Properties

Label 354.3.h.a.5.11
Level 354
Weight 3
Character 354.5
Analytic conductor 9.646
Analytic rank 0
Dimension 1120
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 354 = 2 \cdot 3 \cdot 59 \)
Weight: \( k \) = \( 3 \)
Character orbit: \([\chi]\) = 354.h (of order \(58\), degree \(28\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(9.64580135835\)
Analytic rank: \(0\)
Dimension: \(1120\)
Relative dimension: \(40\) over \(\Q(\zeta_{58})\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{58}]$

Embedding invariants

Embedding label 5.11
Character \(\chi\) = 354.5
Dual form 354.3.h.a.71.11

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.451561 + 1.34018i) q^{2} +(0.908343 - 2.85918i) q^{3} +(-1.59219 - 1.21035i) q^{4} +(4.52215 + 1.80179i) q^{5} +(3.42166 + 2.50844i) q^{6} +(-8.14687 + 3.76914i) q^{7} +(2.34106 - 1.58728i) q^{8} +(-7.34983 - 5.19423i) q^{9} +O(q^{10})\) \(q+(-0.451561 + 1.34018i) q^{2} +(0.908343 - 2.85918i) q^{3} +(-1.59219 - 1.21035i) q^{4} +(4.52215 + 1.80179i) q^{5} +(3.42166 + 2.50844i) q^{6} +(-8.14687 + 3.76914i) q^{7} +(2.34106 - 1.58728i) q^{8} +(-7.34983 - 5.19423i) q^{9} +(-4.45675 + 5.24690i) q^{10} +(-19.7070 - 5.47161i) q^{11} +(-4.90686 + 3.45294i) q^{12} +(-2.77123 + 5.22710i) q^{13} +(-1.37254 - 12.6203i) q^{14} +(9.25930 - 11.2930i) q^{15} +(1.07011 + 3.85420i) q^{16} +(-11.5893 + 25.0499i) q^{17} +(10.2801 - 7.50461i) q^{18} +(10.6810 - 2.35106i) q^{19} +(-5.01931 - 8.34216i) q^{20} +(3.37651 + 26.7170i) q^{21} +(16.2319 - 23.9402i) q^{22} +(-1.42616 - 0.233807i) q^{23} +(-2.41183 - 8.13530i) q^{24} +(-0.946496 - 0.896569i) q^{25} +(-5.75390 - 6.07432i) q^{26} +(-21.5274 + 16.2963i) q^{27} +(17.5333 + 3.85937i) q^{28} +(-5.48489 - 16.2786i) q^{29} +(10.9536 + 17.5086i) q^{30} +(40.6107 + 8.93909i) q^{31} +(-5.64856 - 0.306256i) q^{32} +(-33.5450 + 51.3757i) q^{33} +(-28.3382 - 26.8434i) q^{34} +(-43.6325 + 2.36569i) q^{35} +(5.41546 + 17.1660i) q^{36} +(-20.4760 + 30.1999i) q^{37} +(-1.67225 + 15.3761i) q^{38} +(12.4280 + 12.6715i) q^{39} +(13.4466 - 2.95981i) q^{40} +(-73.7793 + 12.0955i) q^{41} +(-37.3304 - 7.53921i) q^{42} +(-12.8858 - 46.4106i) q^{43} +(24.7546 + 32.5641i) q^{44} +(-23.8781 - 36.7319i) q^{45} +(0.957342 - 1.80574i) q^{46} +(-27.7140 + 11.0423i) q^{47} +(11.9919 + 0.441286i) q^{48} +(20.4431 - 24.0674i) q^{49} +(1.62897 - 0.863624i) q^{50} +(61.0952 + 55.8899i) q^{51} +(10.7389 - 4.96836i) q^{52} +(-10.0648 + 8.54912i) q^{53} +(-12.1192 - 36.2095i) q^{54} +(-79.2592 - 60.2513i) q^{55} +(-13.0896 + 21.7551i) q^{56} +(2.97988 - 32.6744i) q^{57} +24.2930 q^{58} +(46.3678 - 36.4832i) q^{59} +(-28.4110 + 6.77358i) q^{60} +(24.6092 + 8.29182i) q^{61} +(-30.3182 + 50.3893i) q^{62} +(79.4558 + 14.6142i) q^{63} +(2.96111 - 7.43181i) q^{64} +(-21.9501 + 18.6446i) q^{65} +(-53.7053 - 68.1557i) q^{66} +(-14.8395 - 21.8866i) q^{67} +(48.7715 - 25.8570i) q^{68} +(-1.96394 + 3.86527i) q^{69} +(16.5323 - 59.5439i) q^{70} +(48.1224 - 19.1737i) q^{71} +(-25.4511 - 0.493785i) q^{72} +(-42.6358 + 4.63693i) q^{73} +(-31.2273 - 41.0788i) q^{74} +(-3.42320 + 1.89181i) q^{75} +(-19.8517 - 9.18438i) q^{76} +(181.173 - 29.7019i) q^{77} +(-22.5941 + 10.9339i) q^{78} +(82.2707 - 49.5007i) q^{79} +(-2.10524 + 19.3574i) q^{80} +(27.0399 + 76.3534i) q^{81} +(17.1056 - 104.340i) q^{82} +(-112.562 + 6.10291i) q^{83} +(26.9609 - 46.6252i) q^{84} +(-97.5434 + 92.3980i) q^{85} +(68.0175 + 3.68780i) q^{86} +(-51.5255 + 0.895770i) q^{87} +(-54.8201 + 18.4711i) q^{88} +(-15.4031 - 45.7147i) q^{89} +(60.0100 - 15.4144i) q^{90} +(2.87518 - 53.0297i) q^{91} +(1.98772 + 2.09842i) q^{92} +(62.4469 - 107.994i) q^{93} +(-2.28412 - 42.1282i) q^{94} +(52.5371 + 8.61302i) q^{95} +(-6.00647 + 15.8721i) q^{96} +(101.718 + 11.0625i) q^{97} +(23.0235 + 38.2654i) q^{98} +(116.422 + 142.578i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 1120q + 80q^{4} - 8q^{6} - 8q^{7} + 24q^{9} + O(q^{10}) \) \( 1120q + 80q^{4} - 8q^{6} - 8q^{7} + 24q^{9} + 16q^{10} - 34q^{15} - 160q^{16} - 16q^{18} - 24q^{19} + 18q^{21} + 16q^{22} + 16q^{24} + 216q^{25} + 30q^{27} + 16q^{28} + 64q^{30} - 96q^{31} - 76q^{33} - 80q^{34} - 48q^{36} + 200q^{37} + 28q^{39} - 32q^{40} - 48q^{42} + 104q^{43} + 696q^{45} - 32q^{46} - 288q^{49} + 1800q^{51} + 852q^{54} - 360q^{55} + 76q^{57} + 128q^{58} - 280q^{60} + 32q^{61} - 1318q^{63} + 320q^{64} - 1512q^{66} + 344q^{67} - 2640q^{69} - 192q^{70} + 32q^{72} - 40q^{73} - 1014q^{75} + 48q^{76} - 96q^{78} - 32q^{79} - 336q^{81} + 80q^{82} - 36q^{84} - 168q^{85} + 162q^{87} - 32q^{88} - 112q^{90} - 88q^{91} + 316q^{93} + 400q^{94} - 32q^{96} + 184q^{97} + 148q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/354\mathbb{Z}\right)^\times\).

