512 + 153.105i 0.0871791 + 0.801599i 0.953353 + 0.301857i \(0.0976064\pi\)
−0.866174 + 0.499742i \(0.833428\pi\)
\(192\) 23.9478 + 1.58147i 0.124728 + 0.00823683i
\(193\) 26.6430 + 95.9595i 0.138047 + 0.497200i 0.999951 0.00987109i \(-0.00314212\pi\)
−0.861905 + 0.507071i \(0.830728\pi\)
\(194\) 72.8060 157.368i 0.375289 0.811174i
\(195\) 29.7098 + 18.3558i 0.152358 + 0.0941322i
\(196\) −10.9545 + 2.41127i −0.0558903 + 0.0123024i
\(197\) 9.26568 + 15.3997i 0.0470339 + 0.0781709i 0.879482 0.475932i \(-0.157889\pi\)
−0.832448 + 0.554103i \(0.813061\pi\)
\(198\) 6.84137 + 223.422i 0.0345524 + 1.12839i
\(199\) 178.649 263.488i 0.897735 1.32406i −0.0479067 0.998852i \(-0.515255\pi\)
0.945642 0.325209i \(-0.105435\pi\)
\(200\) −68.5913 11.2450i −0.342957 0.0562249i
\(201\) −167.092 + 214.514i −0.831301 + 1.06723i
\(202\) 29.9082 + 28.3306i 0.148061 + 0.140250i
\(203\) 153.805 + 162.370i 0.757659 + 0.799851i
\(204\) 74.2143 + 71.9766i 0.363796 + 0.352826i
\(205\) 17.0630 + 3.75584i 0.0832340 + 0.0183212i
\(206\) 53.0348 + 157.402i 0.257450 + 0.764085i
\(207\) −21.8878 + 10.9517i −0.105738 + 0.0529070i
\(208\) −69.7094 15.3442i −0.335142 0.0737702i
\(209\) 415.152 + 22.5089i 1.98637 + 0.107698i
\(210\) 20.4342 0.866693i 0.0973059 0.00412711i
\(211\) −288.357 273.146i −1.36662 1.29453i −0.915640 0.401998i \(-0.868316\pi\)
−0.450980 0.892534i \(-0.648926\pi\)
\(212\) −125.938 + 6.82815i −0.594046 + 0.0322082i
\(213\) 101.667 + 122.589i 0.477310 + 0.575534i
\(214\) −128.547 + 189.592i −0.600686 + 0.885945i
\(215\) 1.56604 14.3995i 0.00728393 0.0669746i
\(216\) −76.3199 2.69759i −0.353333 0.0124888i
\(217\) 86.4943 19.0388i 0.398591 0.0877366i
\(218\) −251.742 + 41.2711i −1.15478 + 0.189317i
\(219\) −119.223 265.870i −0.544399 1.21402i
\(220\) −6.12992 22.0780i −0.0278633 0.100354i
\(221\) −186.076 244.779i −0.841974 1.10760i
\(222\) −57.0849 + 82.0956i −0.257139 + 0.369800i
\(223\) −27.7036 + 52.2545i −0.124231 + 0.234325i −0.937825 0.347109i \(-0.887163\pi\)
0.813593 + 0.581434i \(0.197508\pi\)
\(224\) −38.8338 + 15.4728i −0.173365 + 0.0690749i
\(225\) 219.249 + 29.0845i 0.974441 + 0.129264i
\(226\) −26.7693 + 31.5153i −0.118448 + 0.139448i
\(227\) −355.338 + 188.388i −1.56536 + 0.829903i −0.565377 + 0.824833i \(0.691269\pi\)
−0.999987 + 0.00507042i \(0.998386\pi\)
\(228\) −17.0196 + 141.021i −0.0746476 + 0.618513i
\(229\) −297.927 + 137.836i −1.30099 + 0.601902i −0.943301 0.331939i \(-0.892297\pi\)
−0.357689 + 0.933841i \(0.616435\pi\)
\(230\) 1.91215 1.62420i 0.00831370 0.00706172i
\(231\) −178.304 346.106i −0.771878 1.49829i
\(232\) 68.1476 + 51.8044i 0.293740 + 0.223295i
\(233\) −157.503 + 261.772i −0.675978 + 1.12348i 0.309042 + 0.951048i \(0.399992\pi\)
−0.985021 + 0.172436i \(0.944836\pi\)
\(234\) 223.205 + 42.0131i 0.953865 + 0.179543i
\(235\) −44.9842 −0.191422
\(236\) 117.992 + 1.36105i 0.499967 + 0.00576715i
\(237\) −270.973 235.716i −1.14334 0.994581i
\(238\) −170.647 57.4977i −0.717004 0.241587i
\(239\) 35.1384 58.4004i 0.147022 0.244353i −0.774591 0.632463i \(-0.782044\pi\)
0.921613 + 0.388109i \(0.126872\pi\)
\(240\) 7.66451 1.59269i 0.0319355 0.00663620i
\(241\) 108.396 272.054i 0.449777 1.12886i −0.512959 0.858413i \(-0.671451\pi\)
0.962736 0.270443i \(-0.0871700\pi\)
\(242\) −202.014 + 171.592i −0.834767 + 0.709057i
\(243\) 242.997 + 1.14692i 0.999989 + 0.00471984i
\(244\) −39.6609 58.4954i −0.162545 0.239735i
\(245\) −3.23245 + 1.71374i −0.0131937 + 0.00699484i
\(246\) 112.339 17.0610i 0.456662 0.0693537i
\(247\) 113.018 407.055i 0.457563 1.64799i
\(248\) 31.4907 12.5470i 0.126979 0.0505929i
\(249\) −63.9591 166.191i −0.256864 0.667434i
\(250\) −45.4676 + 4.94490i −0.181871 + 0.0197796i
\(251\) 279.673 + 367.904i 1.11424 + 1.46575i 0.868015 + 0.496538i \(0.165396\pi\)
0.246220 + 0.969214i \(0.420811\pi\)
\(252\) 122.003 52.9930i 0.484141 0.210290i
\(253\) −43.3443 20.0532i −0.171321 0.0792616i
\(254\) −150.059 + 24.6009i −0.590782 + 0.0968538i
\(255\) 29.6054 + 16.1453i 0.116100 + 0.0633149i
\(256\) −13.7097 + 8.24886i −0.0535536 + 0.0322221i
\(257\) 37.7303 346.924i 0.146810 1.34990i −0.656494 0.754331i \(-0.727961\pi\)
0.803305 0.595568i \(-0.203073\pi\)