\(n\) \(61\) \(119\)
\(\chi(n)\) \(e\left(\frac{3}{29}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.451561 + 1.34018i −0.225780 + 0.670092i
\(3\) 0.908343 2.85918i 0.302781 0.953060i
\(4\) −1.59219 1.21035i −0.398047 0.302587i
\(5\) 4.52215 + 1.80179i 0.904430 + 0.360358i 0.775538 0.631301i \(-0.217479\pi\)
0.128892 + 0.991659i \(0.458858\pi\)
\(6\) 3.42166 + 2.50844i 0.570276 + 0.418073i
\(7\) −8.14687 + 3.76914i −1.16384 + 0.538449i −0.904138 0.427241i \(-0.859486\pi\)
−0.259700 + 0.965689i \(0.583624\pi\)
\(8\) 2.34106 1.58728i 0.292632 0.198410i
\(9\) −7.34983 5.19423i −0.816648 0.577137i
\(10\) −4.45675 + 5.24690i −0.445675 + 0.524690i
\(11\) −19.7070 5.47161i −1.79154 0.497419i −0.797207 0.603706i \(-0.793690\pi\)
−0.994336 + 0.106286i \(0.966104\pi\)
\(12\) −4.90686 + 3.45294i −0.408905 + 0.287745i
\(13\) −2.77123 + 5.22710i −0.213172 + 0.402085i −0.966920 0.255078i \(-0.917899\pi\)
0.753749 + 0.657163i \(0.228244\pi\)
\(14\) −1.37254 12.6203i −0.0980386 0.901450i
\(15\) 9.25930 11.2930i 0.617287 0.752867i
\(16\) 1.07011 + 3.85420i 0.0668821 + 0.240887i
\(17\) −11.5893 + 25.0499i −0.681725 + 1.47353i 0.189113 + 0.981955i \(0.439439\pi\)
−0.870838 + 0.491570i \(0.836423\pi\)
\(18\) 10.2801 7.50461i 0.571118 0.416923i
\(19\) 10.6810 2.35106i 0.562157 0.123740i 0.0752038 0.997168i \(-0.476039\pi\)
0.486953 + 0.873428i \(0.338108\pi\)
\(20\) −5.01931 8.34216i −0.250966 0.417108i
\(21\) 3.37651 + 26.7170i 0.160786 + 1.27224i
\(22\) 16.2319 23.9402i 0.737812 1.08819i
\(23\) −1.42616 0.233807i −0.0620070 0.0101655i 0.130699 0.991422i \(-0.458278\pi\)
−0.192706 + 0.981257i \(0.561726\pi\)
\(24\) −2.41183 8.13530i −0.100493 0.338971i
\(25\) −0.946496 0.896569i −0.0378598 0.0358628i
\(26\) −5.75390 6.07432i −0.221304 0.233628i
\(27\) −21.5274 + 16.2963i −0.797311 + 0.603568i
\(28\) 17.5333 + 3.85937i 0.626189 + 0.137835i
\(29\) −5.48489 16.2786i −0.189134 0.561330i 0.810570 0.585641i \(-0.199157\pi\)
−0.999704 + 0.0243114i \(0.992261\pi\)
\(30\) 10.9536 + 17.5086i 0.365119 + 0.583621i
\(31\) 40.6107 + 8.93909i 1.31002 + 0.288358i 0.814462 0.580216i \(-0.197032\pi\)
0.495560 + 0.868574i \(0.334963\pi\)
\(32\) −5.64856 0.306256i −0.176517 0.00957050i
\(33\) −33.5450 + 51.3757i −1.01652 + 1.55684i
\(34\) −28.3382 26.8434i −0.833477 0.789512i
\(35\) −43.6325 + 2.36569i −1.24664 + 0.0675911i
\(36\) 5.41546 + 17.1660i 0.150430 + 0.476834i
\(37\) −20.4760 + 30.1999i −0.553407 + 0.816214i −0.996785 0.0801207i \(-0.974469\pi\)
0.443379 + 0.896334i \(0.353780\pi\)
\(38\) −1.67225 + 15.3761i −0.0440067 + 0.404635i
\(39\) 12.4280 + 12.6715i 0.318667 + 0.324909i
\(40\) 13.4466 2.95981i 0.336164 0.0739952i
\(41\) −73.7793 + 12.0955i −1.79949 + 0.295012i −0.966196 0.257810i \(-0.916999\pi\)
−0.833299 + 0.552822i \(0.813551\pi\)
\(42\) −37.3304 7.53921i −0.888820 0.179505i
\(43\) −12.8858 46.4106i −0.299671 1.07932i −0.948082 0.318026i \(-0.896980\pi\)
0.648411 0.761290i \(-0.275434\pi\)
\(44\) 24.7546 + 32.5641i 0.562605 + 0.740094i
\(45\) −23.8781 36.7319i −0.530625 0.816265i
\(46\) 0.957342 1.80574i 0.0208118 0.0392552i
\(47\) −27.7140 + 11.0423i −0.589661 + 0.234942i −0.645833 0.763479i \(-0.723490\pi\)
0.0561722 + 0.998421i \(0.482110\pi\)
\(48\) 11.9919 + 0.441286i 0.249831 + 0.00919347i
\(49\) 20.4431 24.0674i 0.417205 0.491172i
\(50\) 1.62897 0.863624i 0.0325794 0.0172725i
\(51\) 61.0952 + 55.8899i 1.19795 + 1.09588i
\(52\) 10.7389 4.96836i 0.206518 0.0955454i
\(53\) −10.0648 + 8.54912i −0.189902 + 0.161304i −0.737294 0.675572i \(-0.763897\pi\)
0.547392 + 0.836876i \(0.315621\pi\)
\(54\) −12.1192 36.2095i −0.224429 0.670546i
\(55\) −79.2592 60.2513i −1.44108 1.09548i
\(56\) −13.0896 + 21.7551i −0.233743 + 0.388484i
\(57\) 2.97988 32.6744i 0.0522786 0.573236i
\(58\) 24.2930 0.418845
\(59\) 46.3678 36.4832i 0.785895 0.618359i
\(60\) −28.4110 + 6.77358i −0.473517 + 0.112893i
\(61\) 24.6092 + 8.29182i 0.403430 + 0.135931i 0.513699 0.857970i \(-0.328275\pi\)
−0.110269 + 0.993902i \(0.535171\pi\)
\(62\) −30.3182 + 50.3893i −0.489003 + 0.812730i
\(63\) 79.4558 + 14.6142i 1.26120 + 0.231971i
\(64\) 2.96111 7.43181i 0.0462673 0.116122i
\(65\) −21.9501 + 18.6446i −0.337693 + 0.286839i
\(66\) −53.7053 68.1557i −0.813716 1.03266i
\(67\) −14.8395 21.8866i −0.221485 0.326666i 0.700671 0.713485i \(-0.252884\pi\)
−0.922156 + 0.386819i \(0.873574\pi\)
\(68\) 48.7715 25.8570i 0.717228 0.380250i
\(69\) −1.96394 + 3.86527i −0.0284629 + 0.0560184i
\(70\) 16.5323 59.5439i 0.236175 0.850627i
\(71\) 48.1224 19.1737i 0.677780 0.270052i −0.00574033 0.999984i \(-0.501827\pi\)
0.683521 + 0.729931i \(0.260448\pi\)
\(72\) −25.4511 0.493785i −0.353487 0.00685813i
\(73\) −42.6358 + 4.63693i −0.584053 + 0.0635196i −0.395375 0.918520i \(-0.629386\pi\)
−0.188677 + 0.982039i \(0.560420\pi\)
\(74\) −31.2273 41.0788i −0.421990 0.555118i
\(75\) −3.42320 + 1.89181i −0.0456426 + 0.0252242i
\(76\) −19.8517 9.18438i −0.261207 0.120847i
\(77\) 181.173 29.7019i 2.35290 0.385738i
\(78\) −22.5941 + 10.9339i −0.289668 + 0.140178i
\(79\) 82.2707 49.5007i 1.04140 0.626591i 0.111260 0.993791i \(-0.464511\pi\)
0.930142 + 0.367201i \(0.119684\pi\)
\(80\) −2.10524 + 19.3574i −0.0263155 + 0.241967i
\(81\) 27.0399 + 76.3534i 0.333826 + 0.942635i
\(82\) 17.1056 104.340i 0.208605 1.27244i
\(83\) −112.562 + 6.10291i −1.35616 + 0.0735291i −0.717823 0.696225i \(-0.754861\pi\)
−0.638340 + 0.769754i \(0.720379\pi\)
\(84\) 26.9609 46.6252i 0.320963 0.555062i
\(85\) −97.5434 + 92.3980i −1.14757 + 1.08704i
\(86\) 68.0175 + 3.68780i 0.790901 + 0.0428814i
\(87\) −51.5255 + 0.895770i −0.592247 + 0.0102962i
\(88\) −54.8201 + 18.4711i −0.622956 + 0.209898i
\(89\) −15.4031 45.7147i −0.173068 0.513648i 0.825654 0.564176i \(-0.190806\pi\)
−0.998723 + 0.0505280i \(0.983910\pi\)
\(90\) 60.0100 15.4144i 0.666777 0.171271i
\(91\) 2.87518 53.0297i 0.0315954 0.582744i
\(92\) 1.98772 + 2.09842i 0.0216057 + 0.0228089i
\(93\) 62.4469 107.994i 0.671472 1.16122i
\(94\) −2.28412 42.1282i −0.0242992 0.448172i
\(95\) 52.5371 + 8.61302i 0.553022 + 0.0906634i
\(96\) −6.00647 + 15.8721i −0.0625674 + 0.165334i
\(97\) 101.718 + 11.0625i 1.04864 + 0.114047i 0.616180 0.787605i \(-0.288679\pi\)
0.432462 + 0.901652i \(0.357645\pi\)