\(258\) −24.1307 91.0578i −0.0935299 0.352937i
\(259\) 28.1766 171.870i 0.108790 0.663589i
\(260\) −23.2478 + 1.26046i −0.0894145 + 0.00484791i
\(261\) −221.788 158.127i −0.849762 0.605849i
\(262\) −77.1964 + 73.1243i −0.294643 + 0.279101i
\(263\) 413.231 + 22.4047i 1.57122 + 0.0851892i 0.819028 0.573753i \(-0.194513\pi\)
0.752193 + 0.658942i \(0.228996\pi\)
\(264\) −88.7784 119.686i −0.336282 0.453356i
\(265\) −38.9848 + 13.1355i −0.147113 + 0.0495680i
\(266\) −78.9984 234.459i −0.296986 0.881424i
\(267\) 14.0053 10.3886i 0.0524543 0.0389086i
\(268\) 9.81399 181.008i 0.0366194 0.675404i
\(269\) −123.730 130.620i −0.459961 0.485575i 0.454215 0.890892i \(-0.349920\pi\)
−0.914176 + 0.405317i \(0.867161\pi\)
\(270\) −24.2218 + 5.81197i −0.0897103 + 0.0215258i
\(271\) −19.1223 352.690i −0.0705619 1.30144i −0.792667 0.609655i \(-0.791308\pi\)
0.722105 0.691784i \(-0.243175\pi\)
\(272\) −68.0151 11.1505i −0.250056 0.0409945i
\(273\) −382.401 + 101.338i −1.40073 + 0.371201i
\(274\) 192.010 + 20.8824i 0.700768 + 0.0762131i
\(275\) 222.500 + 369.797i 0.809090 + 1.34472i
\(276\) 7.81205 14.3249i 0.0283045 0.0519017i
\(277\) 24.3100 + 148.285i 0.0877618 + 0.535323i 0.993714 + 0.111944i \(0.0357078\pi\)
−0.905953 + 0.423379i \(0.860844\pi\)
\(278\) −47.2515 + 102.132i −0.169969 + 0.367383i
\(279\) −98.9338 + 42.9726i −0.354602 + 0.154024i
\(280\) −10.8548 + 8.25160i −0.0387671 + 0.0294700i
\(281\) −20.3290 186.922i −0.0723454 0.665205i −0.973022 0.230714i \(-0.925894\pi\)
0.900676 0.434491i \(-0.143072\pi\)
\(282\) −273.037 + 105.079i −0.968216 + 0.372621i
\(283\) 76.1108 + 191.024i 0.268943 + 0.674995i 0.999973 0.00734988i \(-0.00233956\pi\)
−0.731030 + 0.682345i \(0.760960\pi\)
\(284\) −102.304 28.4046i −0.360226 0.100016i
\(285\) 6.95664 + 45.8063i 0.0244093 + 0.160724i
\(286\) 207.595 + 391.566i 0.725857 + 1.36911i
\(287\) −163.811 + 111.066i −0.570769 + 0.386991i
\(288\) 42.8003 27.5706i 0.148612 0.0957313i
\(289\) −5.11409 6.02077i −0.0176958 0.0208331i
\(290\) 25.9385 + 10.3348i 0.0894430 + 0.0356374i
\(291\) −74.8351 360.130i −0.257165 1.23756i
\(292\) 166.446 + 100.147i 0.570020 + 0.342970i
\(293\) 64.8649 192.512i 0.221382 0.657038i −0.778197 0.628020i \(-0.783866\pi\)
0.999579 0.0290176i \(-0.00923788\pi\)
\(294\) −15.6166 + 17.9524i −0.0531177 + 0.0610627i
\(295\) 37.2022 9.86841i 0.126109 0.0334523i
\(296\) 66.6612i 0.225207i
\(297\) 294.015 + 372.014i 0.989949 + 1.25257i
\(298\) −12.5139 7.52935i −0.0419929 0.0252663i
\(299\) −29.3672 + 38.6319i −0.0982182 + 0.129204i
\(300\) −131.075 + 67.5263i −0.436917 + 0.225088i
\(301\) 106.221 + 125.054i 0.352895 + 0.415460i
\(302\) −152.418 329.446i −0.504695 1.09088i
\(303\) 86.7607 + 10.4710i 0.286339 + 0.0345579i
\(304\) −44.3565 83.6653i −0.145910 0.275215i
\(305\) −17.5693 14.9235i −0.0576043 0.0489296i
\(306\) 217.407 + 28.8402i 0.710482 + 0.0942489i
\(307\) −163.557 410.498i −0.532760 1.33713i −0.911377 0.411573i \(-0.864980\pi\)
0.378617 0.925553i \(-0.376400\pi\)
\(308\) 229.321 + 121.578i 0.744549 + 0.394735i
\(309\) 289.282 + 201.151i 0.936187 + 0.650975i
\(310\) 8.80226 6.69130i 0.0283944 0.0215848i
\(311\) −218.169 + 60.5744i −0.701509 + 0.194773i −0.599928 0.800054i \(-0.704804\pi\)
−0.101582 + 0.994827i \(0.532390\pi\)
\(312\) −138.161 + 61.9552i −0.442823 + 0.198574i
\(313\) 47.0788 + 287.168i 0.150412 + 0.917470i 0.948927 + 0.315496i \(0.102171\pi\)
−0.798515 + 0.601974i \(0.794381\pi\)
\(314\) 13.6952 + 62.2181i 0.0436154 + 0.198147i
\(315\) 33.7199 27.3013i 0.107047 0.0866707i
\(316\) 238.029 + 25.8872i 0.753257 + 0.0819216i
\(317\) 3.51537 + 2.38348i 0.0110895 + 0.00751886i 0.566719 0.823911i \(-0.308212\pi\)
−0.555630 + 0.831430i \(0.687523\pi\)
\(318\) −205.940 + 170.793i −0.647609 + 0.537084i
\(319\) −28.7755 530.733i −0.0902054 1.66374i
\(320\) −3.58899 + 3.78885i −0.0112156 + 0.0118401i
\(321\) 20.5909 + 485.478i 0.0641462 + 1.51239i
\(322\) −1.53862 + 28.3782i −0.00477832 + 0.0881309i
\(323\) 87.6912 398.385i 0.271490 1.23339i
\(324\) −133.441 + 91.8563i −0.411854 + 0.283507i
\(325\) 415.565 140.020i 1.27866 0.430831i
\(326\) −56.4499 + 256.454i −0.173159 + 0.786670i
\(327\) −376.753 + 388.466i −1.15215 + 1.18797i