\(98\) 23.0235 + 38.2654i 0.234934 + 0.390463i
\(99\) 116.422 + 142.578i 1.17598 + 1.44018i
\(100\) 0.421837 + 2.57309i 0.00421837 + 0.0257309i
\(101\) −51.8511 + 112.074i −0.513378 + 1.10965i 0.461548 + 0.887115i \(0.347294\pi\)
−0.974925 + 0.222532i \(0.928568\pi\)
\(102\) −102.491 + 56.6411i −1.00481 + 0.555305i
\(103\) −27.3298 + 20.7755i −0.265337 + 0.201704i −0.729380 0.684108i \(-0.760191\pi\)
0.464043 + 0.885813i \(0.346398\pi\)
\(104\) 1.80924 + 16.6357i 0.0173965 + 0.159958i
\(105\) −32.8694 + 126.902i −0.313042 + 1.20859i
\(106\) −6.91253 17.3491i −0.0652125 0.163671i
\(107\) −92.8602 25.7825i −0.867852 0.240958i −0.195062 0.980791i \(-0.562491\pi\)
−0.672790 + 0.739833i \(0.734904\pi\)
\(108\) 53.9999 + 0.108848i 0.499999 + 0.00100786i
\(109\) 31.8198 + 60.0184i 0.291924 + 0.550628i 0.985483 0.169772i \(-0.0543031\pi\)
−0.693559 + 0.720400i \(0.743958\pi\)
\(110\) 116.538 79.0148i 1.05944 0.718316i
\(111\) 67.7477 + 85.9766i 0.610340 + 0.774564i
\(112\) −23.2451 27.3662i −0.207545 0.244341i
\(113\) 172.003 + 68.5323i 1.52215 + 0.606480i 0.973320 0.229453i \(-0.0736938\pi\)
0.548831 + 0.835934i \(0.315073\pi\)
\(114\) 42.4441 + 18.7481i 0.372317 + 0.164457i
\(115\) −6.02804 3.62695i −0.0524177 0.0315387i
\(116\) −10.9698 + 32.5571i −0.0945670 + 0.280665i
\(117\) 47.5189 24.0239i 0.406144 0.205332i
\(118\) 27.9563 + 78.6158i 0.236918 + 0.666236i
\(119\) 247.760i 2.08202i
\(120\) 3.75144 41.1346i 0.0312620 0.342789i
\(121\) 254.746 + 153.276i 2.10534 + 1.26674i
\(122\) −22.2251 + 29.2366i −0.182173 + 0.239645i
\(123\) −32.4336 + 221.935i −0.263688 + 1.80435i
\(124\) −53.8404 63.3858i −0.434196 0.511176i
\(125\) −53.7640 116.209i −0.430112 0.929673i
\(126\) −55.4648 + 99.8863i −0.440197 + 0.792748i
\(127\) −56.3441 106.276i −0.443654 0.836820i −0.999983 0.00585802i \(-0.998135\pi\)
0.556329 0.830962i \(-0.312210\pi\)
\(128\) 8.62288 + 7.32434i 0.0673662 + 0.0572214i
\(129\) −144.401 5.31378i −1.11939 0.0411921i
\(130\) −15.0753 37.8363i −0.115964 0.291048i
\(131\) −187.410 99.3586i −1.43061 0.758462i −0.440369 0.897817i \(-0.645152\pi\)
−0.990243 + 0.139355i \(0.955497\pi\)
\(132\) 115.592 41.1985i 0.875700 0.312110i
\(133\) −78.1550 + 59.4119i −0.587632 + 0.446706i
\(134\) 36.0330 10.0045i 0.268903 0.0746606i
\(135\) −126.713 + 34.9067i −0.938613 + 0.258568i
\(136\) 12.6299 + 77.0388i 0.0928667 + 0.566462i
\(137\) 36.6731 + 166.608i 0.267687 + 1.21611i 0.898078 + 0.439837i \(0.144964\pi\)
−0.630391 + 0.776278i \(0.717105\pi\)
\(138\) −4.29334 4.37744i −0.0311112 0.0317206i
\(139\) −36.4340 3.96243i −0.262115 0.0285067i −0.0238820 0.999715i \(-0.507603\pi\)
−0.238233 + 0.971208i \(0.576568\pi\)
\(140\) 72.3344 + 49.0440i 0.516675 + 0.350314i
\(141\) 6.39804 + 89.2697i 0.0453762 + 0.633118i
\(142\) 3.96613 + 73.1510i 0.0279305 + 0.515148i
\(143\) 83.2133 87.8472i 0.581911 0.614316i
\(144\) 12.1545 33.8861i 0.0844059 0.235320i
\(145\) 4.52706 83.4967i 0.0312211 0.575839i
\(146\) 13.0383 59.2337i 0.0893036 0.405710i
\(147\) −50.2438 80.3119i −0.341795 0.546339i
\(148\) 69.1541 23.3007i 0.467257 0.157437i
\(149\) 51.5761 234.313i 0.346148 1.57257i −0.406189 0.913789i \(-0.633143\pi\)
0.752337 0.658778i \(-0.228926\pi\)
\(150\) −0.989596 5.44198i −0.00659731 0.0362799i
\(151\) 6.59578 6.24786i 0.0436807 0.0413765i −0.665548 0.746355i \(-0.731802\pi\)
0.709229 + 0.704979i \(0.249043\pi\)
\(152\) 21.2730 22.4576i 0.139954 0.147748i
\(153\) 215.295 123.915i 1.40716 0.809902i
\(154\) −42.0048 + 256.218i −0.272758 + 1.66375i
\(155\) 167.541 + 113.596i 1.08091 + 0.732876i
\(156\) −4.45081 35.2175i −0.0285308 0.225753i
\(157\) 137.588 82.7841i 0.876358 0.527287i −0.00486461 0.999988i \(-0.501548\pi\)
0.881223 + 0.472701i \(0.156721\pi\)
\(158\) 29.1898 + 132.610i 0.184745 + 0.839307i
\(159\) 15.3012 + 36.5426i 0.0962339 + 0.229828i
\(160\) −24.9918 11.5624i −0.156199 0.0722653i
\(161\) 12.5000 3.47060i 0.0776397 0.0215565i
\(162\) −114.538 + 1.76030i −0.707023 + 0.0108660i
\(163\) 166.747 18.1348i 1.02299 0.111256i 0.418782 0.908087i \(-0.362457\pi\)
0.604203 + 0.796830i \(0.293491\pi\)
\(164\) 132.110 + 70.0404i 0.805550 + 0.427075i
\(165\) −244.264 + 171.888i −1.48039 + 1.04174i
\(166\) 42.6493 153.609i 0.256924 0.925356i
\(167\) 126.507 + 107.456i 0.757528 + 0.643450i 0.940549 0.339659i \(-0.110312\pi\)
−0.183021 + 0.983109i \(0.558587\pi\)
\(168\) 50.3119 + 57.1867i 0.299476 + 0.340397i
\(169\) 75.1978 + 110.908i 0.444957 + 0.656263i
\(170\) −79.7836 172.449i −0.469315 1.01441i
\(171\) −90.7153 38.1996i −0.530499 0.223389i
\(172\) −35.6563 + 89.4907i −0.207304 + 0.520295i
\(173\) −117.032 + 153.952i −0.676483 + 0.889899i −0.998381 0.0568758i \(-0.981886\pi\)
0.321898 + 0.946774i \(0.395679\pi\)
\(174\) 22.0664 69.4582i 0.126818 0.399185i
\(175\) 11.0903 + 3.73675i 0.0633730 + 0.0213528i
\(176\) 81.8099i 0.464829i
\(177\) −62.1942 165.713i −0.351380 0.936233i
\(178\) 68.2215 0.383267
\(179\) −6.12794 + 18.1871i −0.0342343 + 0.101604i −0.963408 0.268041i \(-0.913624\pi\)
0.929173 + 0.369644i \(0.120520\pi\)
\(180\) −6.44003 + 87.3849i −0.0357780 + 0.485472i
\(181\) −263.165 200.053i −1.45395 1.10526i −0.973620 0.228176i \(-0.926724\pi\)
−0.480330 0.877088i \(-0.659483\pi\)
\(182\) 69.7712 + 27.7994i 0.383358 + 0.152744i
\(183\) 46.0614 62.8304i 0.251702 0.343336i
\(184\) −3.70984 + 1.71635i −0.0201622 + 0.00932802i
\(185\) −147.010 + 99.6750i −0.794646 + 0.538784i
\(186\) 116.533 + 132.456i 0.626520 + 0.712129i
\(187\) 365.454 430.246i 1.95430 2.30078i
\(188\) 57.4909 + 15.9623i 0.305803 + 0.0849057i
\(189\) 113.958 213.904i 0.602951 1.13177i
\(190\) −35.2667 + 66.5201i −0.185614 + 0.350106i
\(191\) 7.86896 + 72.3539i 0.0411988 + 0.378816i 0.996527 + 0.0832696i \(0.0265363\pi\)
−0.955328 + 0.295547i \(0.904498\pi\)
\(192\) −18.5592 15.2170i −0.0966625 0.0792550i
\(193\) −5.34343 19.2453i −0.0276862 0.0997166i 0.948416 0.317028i \(-0.102685\pi\)
−0.976102 + 0.217312i \(0.930271\pi\)
\(194\) −60.7578 + 131.326i −0.313184 + 0.676937i
\(195\) 33.3700 + 79.6948i 0.171128 + 0.408692i
\(196\) −61.6792 + 13.5766i −0.314690 + 0.0692684i
\(197\) −82.8672 137.726i −0.420646 0.699118i 0.571990 0.820261i \(-0.306172\pi\)
−0.992635 + 0.121143i \(0.961344\pi\)
\(198\) −243.652 + 91.6443i −1.23057 + 0.462850i