\(328\) −54.9952 + 52.0942i −0.167668 + 0.158824i
\(329\) 350.433 369.948i 1.06515 1.12446i
\(330\) −38.3459 29.8689i −0.116200 0.0905117i
\(331\) −64.5532 + 393.757i −0.195025 + 1.18960i 0.689914 + 0.723891i \(0.257648\pi\)
−0.884939 + 0.465707i \(0.845800\pi\)
\(332\) 98.2598 + 66.6218i 0.295963 + 0.200668i
\(333\) 6.49209 + 212.015i 0.0194958 + 0.636683i
\(334\) 233.983 140.783i 0.700548 0.421506i
\(335\) −12.7107 57.7451i −0.0379422 0.172373i
\(336\) −46.6094 + 75.4398i −0.138719 + 0.224523i
\(337\) −45.5374 21.0678i −0.135126 0.0625158i 0.351161 0.936315i \(-0.385787\pi\)
−0.486287 + 0.873799i \(0.661649\pi\)
\(338\) 203.621 56.5350i 0.602428 0.167263i
\(339\) −5.78004 + 87.5257i −0.0170503 + 0.258188i
\(340\) −22.3493 + 2.43064i −0.0657333 + 0.00714893i
\(341\) −185.959 98.5891i −0.545334 0.289118i
\(342\) 149.224 + 261.777i 0.436326 + 0.765429i
\(343\) −85.7838 + 308.965i −0.250099 + 0.900774i
\(344\) 47.8642 + 40.6563i 0.139140 + 0.118187i
\(345\) 1.20522 5.18382i 0.00349340 0.0150256i
\(346\) −179.512 264.760i −0.518820 0.765202i
\(347\) 53.9987 + 116.716i 0.155616 + 0.336358i 0.969665 0.244438i \(-0.0786035\pi\)
−0.814049 + 0.580796i \(0.802741\pi\)
\(348\) 181.578 + 2.13855i 0.521775 + 0.00614526i
\(349\) −211.380 + 530.524i −0.605674 + 1.52013i 0.231299 + 0.972883i \(0.425703\pi\)
−0.836973 + 0.547245i \(0.815677\pi\)
\(350\) 155.421 204.452i 0.444059 0.584149i
\(351\) 433.385 210.503i 1.23471 0.599724i
\(352\) 94.1448 + 31.7211i 0.267457 + 0.0901167i
\(353\) 4.03825i 0.0114398i 0.999984 + 0.00571990i \(0.00182071\pi\)
−0.999984 + 0.00571990i \(0.998179\pi\)
\(354\) 202.752 146.799i 0.572745 0.414685i
\(355\) −34.6316 −0.0975537
\(356\) −3.71191 + 11.0166i −0.0104267 + 0.0309454i
\(357\) −363.408 + 117.699i −1.01795 + 0.329690i
\(358\) −135.222 102.793i −0.377714 0.287131i
\(359\) 325.382 + 129.644i 0.906357 + 0.361126i 0.776288 0.630379i \(-0.217100\pi\)
0.130070 + 0.991505i \(0.458480\pi\)
\(360\) 11.0457 12.3999i 0.0306826 0.0344442i
\(361\) 181.026 83.7515i 0.501457 0.231999i
\(362\) 108.017 73.2375i 0.298390 0.202313i
\(363\) −127.328 + 547.656i −0.350767 + 1.50869i
\(364\) 170.737 201.008i 0.469059 0.552219i
\(365\) 61.0509 + 16.9507i 0.167263 + 0.0464403i
\(366\) −141.499 49.5397i −0.386609 0.135354i
\(367\) 238.334 449.546i 0.649411 1.22492i −0.312072 0.950058i \(-0.601023\pi\)
0.961484 0.274862i \(-0.0886320\pi\)
\(368\) 1.17609 + 10.8139i 0.00319589 + 0.0293857i
\(369\) 169.838 171.041i 0.460266 0.463526i
\(370\) −5.81696 20.9508i −0.0157215 0.0566238i
\(371\) 195.671 422.937i 0.527416 1.13999i
\(372\) 37.7960 61.1749i 0.101602 0.164449i
\(373\) −368.758 + 81.1698i −0.988628 + 0.217613i −0.679715 0.733477i \(-0.737896\pi\)
−0.308913 + 0.951090i \(0.599965\pi\)
\(374\) 220.631 + 366.691i 0.589921 + 0.980457i
\(375\) −71.2171 + 65.8866i −0.189912 + 0.175698i
\(376\) 109.454 161.432i 0.291100 0.429340i
\(377\) −532.952 87.3730i −1.41367 0.231759i
\(378\) 140.894 244.475i 0.372735 0.646759i
\(379\) 78.5353 + 74.3926i 0.207217 + 0.196287i 0.784269 0.620421i \(-0.213038\pi\)
−0.577052 + 0.816708i \(0.695797\pi\)
\(380\) −21.2415 22.4243i −0.0558986 0.0590114i
\(381\) −224.575 + 231.557i −0.589436 + 0.607761i
\(382\) −212.708 46.8206i −0.556828 0.122567i
\(383\) 160.187 + 475.419i 0.418244 + 1.24130i 0.925249 + 0.379361i \(0.123856\pi\)
−0.507005 + 0.861943i \(0.669247\pi\)
\(384\) −12.9334 + 31.3804i −0.0336806 + 0.0817197i
\(385\) 82.6819 + 18.1997i 0.214758 + 0.0472719i
\(386\) −140.634 7.62497i −0.364338 0.0197538i
\(387\) −156.191 124.645i −0.403595 0.322081i
\(388\) 178.025 + 168.635i 0.458828 + 0.434625i
\(389\) −144.857 + 7.85394i −0.372384 + 0.0201901i −0.239382 0.970926i \(-0.576945\pi\)
−0.133003 + 0.991116i \(0.542462\pi\)
\(390\) −38.0159 + 31.5279i −0.0974767 + 0.0808407i
\(391\) −26.2960 + 38.7837i −0.0672532 + 0.0991910i
\(392\) 1.71508 15.7699i 0.00437520 0.0402293i
\(393\) −39.1111 + 222.147i −0.0995193 + 0.565260i
\(394\) −24.8224 + 5.46383i −0.0630010 + 0.0138676i
\(395\) 77.0686 12.6348i 0.195110 0.0319867i
\(396\) −302.516 91.7199i −0.763929 0.231616i
\(397\) 10.1636 + 36.6061i 0.0256011 + 0.0922069i 0.975247 0.221118i \(-0.0709708\pi\)
−0.949646 + 0.313325i \(0.898557\pi\)
\(398\) 272.452 + 358.404i 0.684552 + 0.900512i
\(399\) −430.902 299.627i −1.07996 0.750944i
\(400\) 46.0435 86.8472i 0.115109 0.217118i
\(401\) −90.0553 + 35.8813i −0.224577 + 0.0894796i −0.479713 0.877426i \(-0.659259\pi\)
0.255136 + 0.966905i \(0.417880\pi\)
\(402\) −212.036 320.799i −0.527453 0.798008i
\(403\) −138.453 + 162.999i −0.343555 + 0.404464i
\(404\) −51.4736 + 27.2896i −0.127410 + 0.0675485i
\(405\) −33.9232 + 40.5135i −0.0837611 + 0.100033i
\(406\) −287.057 + 132.807i −0.707038 + 0.327111i
\(407\) −315.462 + 267.956i −0.775092 + 0.658369i
\(408\) −129.974 + 66.9590i −0.318564 + 0.164115i
\(409\) −165.395 125.730i −0.404388 0.307408i 0.383136 0.923692i \(-0.374844\pi\)
−0.787524 + 0.616284i \(0.788637\pi\)
\(410\) −12.7385 + 21.1715i −0.0310695 + 0.0516379i
\(411\) 353.532 207.082i 0.860176 0.503850i
\(412\) −234.895 −0.570135
\(413\) −208.653 + 382.826i −0.505214 + 0.926939i
\(414\) −4.79369 34.2791i −0.0115790 0.0827997i
\(415\) 36.6954 + 12.3641i 0.0884226 + 0.0297930i
\(416\) 52.0421 86.4946i 0.125101 0.207920i
\(417\) 48.5684 + 233.726i 0.116471 + 0.560495i
\(418\) −217.632 + 546.216i −0.520652 + 1.30674i
\(419\) 55.9543 47.5280i 0.133543 0.113432i −0.578126 0.815948i \(-0.696216\pi\)
0.711668 + 0.702516i \(0.247940\pi\)
\(420\) −8.06577 + 27.7770i −0.0192042 + 0.0661357i
\(421\) −321.906 474.776i −0.764623 1.12773i −0.988218 0.153053i \(-0.951090\pi\)
0.223595 0.974682i \(-0.428221\pi\)
\(422\) 496.277 263.109i 1.17601 0.623482i
\(423\) −332.394 + 524.092i −0.785802 + 1.23899i
\(424\) 47.7176 171.863i 0.112541 0.405337i
\(425\) 393.363 156.730i 0.925559 0.368777i
\(426\) −210.200 + 80.8962i −0.493428 + 0.189897i
\(427\) 259.598 28.2330i 0.607957 0.0661193i
\(428\) −196.042 257.889i −0.458042 0.602544i
\(429\) 848.552 + 404.782i 1.97798 + 0.943547i
\(430\) 18.5909 + 8.60105i 0.0432346 + 0.0200024i
\(431\) 612.034 100.338i 1.42003 0.232803i 0.597659 0.801750i \(-0.296098\pi\)
0.822374 + 0.568948i \(0.192649\pi\)
\(432\) 38.0783 101.065i 0.0881442 0.233946i
\(433\) 216.553 130.296i 0.500122 0.300914i −0.243050 0.970014i \(-0.578148\pi\)
0.743172 + 0.669100i \(0.233320\pi\)
\(434\) −13.5419 + 124.516i −0.0312025 + 0.286902i
\(435\) 57.2543 15.1726i 0.131619 0.0348796i
\(436\) 58.3661 356.017i 0.133867 0.816554i
\(437\) −64.2854 + 3.48545i −0.147106 + 0.00797586i
\(438\) 410.151 39.7251i 0.936417 0.0906966i
\(439\) 309.018 292.717i 0.703913 0.666781i −0.249526 0.968368i \(-0.580275\pi\)
0.953439 + 0.301587i \(0.0975163\pi\)
\(440\) 32.3566 + 1.75432i 0.0735377 + 0.00398710i
\(441\) −3.91897 + 50.3229i −0.00888655 + 0.114111i
\(442\) 412.074 138.844i 0.932293 0.314126i
\(443\) 270.872 + 803.918i 0.611448 + 1.81471i 0.579129 + 0.815236i \(0.303393\pi\)
0.0323197 + 0.999478i \(0.489711\pi\)
\(444\) −84.2459 113.575i −0.189743 0.255801i
\(445\) −0.205286 + 3.78628i −0.000461317 + 0.00850849i
\(446\) −57.5208 60.7240i −0.128970 0.136152i
\(447\) −30.8363 + 2.98664i −0.0689850 + 0.00668153i
\(448\) −3.20058 59.0313i −0.00714416 0.131766i
\(449\) −437.840 71.7802i −0.975144 0.159867i −0.346916 0.937896i \(-0.612771\pi\)
−0.628228 + 0.778029i \(0.716219\pi\)
\(450\) −137.983 + 280.701i −0.306629 + 0.623780i
\(451\) 467.589 + 50.8534i 1.03678 + 0.112757i
\(452\) −30.1483 50.1069i −0.0666998 0.110856i
\(453\) −676.036 368.676i −1.49235 0.813854i
\(454\) −92.0182 561.286i −0.202683 1.23631i
\(455\) 36.1204 78.0730i 0.0793856 0.171589i
\(456\) −181.309 86.4890i −0.397607 0.189669i
\(457\) 85.6920 65.1414i 0.187510 0.142541i −0.507208 0.861824i \(-0.669322\pi\)
0.694718 + 0.719282i \(0.255529\pi\)
\(458\) −50.1931 461.518i −0.109592 1.00768i
\(459\) 406.860 225.621i 0.886406 0.491548i
\(460\) 1.31327 + 3.29606i 0.00285493 + 0.00716534i
\(461\) −16.6865 4.63298i −0.0361963 0.0100499i 0.249383 0.968405i \(-0.419772\pi\)
−0.285579 + 0.958355i \(0.592186\pi\)
\(462\) 544.360 82.6724i 1.17827 0.178945i
\(463\) 268.733 + 506.884i 0.580417 + 1.09478i 0.983719 + 0.179715i \(0.0575175\pi\)
−0.403302 + 0.915067i \(0.632138\pi\)
\(464\) −100.200 + 67.9374i −0.215949 + 0.146417i
\(465\) 6.54061 22.5247i 0.0140658 0.0484401i