\(199\) 94.4446 139.295i 0.474596 0.699977i −0.512754 0.858536i \(-0.671375\pi\)
0.987349 + 0.158559i \(0.0506849\pi\)
\(200\) −3.63891 0.596568i −0.0181945 0.00298284i
\(201\) −76.0571 + 22.5482i −0.378394 + 0.112180i
\(202\) −126.786 120.098i −0.627655 0.594547i
\(203\) 106.041 + 111.946i 0.522369 + 0.551458i
\(204\) −29.6287 162.934i −0.145239 0.798694i
\(205\) −355.435 78.2371i −1.73383 0.381644i
\(206\) −15.5020 46.0083i −0.0752524 0.223341i
\(207\) 9.26758 + 9.12625i 0.0447709 + 0.0440882i
\(208\) −23.1118 5.08730i −0.111115 0.0244582i
\(209\) −223.354 12.1099i −1.06868 0.0579421i
\(210\) −155.230 101.355i −0.739189 0.482643i
\(211\) −113.027 107.065i −0.535671 0.507415i 0.371354 0.928491i \(-0.378894\pi\)
−0.907025 + 0.421077i \(0.861652\pi\)
\(212\) 26.3725 1.42987i 0.124398 0.00674468i
\(213\) −11.1095 155.007i −0.0521573 0.727732i
\(214\) 76.4853 112.807i 0.357408 0.527137i
\(215\) 25.3504 233.093i 0.117909 1.08415i
\(216\) −24.5301 + 72.3206i −0.113565 + 0.334818i
\(217\) −364.543 + 80.2419i −1.67992 + 0.369778i
\(218\) −94.8043 + 15.5424i −0.434882 + 0.0712953i
\(219\) −25.4701 + 126.116i −0.116302 + 0.575870i
\(220\) 53.2703 + 191.862i 0.242138 + 0.872102i
\(221\) −98.8218 129.998i −0.447157 0.588226i
\(222\) −145.817 + 51.9708i −0.656832 + 0.234103i
\(223\) −114.999 + 216.911i −0.515691 + 0.972696i 0.479758 + 0.877401i \(0.340724\pi\)
−0.995449 + 0.0952952i \(0.969621\pi\)
\(224\) 47.1724 18.7952i 0.210591 0.0839071i
\(225\) 2.29960 + 11.5059i 0.0102204 + 0.0511375i
\(226\) −169.516 + 199.569i −0.750069 + 0.883050i
\(227\) −326.920 + 173.322i −1.44018 + 0.763534i −0.991493 0.130156i \(-0.958452\pi\)
−0.448684 + 0.893690i \(0.648107\pi\)
\(228\) −44.2920 + 48.4171i −0.194263 + 0.212356i
\(229\) 53.2123 24.6186i 0.232368 0.107505i −0.300250 0.953860i \(-0.597070\pi\)
0.532618 + 0.846355i \(0.321208\pi\)
\(230\) 7.58281 6.44089i 0.0329687 0.0280039i
\(231\) 79.6445 544.987i 0.344781 2.35925i
\(232\) −38.6790 29.4030i −0.166720 0.126737i
\(233\) 91.5536 152.163i 0.392934 0.653061i −0.595734 0.803182i \(-0.703139\pi\)
0.988668 + 0.150121i \(0.0479662\pi\)
\(234\) 10.7388 + 74.5322i 0.0458921 + 0.318514i
\(235\) −145.223 −0.617970
\(236\) −117.984 + 1.96681i −0.499931 + 0.00833395i
\(237\) −66.8013 280.190i −0.281862 1.18224i
\(238\) 332.044 + 111.879i 1.39514 + 0.470079i
\(239\) −84.1387 + 139.840i −0.352045 + 0.585103i −0.981391 0.192022i \(-0.938495\pi\)
0.629346 + 0.777125i \(0.283323\pi\)
\(240\) 53.4340 + 23.6024i 0.222642 + 0.0983434i
\(241\) −94.4780 + 237.122i −0.392025 + 0.983908i 0.592010 + 0.805931i \(0.298335\pi\)
−0.984035 + 0.177978i \(0.943045\pi\)
\(242\) −320.451 + 272.194i −1.32418 + 1.12477i
\(243\) 242.870 7.95701i 0.999464 0.0327449i
\(244\) −29.1465 42.9879i −0.119453 0.176180i
\(245\) 135.811 72.0025i 0.554331 0.293888i
\(246\) −282.788 143.684i −1.14955 0.584082i
\(247\) −17.3103 + 62.3459i −0.0700820 + 0.252413i
\(248\) 109.261 43.5335i 0.440568 0.175538i
\(249\) −84.7951 + 327.377i −0.340543 + 1.31477i
\(250\) 180.019 19.5783i 0.720077 0.0783131i
\(251\) −31.2241 41.0746i −0.124399 0.163644i 0.729678 0.683791i \(-0.239670\pi\)
−0.854076 + 0.520147i \(0.825877\pi\)
\(252\) −108.820 119.438i −0.431826 0.473959i
\(253\) 26.8260 + 12.4110i 0.106032 + 0.0490554i
\(254\) 167.872 27.5213i 0.660915 0.108351i
\(255\) 175.580 + 362.823i 0.688548 + 1.42284i
\(256\) −13.7097 + 8.24886i −0.0535536 + 0.0322221i
\(257\) −1.44954 + 13.3283i −0.00564024 + 0.0518611i −0.996620 0.0821517i \(-0.973821\pi\)
0.990980 + 0.134013i \(0.0427863\pi\)
\(258\) 72.3273 191.124i 0.280338 0.740793i
\(259\) 52.9879 323.212i 0.204586 1.24792i
\(260\) 57.5150 3.11837i 0.221212 0.0119937i
\(261\) −44.2416 + 148.134i −0.169508 + 0.567565i
\(262\) 217.786 206.298i 0.831243 0.787396i
\(263\) −55.8774 3.02959i −0.212462 0.0115193i −0.0523992 0.998626i \(-0.516687\pi\)
−0.160062 + 0.987107i \(0.551170\pi\)
\(264\) 3.01662 + 173.519i 0.0114266 + 0.657268i
\(265\) −60.9183 + 20.5258i −0.229880 + 0.0774557i
\(266\) −44.3312 131.570i −0.166659 0.494625i
\(267\) −144.698 + 2.51557i −0.541939 + 0.00942160i
\(268\) −2.86319 + 52.8085i −0.0106836 + 0.197047i
\(269\) 86.2470 + 91.0499i 0.320621 + 0.338475i 0.866305 0.499516i \(-0.166489\pi\)
−0.545684 + 0.837991i \(0.683730\pi\)
\(270\) 10.4371 185.581i 0.0386560 0.687336i
\(271\) 21.9852 + 405.493i 0.0811263 + 1.49629i 0.701889 + 0.712287i \(0.252340\pi\)
−0.620762 + 0.783999i \(0.713177\pi\)
\(272\) −108.949 17.8613i −0.400549 0.0656667i
\(273\) −149.010 56.3898i −0.545823 0.206556i
\(274\) −239.845 26.0847i −0.875347 0.0951997i
\(275\) 13.7469 + 22.8475i 0.0499887 + 0.0830819i
\(276\) 7.80528 3.77718i 0.0282800 0.0136854i
\(277\) 16.0254 + 97.7508i 0.0578535 + 0.352891i 0.999851 + 0.0172706i \(0.00549766\pi\)
−0.941997 + 0.335620i \(0.891054\pi\)
\(278\) 21.7625 47.0389i 0.0782825 0.169205i
\(279\) −252.050 276.642i −0.903405 0.991549i
\(280\) −98.3913 + 74.7951i −0.351398 + 0.267125i
\(281\) 42.4027 + 389.887i 0.150899 + 1.38750i 0.787505 + 0.616308i \(0.211372\pi\)
−0.636606 + 0.771189i \(0.719662\pi\)
\(282\) −122.527 31.7361i −0.434492 0.112539i
\(283\) 56.8217 + 142.612i 0.200783 + 0.503928i 0.994546 0.104299i \(-0.0332600\pi\)
−0.793763 + 0.608228i \(0.791881\pi\)
\(284\) −99.8267 27.7167i −0.351502 0.0975942i
\(285\) 72.3479 142.390i 0.253852 0.499612i
\(286\) 80.1556 + 151.189i 0.280264 + 0.528635i
\(287\) 555.480 376.625i 1.93547 1.31228i
\(288\) 39.9252 + 31.5908i 0.138629 + 0.109690i
\(289\) −306.092 360.359i −1.05914 1.24692i
\(290\) 109.857 + 43.7709i 0.378816 + 0.150934i
\(291\) 124.025 280.782i 0.426202 0.964888i
\(292\) 73.4965 + 44.2214i 0.251700 + 0.151443i
\(293\) −138.633 + 411.449i −0.473151 + 1.40426i 0.399867 + 0.916573i \(0.369056\pi\)
−0.873018 + 0.487688i \(0.837840\pi\)
\(294\) 130.321 31.0703i 0.443268 0.105681i
\(295\) 275.417 81.4374i 0.933618 0.276059i
\(296\) 103.201i 0.348652i
\(297\) 513.407 203.362i 1.72864 0.684720i
\(298\) 290.732 + 174.928i 0.975611 + 0.587006i
\(299\) 5.17436 6.80675i 0.0173055 0.0227650i
\(300\) 7.74012 + 1.13114i 0.0258004 + 0.00377047i
\(301\) 279.907 + 329.532i 0.929925 + 1.09479i
\(302\) 5.39488 + 11.6608i 0.0178638 + 0.0386121i