\(466\) −279.700 329.289i −0.600216 0.706628i
\(467\) 336.785 + 134.187i 0.721167 + 0.287339i 0.701701 0.712471i \(-0.252424\pi\)
0.0194660 + 0.999811i \(0.493803\pi\)
\(468\) −157.096 + 280.164i −0.335675 + 0.598640i
\(469\) 573.910 + 345.310i 1.22369 + 0.736269i
\(470\) 20.3131 60.2871i 0.0432194 0.128270i
\(471\) 101.964 + 88.6975i 0.216485 + 0.188317i
\(472\) −55.1047 + 157.517i −0.116747 + 0.333722i
\(473\) 389.934i 0.824384i
\(474\) 438.263 256.713i 0.924606 0.541589i
\(475\) 498.499 + 299.937i 1.04947 + 0.631447i
\(476\) 154.115 202.735i 0.323771 0.425913i
\(477\) −135.028 + 551.256i −0.283077 + 1.15567i
\(478\) 62.4002 + 73.4632i 0.130544 + 0.153689i
\(479\) −289.254 625.212i −0.603871 1.30525i −0.932631 0.360832i \(-0.882493\pi\)
0.328760 0.944413i \(-0.393369\pi\)
\(480\) −1.32650 + 10.9910i −0.00276353 + 0.0228980i
\(481\) 196.997 + 371.575i 0.409556 + 0.772505i
\(482\) 315.655 + 268.120i 0.654886 + 0.556265i
\(483\) 33.2426 + 50.2943i 0.0688253 + 0.104129i
\(484\) −138.743 348.220i −0.286660 0.719462i
\(485\) 70.6665 + 37.4650i 0.145704 + 0.0772474i
\(486\) −111.265 + 325.143i −0.228940 + 0.669019i
\(487\) −202.059 + 153.602i −0.414906 + 0.315404i −0.791719 0.610886i \(-0.790813\pi\)
0.376812 + 0.926290i \(0.377020\pi\)
\(488\) 96.3039 26.7386i 0.197344 0.0547923i
\(489\) 227.927 + 508.280i 0.466109 + 1.03943i
\(490\) −0.837076 5.10593i −0.00170832 0.0104203i
\(491\) 53.7814 + 244.331i 0.109534 + 0.497620i 0.999162 + 0.0409329i \(0.0130330\pi\)
−0.889628 + 0.456687i \(0.849036\pi\)
\(492\) −27.8629 + 158.259i −0.0566320 + 0.321665i
\(493\) −518.433 56.3830i −1.05159 0.114367i
\(494\) 494.493 + 335.275i 1.00100 + 0.678694i
\(495\) −103.081 2.42842i −0.208244 0.00490590i
\(496\) 2.59538 + 47.8691i 0.00523263 + 0.0965102i
\(497\) 269.785 284.808i 0.542826 0.573055i
\(498\) 251.608 10.6716i 0.505237 0.0214290i
\(499\) 3.32179 61.2668i 0.00665689 0.122779i −0.993316 0.115426i \(-0.963177\pi\)
0.999973 0.00735310i \(-0.00234059\pi\)
\(500\) 13.9043 63.1679i 0.0278086 0.126336i
\(501\) 220.733 535.567i 0.440585 1.06900i
\(502\) −619.348 + 208.683i −1.23376 + 0.415702i
\(503\) 83.2085 378.020i 0.165424 0.751531i −0.818724 0.574187i \(-0.805318\pi\)
0.984149 0.177344i \(-0.0567506\pi\)
\(504\) 15.9284 + 187.437i 0.0316040 + 0.371898i
\(505\) −13.7962 + 13.0684i −0.0273192 + 0.0258781i
\(506\) 46.4475 49.0341i 0.0917935 0.0969053i
\(507\) 275.474 353.656i 0.543342 0.697547i
\(508\) 34.7909 212.215i 0.0684860 0.417746i
\(509\) −737.118 499.779i −1.44817 0.981884i −0.995944 0.0899804i \(-0.971320\pi\)
−0.452226 0.891903i \(-0.649370\pi\)
\(510\) −35.0063 + 32.3861i −0.0686398 + 0.0635022i
\(511\) −614.997 + 370.031i −1.20352 + 0.724132i
\(512\) −4.86423 22.0984i −0.00950044 0.0431609i
\(513\) 585.074 + 257.420i 1.14049 + 0.501793i
\(514\) 447.905 + 207.223i 0.871410 + 0.403157i
\(515\) −73.8247 + 20.4973i −0.143349 + 0.0398007i
\(516\) 132.931 + 8.77850i 0.257618 + 0.0170126i
\(517\) −1203.91 + 130.934i −2.32866 + 0.253257i
\(518\) 217.613 + 115.371i 0.420103 + 0.222724i
\(519\) −640.448 224.225i −1.23400 0.432032i
\(520\) 8.80853 31.7255i 0.0169395 0.0610105i
\(521\) 10.4699 + 8.89325i 0.0200959 + 0.0170696i 0.657378 0.753561i \(-0.271666\pi\)
−0.637282 + 0.770631i \(0.719941\pi\)
\(522\) 312.069 225.833i 0.597834 0.432630i
\(523\) 401.816 + 592.635i 0.768291 + 1.13315i 0.987523 + 0.157472i \(0.0503345\pi\)
−0.219232 + 0.975673i \(0.570355\pi\)
\(524\) −63.1412 136.477i −0.120498 0.260453i
\(525\) 6.41595 544.759i 0.0122209 1.03764i
\(526\) −216.625 + 543.689i −0.411835 + 1.03363i
\(527\) −124.973 + 164.400i −0.237141 + 0.311954i
\(528\) 200.490 64.9340i 0.379716 0.122981i
\(529\) −494.300 166.549i −0.934405 0.314838i
\(530\) 58.1783i 0.109770i
\(531\) 159.919 506.347i 0.301166 0.953572i
\(532\) 349.891 0.657689
\(533\) 152.599 452.898i 0.286303 0.849716i
\(534\) 7.59839 + 23.4608i 0.0142292 + 0.0439340i
\(535\) −84.1173 63.9443i −0.157229 0.119522i
\(536\) 238.153 + 94.8888i 0.444315 + 0.177031i
\(537\) −360.295 4.24341i −0.670941 0.00790207i
\(538\) 230.926 106.838i 0.429230 0.198583i
\(539\) −81.5221 + 55.2734i −0.151247 + 0.102548i
\(540\) 3.14850 35.0861i 0.00583055 0.0649743i