\(303\) 273.342 + 250.054i 0.902120 + 0.825260i
\(304\) 20.4913 + 38.6507i 0.0674057 + 0.127141i
\(305\) 96.3465 + 81.8375i 0.315890 + 0.268320i
\(306\) 68.8503 + 344.490i 0.225001 + 1.12578i
\(307\) 71.4521 + 179.331i 0.232743 + 0.584141i 0.998240 0.0592982i \(-0.0188863\pi\)
−0.765497 + 0.643439i \(0.777507\pi\)
\(308\) −324.411 171.992i −1.05328 0.558416i
\(309\) 34.5762 + 97.0120i 0.111897 + 0.313955i
\(310\) −227.894 + 173.241i −0.735143 + 0.558841i
\(311\) −523.716 + 145.409i −1.68397 + 0.467553i −0.972064 0.234717i \(-0.924584\pi\)
−0.711911 + 0.702270i \(0.752170\pi\)
\(312\) 49.2078 + 9.93794i 0.157717 + 0.0318524i
\(313\) −23.3569 142.471i −0.0746228 0.455179i −0.997535 0.0701688i \(-0.977646\pi\)
0.922912 0.385010i \(-0.125802\pi\)
\(314\) 48.8165 + 221.776i 0.155467 + 0.706292i
\(315\) 332.980 + 209.250i 1.05708 + 0.664286i
\(316\) −190.903 20.7620i −0.604125 0.0657025i
\(317\) −319.486 216.617i −1.00784 0.683335i −0.0587314 0.998274i \(-0.518706\pi\)
−0.949112 + 0.314939i \(0.898016\pi\)
\(318\) −55.8832 + 4.00521i −0.175733 + 0.0125950i
\(319\) 19.0205 + 350.812i 0.0596254 + 1.09973i
\(320\) 26.7811 28.2725i 0.0836910 0.0883515i
\(321\) −158.066 + 242.085i −0.492416 + 0.754158i
\(322\) −0.993253 + 18.3195i −0.00308464 + 0.0568928i
\(323\) −64.8915 + 294.805i −0.200903 + 0.912709i
\(324\) 49.3616 154.297i 0.152351 0.476224i
\(325\) 7.30942 2.46283i 0.0224905 0.00757794i
\(326\) −50.9923 + 231.660i −0.156418 + 0.710614i
\(327\) 200.507 36.4611i 0.613171 0.111502i
\(328\) −153.523 + 145.424i −0.468057 + 0.443367i
\(329\) 184.163 194.418i 0.559765 0.590937i
\(330\) −120.061 404.976i −0.363821 1.22720i
\(331\) 10.3170 62.9307i 0.0311691 0.190123i −0.966653 0.256091i \(-0.917565\pi\)
0.997822 + 0.0659682i \(0.0210136\pi\)
\(332\) 186.606 + 126.522i 0.562065 + 0.381090i
\(333\) 307.361 115.607i 0.923005 0.347168i
\(334\) −201.137 + 121.020i −0.602206 + 0.362335i
\(335\) −27.6713 125.712i −0.0826010 0.375260i
\(336\) −99.3595 + 41.6040i −0.295713 + 0.123821i
\(337\) 298.116 + 137.923i 0.884617 + 0.409267i 0.808958 0.587866i \(-0.200032\pi\)
0.0756589 + 0.997134i \(0.475894\pi\)
\(338\) −182.594 + 50.6970i −0.540219 + 0.149991i
\(339\) 352.184 429.537i 1.03889 1.26707i
\(340\) 267.141 29.0533i 0.785709 0.0854510i
\(341\) −751.402 398.368i −2.20353 1.16824i
\(342\) 92.1579 104.326i 0.269468 0.305046i
\(343\) 41.8388 150.690i 0.121979 0.439329i
\(344\) −103.833 88.1965i −0.301840 0.256385i
\(345\) −15.8456 + 13.9407i −0.0459294 + 0.0404079i
\(346\) −153.478 226.363i −0.443577 0.654228i
\(347\) 217.350 + 469.795i 0.626370 + 1.35388i 0.917708 + 0.397256i \(0.130037\pi\)
−0.291338 + 0.956620i \(0.594100\pi\)
\(348\) 83.1224 + 60.9376i 0.238857 + 0.175108i
\(349\) 39.0268 97.9498i 0.111825 0.280659i −0.862404 0.506220i \(-0.831042\pi\)
0.974229 + 0.225562i \(0.0724217\pi\)
\(350\) −10.0159 + 13.1756i −0.0286167 + 0.0376447i
\(351\) −25.5252 157.687i −0.0727213 0.449250i
\(352\) 109.640 + 36.9421i 0.311478 + 0.104949i
\(353\) 424.255i 1.20186i −0.799303 0.600928i \(-0.794798\pi\)
0.799303 0.600928i \(-0.205202\pi\)
\(354\) 250.171 8.52208i 0.706697 0.0240737i
\(355\) 252.164 0.710320
\(356\) −30.8061 + 91.4294i −0.0865341 + 0.256824i
\(357\) −708.391 225.051i −1.98429 0.630396i
\(358\) −21.6069 16.4251i −0.0603544 0.0458802i
\(359\) −453.941 180.867i −1.26446 0.503807i −0.361034 0.932553i \(-0.617576\pi\)
−0.903425 + 0.428746i \(0.858956\pi\)
\(360\) −114.204 48.0904i −0.317233 0.133584i
\(361\) −219.079 + 101.357i −0.606867 + 0.280766i
\(362\) 386.942 262.354i 1.06890 0.724733i
\(363\) 669.640 589.139i 1.84474 1.62297i
\(364\) −68.7622 + 80.9531i −0.188907 + 0.222399i
\(365\) −201.160 55.8519i −0.551124 0.153019i
\(366\) 63.4048 + 90.1025i 0.173237 + 0.246182i
\(367\) −30.3552 + 57.2559i −0.0827116 + 0.156011i −0.921418 0.388574i \(-0.872968\pi\)
0.838706 + 0.544585i \(0.183313\pi\)
\(368\) −0.625014 5.74691i −0.00169841 0.0156166i
\(369\) 605.092 + 294.327i 1.63982 + 0.797634i
\(370\) −67.1991 242.029i −0.181619 0.654133i
\(371\) 49.7738 107.584i 0.134161 0.289984i
\(372\) −230.137 + 96.3633i −0.618647 + 0.259041i
\(373\) −636.465 + 140.097i −1.70634 + 0.375594i −0.957787 0.287480i \(-0.907182\pi\)
−0.748554 + 0.663074i \(0.769251\pi\)
\(374\) 411.584 + 684.058i 1.10049 + 1.82903i
\(375\) −381.099 + 48.1635i −1.01626 + 0.128436i
\(376\) −47.3530 + 69.8405i −0.125939 + 0.185746i
\(377\) 100.290 + 16.4416i 0.266020 + 0.0436118i
\(378\) 235.212 + 249.315i 0.622254 + 0.659563i
\(379\) −322.299 305.298i −0.850393 0.805535i 0.132216 0.991221i \(-0.457791\pi\)
−0.982609 + 0.185686i \(0.940549\pi\)
\(380\) −73.2241 77.3017i −0.192695 0.203426i
\(381\) −355.042 + 64.5627i −0.931870 + 0.169456i
\(382\) −100.521 22.1263i −0.263144 0.0579223i
\(383\) −169.114 501.911i −0.441550 1.31047i −0.905400 0.424559i \(-0.860429\pi\)
0.463850 0.885914i \(-0.346468\pi\)
\(384\) 28.7741 18.0014i 0.0749327 0.0468785i
\(385\) 872.809 + 192.120i 2.26704 + 0.499013i
\(386\) 28.2051 + 1.52924i 0.0730703 + 0.00396176i
\(387\) −146.359 + 408.042i −0.378188 + 1.05437i
\(388\) −148.565 140.728i −0.382899 0.362701i
\(389\) 242.314 13.1379i 0.622916 0.0337735i 0.260020 0.965603i \(-0.416271\pi\)
0.362896 + 0.931830i \(0.381788\pi\)
\(390\) −121.874 + 8.73485i −0.312498 + 0.0223970i
\(391\) 22.3851 33.0155i 0.0572509 0.0844387i
\(392\) 9.65672 88.7921i 0.0246345 0.226510i
\(393\) −454.317 + 445.588i −1.15602 + 1.13381i
\(394\) 221.998 48.8655i 0.563447 0.124024i
\(395\) 461.230 75.6149i 1.16767 0.191430i
\(396\) −12.7965 367.922i −0.0323144 0.929096i
\(397\) 208.976 + 752.665i 0.526389 + 1.89588i 0.435928 + 0.899982i \(0.356420\pi\)
0.0904614 + 0.995900i \(0.471166\pi\)
\(398\) 144.034 + 189.473i 0.361894 + 0.476064i
\(399\) 98.8779 + 277.426i 0.247814 + 0.695303i
\(400\) 2.44270 4.60742i 0.00610674 0.0115185i
\(401\) 369.685 147.296i 0.921906 0.367321i 0.139595 0.990209i \(-0.455420\pi\)
0.782311 + 0.622888i \(0.214041\pi\)
\(402\) 4.12560 112.112i 0.0102627 0.278887i
\(403\) −159.267 + 187.504i −0.395204 + 0.465270i
\(404\) 218.206 115.685i 0.540113 0.286350i
\(405\) −15.2941 + 394.002i −0.0377632 + 0.972844i
\(406\) −197.912 + 91.5639i −0.487468 + 0.225527i
\(407\) 568.763 483.112i 1.39745 1.18701i