\(541\) 591.148 695.953i 1.09269 1.28642i 0.137480 0.990505i \(-0.456100\pi\)
0.955214 0.295915i \(-0.0956244\pi\)
\(542\) 481.304 + 133.633i 0.888015 + 0.246556i
\(543\) 91.4796 261.291i 0.168471 0.481199i
\(544\) 45.6567 86.1177i 0.0839278 0.158305i
\(545\) −12.7229 116.985i −0.0233447 0.214651i
\(546\) 36.8656 558.247i 0.0675195 1.02243i
\(547\) −8.02742 28.9122i −0.0146754 0.0528559i 0.955850 0.293856i \(-0.0949385\pi\)
−0.970525 + 0.241000i \(0.922525\pi\)
\(548\) −114.691 + 247.900i −0.209289 + 0.452371i
\(549\) −303.689 + 94.4210i −0.553168 + 0.171987i
\(550\) −596.069 + 131.205i −1.08376 + 0.238554i
\(551\) −369.393 613.935i −0.670404 1.11422i
\(552\) 15.6703 + 16.9381i 0.0283883 + 0.0306850i
\(553\) −496.468 + 732.235i −0.897771 + 1.32411i
\(554\) −209.706 34.3796i −0.378531 0.0620570i
\(555\) −36.3882 28.3439i −0.0655643 0.0510701i
\(556\) −115.539 109.445i −0.207805 0.196843i
\(557\) 168.124 + 177.487i 0.301839 + 0.318647i 0.859217 0.511611i \(-0.170951\pi\)
−0.557378 + 0.830259i \(0.688193\pi\)
\(558\) −12.9165 151.994i −0.0231479 0.272391i
\(559\) −386.946 85.1733i −0.692211 0.152367i
\(560\) −6.15706 18.2735i −0.0109948 0.0326313i
\(561\) 839.325 + 345.926i 1.49612 + 0.616624i
\(562\) 259.690 + 57.1622i 0.462082 + 0.101712i
\(563\) −1071.54 58.0975i −1.90328 0.103193i −0.935242 0.354008i \(-0.884818\pi\)
−0.968035 + 0.250816i \(0.919301\pi\)
\(564\) −17.5325 413.369i −0.0310861 0.732924i
\(565\) −13.8477 13.1172i −0.0245091 0.0232163i
\(566\) −290.375 + 15.7437i −0.513031 + 0.0278157i
\(567\) −68.9146 594.589i −0.121542 1.04866i
\(568\) 84.2639 124.280i 0.148352 0.218803i
\(569\) 1.96949 18.1091i 0.00346131 0.0318262i −0.992280 0.124018i \(-0.960422\pi\)
0.995741 + 0.0921921i \(0.0293874\pi\)
\(570\) −64.5302 11.3611i −0.113211 0.0199318i
\(571\) 671.092 147.719i 1.17529 0.258701i 0.415947 0.909389i \(-0.363450\pi\)
0.759346 + 0.650688i \(0.225519\pi\)
\(572\) −618.513 + 101.400i −1.08132 + 0.177273i
\(573\) −421.578 + 189.047i −0.735738 + 0.329925i
\(574\) −74.8790 269.690i −0.130451 0.469843i
\(575\) −40.4428 53.2016i −0.0703353 0.0925244i
\(576\) 17.6228 + 69.8100i 0.0305951 + 0.121198i
\(577\) 464.193 875.560i 0.804493 1.51743i −0.0504579 0.998726i \(-0.516068\pi\)
0.854951 0.518709i \(-0.173587\pi\)
\(578\) 10.3783 4.13508i 0.0179555 0.00715411i
\(579\) −249.245 + 164.741i −0.430475 + 0.284527i
\(580\) −25.5634 + 30.0955i −0.0440748 + 0.0518888i
\(581\) −387.544 + 205.463i −0.667029 + 0.353636i
\(582\) 516.433 + 62.3276i 0.887342 + 0.107092i
\(583\) −1005.12 + 465.018i −1.72405 + 0.797630i
\(584\) −209.376 + 177.846i −0.358521 + 0.304530i
\(585\) −24.9257 + 101.760i −0.0426081 + 0.173949i
\(586\) 228.711 + 173.862i 0.390292 + 0.296692i
\(587\) −438.385 + 728.602i −0.746823 + 1.24123i 0.217386 + 0.976086i \(0.430247\pi\)
−0.964209 + 0.265144i \(0.914581\pi\)
\(588\) −17.0077 29.0357i −0.0289247 0.0493805i
\(589\) −283.730 −0.481714
\(590\) −3.57357 + 54.3140i −0.00605690 + 0.0920577i
\(591\) −35.3865 + 40.6794i −0.0598757 + 0.0688315i
\(592\) 89.3383 + 30.1016i 0.150909 + 0.0508473i
\(593\) −289.577 + 481.281i −0.488326 + 0.811603i −0.998834 0.0482691i \(-0.984630\pi\)
0.510509 + 0.859873i \(0.329457\pi\)
\(594\) −631.332 + 226.047i −1.06285 + 0.380551i
\(595\) 30.7455 77.1653i 0.0516731 0.129690i
\(596\) 15.7415 13.3709i 0.0264119 0.0224344i
\(597\) 917.142 + 266.316i 1.53625 + 0.446090i
\(598\) −38.5128 56.8022i −0.0644027 0.0949869i
\(599\) −202.362 + 107.286i −0.337834 + 0.179108i −0.628685 0.777660i \(-0.716406\pi\)
0.290851 + 0.956768i \(0.406062\pi\)
\(600\) −31.3092 206.157i −0.0521821 0.343595i
\(601\) 265.810 957.360i 0.442279 1.59295i −0.321133 0.947034i \(-0.604064\pi\)
0.763412 0.645912i \(-0.223523\pi\)
\(602\) −215.560 + 85.8870i −0.358073 + 0.142669i
\(603\) −766.684 278.599i −1.27145 0.462022i
\(604\) 510.344 55.5033i 0.844940 0.0918928i
\(605\) −73.9915 97.3341i −0.122300 0.160883i
\(606\) −53.2108 + 111.547i −0.0878067 + 0.184071i
\(607\) 710.571 + 328.745i 1.17063 + 0.541590i 0.906214 0.422820i \(-0.138960\pi\)
0.264413 + 0.964409i \(0.414822\pi\)
\(608\) 132.156 21.6660i 0.217363 0.0356348i
\(609\) −321.240 + 589.053i −0.527487 + 0.967247i