\(408\) 231.740 + 33.8666i 0.567991 + 0.0830063i
\(409\) −400.555 304.494i −0.979351 0.744483i −0.0125256 0.999922i \(-0.503987\pi\)
−0.966825 + 0.255438i \(0.917780\pi\)
\(410\) 265.352 441.019i 0.647201 1.07566i
\(411\) 509.673 + 46.4818i 1.24008 + 0.113094i
\(412\) 68.6597 0.166650
\(413\) −240.242 + 471.991i −0.581700 + 1.14283i
\(414\) −16.4157 + 8.29921i −0.0396515 + 0.0200464i
\(415\) −520.016 175.214i −1.25305 0.422202i
\(416\) 17.2543 28.6769i 0.0414767 0.0689348i
\(417\) −44.4238 + 100.572i −0.106532 + 0.241180i
\(418\) 117.087 293.867i 0.280113 0.703031i
\(419\) −32.8752 + 27.9244i −0.0784610 + 0.0666454i −0.685759 0.727829i \(-0.740529\pi\)
0.607298 + 0.794474i \(0.292254\pi\)
\(420\) 205.930 162.268i 0.490309 0.386354i
\(421\) −93.9086 138.505i −0.223061 0.328990i 0.699648 0.714488i \(-0.253340\pi\)
−0.922709 + 0.385498i \(0.874030\pi\)
\(422\) 194.525 103.130i 0.460959 0.244385i
\(423\) 261.050 + 62.7943i 0.617139 + 0.148450i
\(424\) −9.99247 + 35.9896i −0.0235671 + 0.0848812i
\(425\) 33.4282 13.3190i 0.0786547 0.0313389i
\(426\) 212.754 + 55.1063i 0.499424 + 0.129357i
\(427\) −231.741 + 25.2034i −0.542719 + 0.0590243i
\(428\) 116.645 + 153.444i 0.272535 + 0.358513i
\(429\) −175.585 317.717i −0.409289 0.740600i
\(430\) 300.941 + 139.230i 0.699862 + 0.323791i
\(431\) 727.927 119.338i 1.68893 0.276885i 0.760755 0.649039i \(-0.224829\pi\)
0.928171 + 0.372154i \(0.121381\pi\)
\(432\) −85.8461 65.5320i −0.198718 0.151694i
\(433\) −608.900 + 366.363i −1.40624 + 0.846104i −0.997775 0.0666715i \(-0.978762\pi\)
−0.408461 + 0.912776i \(0.633934\pi\)
\(434\) 57.0741 524.788i 0.131507 1.20919i
\(435\) −234.620 88.7873i −0.539356 0.204109i
\(436\) 21.9802 134.074i 0.0504134 0.307508i
\(437\) −15.7825 + 0.855702i −0.0361155 + 0.00195813i
\(438\) −157.517 91.0835i −0.359627 0.207953i
\(439\) −516.520 + 489.273i −1.17658 + 1.11452i −0.185311 + 0.982680i \(0.559329\pi\)
−0.991271 + 0.131838i \(0.957912\pi\)
\(440\) −281.186 15.2454i −0.639059 0.0346487i
\(441\) −275.265 + 70.7055i −0.624183 + 0.160330i
\(442\) 218.845 73.7375i 0.495125 0.166827i
\(443\) 11.4715 + 34.0463i 0.0258951 + 0.0768540i 0.959821 0.280612i \(-0.0905374\pi\)
−0.933926 + 0.357466i \(0.883641\pi\)
\(444\) −3.80538 218.889i −0.00857068 0.492993i
\(445\) 12.7132 234.482i 0.0285691 0.526925i
\(446\) −238.772 252.068i −0.535363 0.565176i
\(447\) −623.093 360.301i −1.39394 0.806043i
\(448\) 3.88783 + 71.7068i 0.00867819 + 0.160060i
\(449\) 445.520 + 73.0392i 0.992249 + 0.162671i 0.635974 0.771710i \(-0.280599\pi\)
0.356274 + 0.934381i \(0.384047\pi\)
\(450\) −16.4585 2.11375i −0.0365744 0.00469721i
\(451\) 1520.15 + 165.326i 3.37062 + 0.366577i
\(452\) −190.913 317.300i −0.422374 0.701990i
\(453\) −11.8725 24.5337i −0.0262087 0.0541583i
\(454\) −84.6593 516.399i −0.186474 1.13744i
\(455\) 108.550 234.628i 0.238572 0.515665i
\(456\) −44.8873 81.2226i −0.0984370 0.178120i
\(457\) 300.908 228.745i 0.658443 0.500535i −0.221780 0.975097i \(-0.571187\pi\)
0.880222 + 0.474562i \(0.157393\pi\)
\(458\) 8.96493 + 82.4311i 0.0195741 + 0.179981i
\(459\) −158.734 728.124i −0.345826 1.58633i
\(460\) 5.20789 + 13.0708i 0.0113215 + 0.0284148i
\(461\) −493.532 137.029i −1.07057 0.297242i −0.312836 0.949807i \(-0.601279\pi\)
−0.757733 + 0.652565i \(0.773693\pi\)
\(462\) 694.418 + 352.833i 1.50307 + 0.763707i
\(463\) 132.071 + 249.112i 0.285250 + 0.538038i 0.984184 0.177147i \(-0.0566869\pi\)
−0.698934 + 0.715186i \(0.746342\pi\)
\(464\) 56.8714 38.5598i 0.122568 0.0831029i
\(465\) 476.976 375.847i 1.02575 0.808273i
\(466\) 162.585 + 191.410i 0.348894 + 0.410750i
\(467\) −709.400 282.651i −1.51906 0.605248i −0.546406 0.837520i \(-0.684005\pi\)
−0.972651 + 0.232273i \(0.925384\pi\)
\(468\) −104.736 19.2639i −0.223795 0.0411622i
\(469\) 203.389 + 122.375i 0.433665 + 0.260928i
\(470\) 65.5770 194.625i 0.139525 0.414097i
\(471\) −111.717 468.586i −0.237192 0.994875i
\(472\) 50.6409 159.008i 0.107290 0.336881i
\(473\) 985.119i 2.08270i
\(474\) 405.672 + 36.9969i 0.855847 + 0.0780525i
\(475\) −12.2174 7.35096i −0.0257208 0.0154757i
\(476\) −299.876 + 394.480i −0.629992 + 0.828740i
\(477\) 118.381 10.5557i 0.248178 0.0221293i
\(478\) −149.417 175.907i −0.312588 0.368007i
\(479\) 199.846 + 431.960i 0.417215 + 0.901795i 0.996252 + 0.0864944i \(0.0275665\pi\)
−0.579037 + 0.815301i \(0.696571\pi\)
\(480\) −55.7602 + 60.9535i −0.116167 + 0.126986i
\(481\) −101.114 190.721i −0.210216 0.396510i
\(482\) −275.124 233.693i −0.570798 0.484840i
\(483\) 1.43119 38.8922i 0.00296312 0.0805222i
\(484\) −220.087 552.376i −0.454724 1.14127i
\(485\) 440.053 + 233.301i 0.907326 + 0.481034i
\(486\) −99.0065 + 329.083i −0.203717 + 0.677126i
\(487\) −718.667 + 546.317i −1.47570 + 1.12180i −0.510636 + 0.859797i \(0.670590\pi\)
−0.965067 + 0.262004i \(0.915617\pi\)
\(488\) 70.7730 19.6500i 0.145027 0.0402665i
\(489\) 99.6124 493.231i 0.203706 1.00865i
\(490\) 35.1696 + 214.525i 0.0717748 + 0.437807i
\(491\) −50.1098 227.651i −0.102057 0.463648i −0.999736 0.0229976i \(-0.992679\pi\)
0.897679 0.440650i \(-0.145252\pi\)
\(492\) 320.259 314.106i 0.650934 0.638427i
\(493\) 471.343 + 51.2617i 0.956071 + 0.103979i
\(494\) −75.7384 51.3519i −0.153317 0.103951i
\(495\) 269.582 + 854.527i 0.544611 + 1.72632i
\(496\) 9.00501 + 166.088i 0.0181553 + 0.334854i
\(497\) −319.778 + 337.586i −0.643417 + 0.679247i
\(498\) −400.456 261.472i −0.804128 0.525044i
\(499\) −1.92836 + 35.5666i −0.00386446 + 0.0712757i −0.999829 0.0184665i \(-0.994122\pi\)
0.995965 + 0.0897423i \(0.0286043\pi\)
\(500\) −55.0511 + 250.100i −0.110102 + 0.500199i
\(501\) 422.149 264.100i 0.842612 0.527146i
\(502\) 69.1471 23.2984i 0.137743 0.0464111i
\(503\) 48.8115 221.753i 0.0970407 0.440860i −0.902899 0.429853i \(-0.858565\pi\)
0.999939 0.0110070i \(-0.00350372\pi\)
\(504\) 209.207 91.9058i 0.415094 0.182353i
\(505\) −436.413 + 413.392i −0.864184 + 0.818599i
\(506\) −28.7466 + 30.3474i −0.0568115 + 0.0599752i
\(507\) 385.412 114.261i 0.760182 0.225367i
\(508\) −38.9210 + 237.407i −0.0766161 + 0.467337i
\(509\) 608.669 + 412.688i 1.19581 + 0.810781i 0.985965 0.166953i \(-0.0533928\pi\)
0.209848 + 0.977734i \(0.432703\pi\)
\(510\) −565.535 + 71.4726i −1.10889 + 0.140142i