\(610\) 27.9339 16.8072i 0.0457932 0.0275529i
\(611\) −133.041 + 1223.29i −0.217743 + 2.00211i
\(612\) −136.824 + 278.343i −0.223568 + 0.454809i
\(613\) −5.57843 + 34.0269i −0.00910021 + 0.0555088i −0.990986 0.133964i \(-0.957229\pi\)
0.981886 + 0.189472i \(0.0606778\pi\)
\(614\) 623.998 33.8322i 1.01628 0.0551013i
\(615\) 5.05294 + 52.1702i 0.00821616 + 0.0848296i
\(616\) −266.490 + 252.432i −0.432613 + 0.409793i
\(617\) −474.848 25.7455i −0.769607 0.0417269i −0.334846 0.942273i \(-0.608684\pi\)
−0.434761 + 0.900546i \(0.643167\pi\)
\(618\) −400.208 + 296.859i −0.647585 + 0.480354i
\(619\) −460.297 + 155.092i −0.743614 + 0.250553i −0.665506 0.746392i \(-0.731784\pi\)
−0.0781076 + 0.996945i \(0.524888\pi\)
\(620\) 4.99282 + 14.8182i 0.00805294 + 0.0239003i
\(621\) −51.4889 52.3454i −0.0829129 0.0842921i
\(622\) 17.3358 319.740i 0.0278711 0.514052i
\(623\) −29.5389 31.1839i −0.0474140 0.0500544i
\(624\) −20.6434 213.137i −0.0330824 0.341566i
\(625\) 32.1187 + 592.394i 0.0513898 + 0.947830i
\(626\) −406.117 66.5795i −0.648749 0.106357i
\(627\) 319.508 + 1205.67i 0.509581 + 1.92292i
\(628\) −89.5680 9.74111i −0.142624 0.0155113i
\(629\) 209.367 + 347.970i 0.332856 + 0.553211i
\(630\) 21.3621 + 57.5191i 0.0339081 + 0.0913001i
\(631\) −6.17254 37.6508i −0.00978215 0.0596685i 0.981484 0.191542i \(-0.0613489\pi\)
−0.991267 + 0.131874i \(0.957901\pi\)
\(632\) −142.178 + 307.313i −0.224966 + 0.486255i
\(633\) 513.026 1075.47i 0.810468 1.69900i
\(634\) −4.78170 + 3.63496i −0.00754212 + 0.00573337i
\(635\) −7.58386 69.7324i −0.0119431 0.109815i
\(636\) −135.899 353.120i −0.213678 0.555220i
\(637\) 37.0430 + 92.9709i 0.0581523 + 0.145951i
\(638\) 724.274 + 201.094i 1.13523 + 0.315194i
\(639\) −255.897 + 403.478i −0.400465 + 0.631420i
\(640\) −3.45711 6.52079i −0.00540173 0.0101887i
\(641\) −793.297 + 537.869i −1.23759 + 0.839109i −0.991496 0.130136i \(-0.958458\pi\)
−0.246097 + 0.969245i \(0.579148\pi\)
\(642\) −659.928 191.627i −1.02793 0.298485i
\(643\) −678.844 799.197i −1.05574 1.24292i −0.969097 0.246680i \(-0.920660\pi\)
−0.0866477 0.996239i \(-0.527615\pi\)
\(644\) −37.3372 14.8765i −0.0579770 0.0231001i
\(645\) 42.5445 8.84076i 0.0659605 0.0137066i
\(646\) 494.312 + 297.417i 0.765188 + 0.460399i
\(647\) 64.3791 191.070i 0.0995041 0.295318i −0.886327 0.463060i \(-0.846751\pi\)
0.985831 + 0.167743i \(0.0536478\pi\)
\(648\) −62.8478 220.314i −0.0969873 0.339990i
\(649\) 966.922 372.392i 1.48986 0.573793i
\(650\) 620.161i 0.954093i
\(651\) 134.289 + 229.260i 0.206282 + 0.352166i
\(652\) −318.205 191.458i −0.488045 0.293647i
\(653\) 459.225 604.101i 0.703255 0.925116i −0.296296 0.955096i \(-0.595751\pi\)
0.999550 + 0.0299805i \(0.00954451\pi\)
\(654\) −350.489 680.334i −0.535916 1.04027i
\(655\) −31.7537 37.3834i −0.0484790 0.0570739i
\(656\) −44.9822 97.2273i −0.0685704 0.148212i
\(657\) 648.598 586.027i 0.987212 0.891975i
\(658\) 337.556 + 636.699i 0.513004 + 0.967628i
\(659\) −494.076 419.672i −0.749736 0.636832i 0.188799 0.982016i \(-0.439541\pi\)
−0.938535 + 0.345184i \(0.887816\pi\)
\(660\) 57.3453 37.9030i 0.0868868 0.0574288i
\(661\) 17.4254 + 43.7345i 0.0263622 + 0.0661641i 0.941569 0.336821i \(-0.109352\pi\)
−0.915206 + 0.402985i \(0.867973\pi\)
\(662\) −498.557 264.318i −0.753107 0.399272i
\(663\) 526.609 757.333i 0.794282 1.14228i
\(664\) −133.656 + 101.602i −0.201289 + 0.153016i
\(665\) 109.966 30.5320i 0.165363 0.0459128i
\(666\) −287.071 87.0372i −0.431038 0.130686i
\(667\) 13.3152 + 81.2193i 0.0199629 + 0.121768i
\(668\) 83.0175 + 377.152i 0.124278 + 0.564599i
\(669\) −174.745 30.7654i −0.261203 0.0459872i
\(670\) 83.1286 + 9.04078i 0.124073 + 0.0134937i
\(671\) −513.646 348.260i −0.765493 0.519017i
\(672\) −80.0563 96.5308i −0.119131 0.143647i
\(673\) 14.6277 + 269.791i 0.0217350 + 0.400879i 0.989077 + 0.147402i \(0.0470912\pi\)
−0.967342 + 0.253476i \(0.918426\pi\)
\(674\) 48.7976 51.5150i 0.0724001 0.0764318i
\(675\) 119.656 + 652.631i 0.177269 + 0.966861i
\(676\) −16.1797 + 298.418i −0.0239345 + 0.441447i
\(677\) 117.013 531.594i 0.172840 0.785221i −0.807809 0.589445i \(-0.799347\pi\)
0.980649 0.195776i \(-0.0627224\pi\)
\(678\) −114.690 47.2695i −0.169160 0.0697190i
\(679\) −858.612 + 289.300i −1.26452 + 0.426068i
\(680\) 6.83458 31.0498i 0.0100508 0.0456615i
\(681\) −866.127 840.011i −1.27185 1.23350i
\(682\) 216.099 204.700i 0.316861 0.300147i
\(683\) −641.852 + 677.595i −0.939755 + 0.992087i −0.999981 0.00609779i \(-0.998059\pi\)
0.0602268 + 0.998185i \(0.480818\pi\)
\(684\) −418.212 + 81.7790i −0.611422 + 0.119560i
\(685\) −14.4137 + 87.9198i −0.0210419 + 0.128350i
\(686\) −375.334 254.483i −0.547134 0.370966i
\(687\) −668.779 722.886i −0.973478 1.05224i
\(688\) −76.1005 + 45.7881i −0.110611 + 0.0665525i
\(689\) 241.907 + 1098.99i 0.351098 + 1.59506i
\(690\) 6.40304 + 3.95603i 0.00927976 + 0.00573337i
\(691\) 7.59085 + 3.51190i 0.0109853 + 0.00508234i 0.425374 0.905018i \(-0.360143\pi\)
−0.414389 + 0.910100i \(0.636005\pi\)
\(692\) 435.887 121.024i 0.629895 0.174889i
\(693\) 822.984 828.812i 1.18757 1.19598i
\(694\) −180.805 + 19.6637i −0.260526 + 0.0283339i
\(695\) −45.8629 24.3150i −0.0659898 0.0349856i
\(696\) −84.8594 + 242.382i −0.121924 + 0.348250i
\(697\) 123.458 444.657i 0.177128 0.637958i
\(698\) −615.549 522.852i −0.881876 0.749072i
\(699\) −892.698 207.549i −1.27711 0.296923i
\(700\) 203.822 + 300.615i 0.291174 + 0.429450i
\(701\) 237.180 + 512.655i 0.338345 + 0.731320i 0.999826 0.0186413i \(-0.00593405\pi\)
−0.661481 + 0.749962i \(0.730072\pi\)
\(702\) 86.4134 + 675.870i 0.123096 + 0.962778i
\(703\) −206.521 + 518.330i −0.293771 + 0.737311i
\(704\) −85.0242 + 111.847i −0.120773 + 0.158874i
\(705\) −41.5815 128.387i −0.0589808 0.182109i
\(706\) −5.41199 1.82351i −0.00766571 0.00258288i
\(707\) 215.264i 0.304475i
\(708\) 105.182 + 338.013i 0.148563 + 0.477419i
\(709\) 935.353 1.31926 0.659629 0.751592i \(-0.270714\pi\)
0.659629 + 0.751592i \(0.270714\pi\)
\(710\) 15.6382 46.4127i 0.0220257 0.0653699i
\(711\) 422.267 991.253i 0.593906 1.39417i
\(712\) −13.0881 9.94929i −0.0183821 0.0139737i
\(713\) 30.2771 + 12.0635i 0.0424644 + 0.0169193i
\(714\) 6.36205 540.183i 0.00891043 0.756558i
\(715\) −185.543 + 85.8411i −0.259500 + 0.120057i
\(716\) 198.822 134.805i 0.277684 0.188275i
\(717\) 199.158 + 46.3036i 0.277765 + 0.0645796i
\(718\) −320.677 + 377.530i −0.446625 + 0.525808i
\(719\) 33.9570 + 9.42811i 0.0472281 + 0.0131128i 0.291062 0.956704i \(-0.405991\pi\)
−0.243834 + 0.969817i \(0.578405\pi\)
\(720\) 11.6303 + 20.4026i 0.0161533 + 0.0283370i
\(721\) 406.536 766.808i 0.563850 1.06353i
\(722\) 30.4982 + 280.427i 0.0422413 + 0.388403i
\(723\) 876.651 + 57.8925i 1.21252 + 0.0800726i
\(724\) 49.3754 + 177.834i 0.0681980 + 0.245627i
\(725\) 312.291 675.006i 0.430746 0.931043i
\(726\) −676.463 417.943i −0.931768 0.575680i
\(727\) −922.811 + 203.126i −1.26934 + 0.279403i −0.798059 0.602580i \(-0.794140\pi\)
−0.471282 + 0.881983i \(0.656209\pi\)
\(728\) 192.289 + 319.587i 0.264133 + 0.438993i
\(729\) 221.343 + 694.585i 0.303625 + 0.952791i
\(730\) −50.2852 + 74.1652i −0.0688839 + 0.101596i
\(731\) −377.541 61.8948i −0.516472 0.0846714i
\(732\) 130.288 167.264i 0.177989 0.228503i
\(733\) −9.63347 9.12531i −0.0131425 0.0124493i 0.681100 0.732190i \(-0.261502\pi\)
−0.694243 + 0.719741i \(0.744260\pi\)
\(734\) 494.852 + 522.408i 0.674185 + 0.711728i
\(735\) −7.87902 7.64145i −0.0107198 0.0103965i
\(736\) −15.0237 3.30697i −0.0204127 0.00449317i
\(737\) −508.252 1508.44i −0.689623 2.04673i
\(738\) 152.534 + 304.850i 0.206686 + 0.413076i
\(739\) 111.760 + 24.6003i 0.151232 + 0.0332886i 0.289941 0.957045i \(-0.406364\pi\)
−0.138709 + 0.990333i \(0.544295\pi\)
\(740\) 30.7046 + 1.66476i 0.0414928 + 0.00224967i
\(741\) 1266.22 53.7052i 1.70880 0.0724766i
\(742\) 478.456 + 453.217i 0.644819 + 0.610805i
\(743\) −57.6576 + 3.12610i −0.0776010 + 0.00420740i −0.0928985 0.995676i \(-0.529613\pi\)
0.0152975 + 0.999883i \(0.495130\pi\)
\(744\) 64.9184 + 78.2778i 0.0872559 + 0.105212i
\(745\) 3.78058 5.57594i 0.00507461 0.00748449i
\(746\) 57.7342 530.857i 0.0773916 0.711604i
\(747\) 415.196 336.162i 0.555818 0.450016i
\(748\) −591.061 + 130.102i −0.790189 + 0.173934i
\(749\) 1181.16 193.641i 1.57698 0.258533i
\(750\) −56.1413 125.196i −0.0748551 0.166928i
\(751\) −20.4536 73.6671i −0.0272351 0.0980920i 0.948683