\(511\) 329.871 198.477i 0.645541 0.388409i
\(512\) −4.86423 22.0984i −0.00950044 0.0431609i
\(513\) −191.620 + 224.673i −0.373528 + 0.437959i
\(514\) −17.2078 7.96119i −0.0334783 0.0154887i
\(515\) −161.022 + 44.7076i −0.312665 + 0.0868109i
\(516\) 223.482 + 183.236i 0.433104 + 0.355109i
\(517\) 606.579 65.9695i 1.17327 0.127600i
\(518\) 409.236 + 216.963i 0.790031 + 0.418848i
\(519\) 333.873 + 474.456i 0.643301 + 0.914174i
\(520\) −21.7923 + 78.4888i −0.0419083 + 0.150940i
\(521\) 55.2614 + 46.9395i 0.106068 + 0.0900950i 0.698851 0.715267i \(-0.253695\pi\)
−0.592783 + 0.805362i \(0.701971\pi\)
\(522\) −178.550 126.184i −0.342049 0.241731i
\(523\) −154.573 227.978i −0.295551 0.435904i 0.650702 0.759333i \(-0.274475\pi\)
−0.946253 + 0.323429i \(0.895164\pi\)
\(524\) 178.133 + 385.029i 0.339949 + 0.734788i
\(525\) 20.7578 28.3148i 0.0395387 0.0539330i
\(526\) 29.2922 73.5180i 0.0556887 0.139768i
\(527\) −694.574 + 913.697i −1.31798 + 1.73377i
\(528\) −233.909 74.3114i −0.443010 0.140741i
\(529\) −499.329 168.244i −0.943912 0.318041i
\(530\) 90.9103i 0.171529i
\(531\) −530.298 + 27.3000i −0.998678 + 0.0514125i
\(532\) 196.346 0.369072
\(533\) 141.235 419.171i 0.264982 0.786438i
\(534\) 61.9685 195.058i 0.116046 0.365276i
\(535\) −373.473 283.907i −0.698080 0.530667i
\(536\) −69.4802 27.6834i −0.129627 0.0516482i
\(537\) 46.4339 + 34.0410i 0.0864690 + 0.0633910i
\(538\) −160.969 + 74.4723i −0.299199 + 0.138424i
\(539\) −534.559 + 362.440i −0.991760 + 0.672430i
\(540\) 243.999 + 97.7886i 0.451851 + 0.181090i
\(541\) 1.50447 1.77120i 0.00278090 0.00327393i −0.760770 0.649022i \(-0.775178\pi\)
0.763551 + 0.645748i \(0.223454\pi\)
\(542\) −553.363 153.641i −1.02097 0.283470i
\(543\) −811.031 + 570.720i −1.49361 + 1.05105i
\(544\) 73.1347 137.947i 0.134439 0.253578i
\(545\) 35.7532 + 328.745i 0.0656021 + 0.603202i
\(546\) 142.860 174.237i 0.261648 0.319115i
\(547\) 153.436 + 552.627i 0.280505 + 1.01029i 0.960776 + 0.277327i \(0.0894484\pi\)
−0.680271 + 0.732961i \(0.738138\pi\)
\(548\) 143.263 309.658i 0.261429 0.565069i
\(549\) −137.804 188.769i −0.251009 0.343842i
\(550\) −36.8274 + 8.10633i −0.0669590 + 0.0147388i
\(551\) −96.8559 160.976i −0.175782 0.292152i
\(552\) 1.53756 + 12.1661i 0.00278544 + 0.0220401i
\(553\) −483.674 + 713.365i −0.874636 + 1.28999i
\(554\) −138.241 22.6634i −0.249532 0.0409086i
\(555\) 151.454 + 510.866i 0.272890 + 0.920479i
\(556\) 53.2137 + 50.4067i 0.0957081 + 0.0906596i
\(557\) 49.6572 + 52.4225i 0.0891512 + 0.0941157i 0.769044 0.639195i \(-0.220732\pi\)
−0.679893 + 0.733311i \(0.737974\pi\)
\(558\) 484.567 212.873i 0.868400 0.381492i
\(559\) 278.303 + 61.2590i 0.497858 + 0.109587i
\(560\) −55.8096 165.637i −0.0996600 0.295780i
\(561\) −898.193 1435.71i −1.60106 2.55920i
\(562\) −541.667 119.230i −0.963821 0.212153i
\(563\) 536.391 + 29.0823i 0.952737 + 0.0516559i 0.523949 0.851749i \(-0.324458\pi\)
0.428788 + 0.903405i \(0.358941\pi\)
\(564\) 97.8605 149.878i 0.173512 0.265741i
\(565\) 654.343 + 619.826i 1.15813 + 1.09704i
\(566\) −216.784 + 11.7537i −0.383011 + 0.0207663i
\(567\) −508.077 520.124i −0.896080 0.917326i
\(568\) 82.2233 121.270i 0.144759 0.213504i
\(569\) 68.2059 627.143i 0.119870 1.10218i −0.767475 0.641078i \(-0.778487\pi\)
0.887345 0.461106i \(-0.152547\pi\)
\(570\) 158.159 + 161.257i 0.277471 + 0.282907i
\(571\) 292.898 64.4716i 0.512955 0.112910i 0.0490527 0.998796i \(-0.484380\pi\)
0.463903 + 0.885886i \(0.346449\pi\)
\(572\) −238.817 + 39.1520i −0.417512 + 0.0684476i
\(573\) 214.021 + 43.2233i 0.373509 + 0.0754334i
\(574\) 253.914 + 914.515i 0.442359 + 1.59323i
\(575\) 1.14023 + 1.49995i 0.00198301 + 0.00260861i
\(576\) −60.3662 + 39.2419i −0.104802 + 0.0681283i
\(577\) −324.616 + 612.290i −0.562592 + 1.06116i 0.425158 + 0.905119i \(0.360218\pi\)
−0.987750 + 0.156042i \(0.950126\pi\)
\(578\) 621.167 247.495i 1.07468 0.428193i
\(579\) −59.8795 2.20349i −0.103419 0.00380568i
\(580\) −108.268 + 127.463i −0.186669 + 0.219764i
\(581\) 894.021 473.980i 1.53876 0.815801i
\(582\) 320.295 + 293.006i 0.550336 + 0.503447i
\(583\) 245.124 113.407i 0.420453 0.194522i
\(584\) −92.4529 + 78.5302i −0.158310 + 0.134470i
\(585\) 258.173 23.0206i 0.441322 0.0393514i
\(586\) −488.816 371.588i −0.834156 0.634109i
\(587\) −85.6505 + 142.352i −0.145912 + 0.242508i −0.921191 0.389112i \(-0.872782\pi\)
0.775278 + 0.631620i \(0.217610\pi\)
\(588\) −17.2078 + 188.684i −0.0292650 + 0.320891i
\(589\) 454.778 0.772119
\(590\) −15.2264 + 405.884i −0.0258075 + 0.687939i
\(591\) −469.056 + 111.830i −0.793665 + 0.189221i
\(592\) −138.308 46.6014i −0.233629 0.0787187i
\(593\) −251.443 + 417.901i −0.424019 + 0.704724i −0.993063 0.117582i \(-0.962486\pi\)
0.569045 + 0.822307i \(0.307313\pi\)
\(594\) 40.7079 + 779.890i 0.0685319 + 1.31295i
\(595\) 446.412 1120.41i 0.750272 1.88304i
\(596\) −365.719 + 310.644i −0.613622 + 0.521215i
\(597\) −312.482 396.562i −0.523421 0.664258i
\(598\) 6.78576 + 10.0082i 0.0113474 + 0.0167362i
\(599\) −480.199 + 254.585i −0.801668 + 0.425018i −0.818262 0.574845i \(-0.805062\pi\)
0.0165944 + 0.999862i \(0.494718\pi\)
\(600\) −5.01107 + 9.86240i −0.00835178 + 0.0164373i
\(601\) 170.347 613.534i 0.283439 1.02086i −0.675527 0.737335i \(-0.736084\pi\)
0.958966 0.283520i \(-0.0915023\pi\)
\(602\) −568.029 + 226.323i −0.943570 + 0.375953i
\(603\) −4.61641 + 237.943i −0.00765574 + 0.394598i
\(604\) −18.0638 + 1.96456i −0.0299069 + 0.00325258i
\(605\) 875.831 + 1152.14i 1.44765 + 1.90436i
\(606\) −458.549 + 253.415i −0.756681 + 0.418176i
\(607\) 381.679 + 176.583i 0.628796 + 0.290912i 0.708288 0.705924i \(-0.249468\pi\)
−0.0794923 + 0.996835i \(0.525330\pi\)
\(608\) −61.0522 + 10.0090i −0.100415 + 0.0164622i
\(609\) 416.395 201.505i 0.683736 0.330878i
\(610\) −153.184 + 92.1675i −0.251121 + 0.151094i
\(611\) 19.0830 175.465i 0.0312323 0.287177i
\(612\) −492.770 63.2859i −0.805179 0.103408i
\(613\) 138.365 843.990i 0.225718 1.37682i −0.594190 0.804325i \(-0.702527\pi\)
0.819908 0.572495i \(-0.194024\pi\)
\(614\) −272.602 + 14.7800i −0.443977 + 0.0240717i
\(615\) −546.550 + 945.185i −0.888699 + 1.53689i
\(616\) 376.992 357.106i 0.612000 0.579718i
\(617\) 860.555 + 46.6579i 1.39474 + 0.0756207i 0.736118 0.676853i \(-0.236657\pi\)
0.658623 + 0.752474i \(0.271139\pi\)
\(618\) −145.627 + 2.53173i −0.235643 + 0.00409664i
\(619\) −195.732 + 65.9496i −0.316206 + 0.106542i −0.472929 0.881100i \(-0.656803\pi\)
0.156723 + 0.987643i \(0.449907\pi\)
\(620\) −129.266 383.649i −0.208494 0.618789i
\(621\) 34.5117 18.2079i 0.0555744 0.0293203i
\(622\) 41.6146 767.537i 0.0669046 1.23398i
\(623\) 297.792 + 314.375i 0.477997 + 0.504615i
\(624\) −35.5390 + 61.4599i −0.0569535 + 0.0984934i
\(625\) −31.9802 589.841i −0.0511684 0.943746i
\(626\) 201.484 + 33.0317i 0.321860 + 0.0527663i
\(627\) −237.506 + 627.609i −0.378798 + 1.00097i
\(628\) −319.264 34.7220i −0.508382 0.0552898i
\(629\) −519.202 862.920i −0.825440 1.37189i
\(630\) −430.794 + 351.765i −0.683800 + 0.558357i
\(631\) −32.8232 200.213i −0.0520178 0.317295i 0.947982 0.318325i \(-0.103120\pi\)
−0.999999 + 0.00103035i \(0.999672\pi\)
\(632\) 114.029 246.470i 0.180426 0.389985i
\(633\) −408.784 + 225.912i −0.645788 + 0.356892i
\(634\) 434.574 330.355i 0.685448 0.521064i
\(635\) −63.3090 582.117i −0.0996992 0.916719i
\(636\) 19.8670 76.7024i 0.0312374 0.120601i
\(637\) 69.1504 + 173.554i 0.108556 + 0.272456i
\(638\) −478.742 132.922i −0.750379 0.208342i
\(639\) −453.284 109.035i −0.709365 0.170634i
\(640\) 25.7970 + 48.6584i 0.0403079 + 0.0760287i
\(641\) −776.777 + 526.668i −1.21182 + 0.821635i −0.988219 0.153045i \(-0.951092\pi\)
−0.223602 + 0.974681i \(0.571782\pi\)
\(642\) −253.062 321.153i −0.394177 0.500238i
\(643\) −141.716 166.841i −0.220398 0.259473i 0.640840 0.767675i \(-0.278586\pi\)
−0.861238 + 0.508202i \(0.830310\pi\)
\(644\) −24.1029 9.60349i −0.0374269 0.0149123i
\(645\) −643.429 284.210i −0.997564 0.440636i
\(646\) −365.791 220.089i −0.566239 0.340695i
\(647\) 25.8148 76.6155i 0.0398992 0.118416i −0.925852 0.377886i \(-0.876651\pi\)
0.965751 + 0.259469i \(0.0835477\pi\)
\(648\) 184.496 + 135.828i 0.284716 + 0.209611i
\(649\) −1113.39 + 465.267i −1.71555 + 0.716898i
\(650\) 10.9081i 0.0167817i
\(651\) −101.703 + 1115.18i −0.156227 + 1.71303i
\(652\) −287.441 172.948i −0.440861 0.265257i
\(653\) 521.678 686.255i 0.798894 1.05093i −0.198593 0.980082i \(-0.563637\pi\)
0.997487 0.0708451i \(-0.0225696\pi\)
\(654\) −41.6763 + 285.180i −0.0637253 + 0.436056i
\(655\) −668.473 786.988i −1.02057 1.20151i
\(656\) −125.571 271.417i −0.191419 0.413745i
\(657\) 337.451 + 187.380i 0.513625 + 0.285205i
\(658\) 177.396 + 334.603i 0.269598 + 0.508516i
\(659\) −425.320 361.270i −0.645403 0.548210i 0.263793 0.964579i \(-0.415026\pi\)
−0.909196 + 0.416369i \(0.863302\pi\)
\(660\) 596.957 + 21.9673i 0.904480 + 0.0332838i
\(661\) −51.8380 130.104i −0.0784236 0.196828i 0.884537 0.466469i \(-0.154474\pi\)
−0.962961 + 0.269641i \(0.913095\pi\)
\(662\) 79.6799 + 42.2436i 0.120362 + 0.0638121i
\(663\) −461.451 + 164.467i −0.696005 + 0.248065i
\(664\) −253.826 + 192.954i −0.382268 + 0.290593i
\(665\) −460.476 + 127.851i −0.692446 + 0.192257i
\(666\) 16.1424 + 464.123i 0.0242379 + 0.696882i
\(667\) 4.01628 + 24.4982i 0.00602141 + 0.0367290i
\(668\) −71.3636 324.208i −0.106832 0.485341i
\(669\) 515.730 + 525.833i 0.770896 + 0.785998i
\(670\) 180.973 + 19.6820i 0.270109 + 0.0293761i
\(671\) −439.604 298.059i −0.655147 0.444201i
\(672\) −10.8902 151.947i −0.0162056 0.226111i
\(673\) −55.6155 1025.77i −0.0826383 1.52417i −0.686527 0.727104i \(-0.740866\pi\)
0.603889 0.797069i \(-0.293617\pi\)
\(674\) −319.460 + 337.250i −0.473976 + 0.500370i
\(675\) 34.9864 + 3.87637i 0.0518317 + 0.00574277i
\(676\) 14.5090 267.602i 0.0214630 0.395861i
\(677\) −69.1571 + 314.184i −0.102152 + 0.464082i 0.897578 + 0.440856i \(0.145325\pi\)
−0.999730 + 0.0232266i \(0.992606\pi\)
\(678\) 416.626 + 665.953i 0.614493 + 0.982231i
\(679\) −870.381 + 293.266i −1.28186 + 0.431908i
\(680\) −81.6935 + 371.137i −0.120138 + 0.545790i
\(681\) 198.604 + 1092.16i 0.291636 + 1.60376i
\(682\) 873.191 827.130i 1.28034 1.21280i
\(683\) −170.037 + 179.506i −0.248956 + 0.262820i −0.838482 0.544930i \(-0.816556\pi\)
0.589525 + 0.807750i \(0.299315\pi\)
\(684\) 98.2009 + 170.618i 0.143569 + 0.249442i
\(685\) −134.351 + 819.502i −0.196132 + 1.19635i
\(686\) 183.059 + 124.117i 0.266850 + 0.180929i
\(687\) −22.0541 174.506i −0.0321021 0.254011i
\(688\) 165.086 99.3292i 0.239951 0.144374i
\(689\) −16.7952 76.3014i −0.0243762 0.110742i
\(690\) −11.5279 27.5311i −0.0167071 0.0399002i
\(691\) 512.033 + 236.892i 0.741003 + 0.342825i 0.753809 0.657093i \(-0.228214\pi\)
−0.0128060 + 0.999918i \(0.504076\pi\)
\(692\) 372.672 103.472i 0.538544 0.149526i
\(693\) −1485.87 722.753i −2.14411 1.04293i
\(694\) −727.759 + 79.1485i −1.04864 + 0.114047i
\(695\) −157.620 83.5650i −0.226792 0.120237i
\(696\) −119.202 + 83.8823i −0.171268 + 0.120521i
\(697\) 552.061 1988.35i 0.792054 2.85272i
\(698\) 113.648 + 96.5333i 0.162819 + 0.138300i
\(699\) −351.900 399.985i −0.503434 0.572224i
\(700\) −13.1350 19.3727i −0.0187643 0.0276753i
\(701\) −15.3769 33.2366i −0.0219357 0.0474132i 0.896298 0.443452i \(-0.146246\pi\)
−0.918234 + 0.396039i \(0.870384\pi\)
\(702\) 222.856 + 36.9968i 0.317458 + 0.0527019i
\(703\) −147.702 + 370.705i −0.210103 + 0.527319i
\(704\) −99.0184 + 130.257i −0.140651 + 0.185023i
\(705\) −131.912 + 415.219i −0.187109 + 0.588963i
\(706\) 568.580 + 191.577i 0.805354 + 0.271355i
\(707\) 1108.49i 1.56788i
\(708\) −101.546 + 339.123i −0.143427 + 0.478987i
\(709\) 1032.62 1.45645 0.728226 0.685337i \(-0.240345\pi\)
0.728226 + 0.685337i \(0.240345\pi\)
\(710\) −113.867 + 337.946i −0.160376 + 0.475980i
\(711\) −861.794 63.5119i −1.21209 0.0893275i
\(712\) −108.621 82.5718i −0.152558 0.115972i
\(713\) −55.8273 22.2436i −0.0782992 0.0311972i
\(714\) 621.492 847.751i 0.870436 1.18733i
\(715\) 534.585 247.325i 0.747672 0.345910i
\(716\) 31.7695 21.5403i 0.0443708 0.0300842i
\(717\) 323.400 + 367.590i 0.451046 + 0.512678i
\(718\) 447.376 526.692i 0.623087 0.733554i
\(719\) −861.129 239.091i −1.19768 0.332533i −0.389251 0.921132i \(-0.627266\pi\)
−0.808425 + 0.588599i \(0.799680\pi\)
\(720\) 116.020 131.338i 0.161139 0.182414i
\(721\) 144.346 272.265i 0.200202 0.377622i
\(722\) −36.9092 339.375i −0.0511208 0.470048i
\(723\) 592.156 + 485.518i 0.819026 + 0.671532i
\(724\) 176.874 + 637.043i 0.244301 + 0.879893i
\(725\) −9.40343 + 20.3252i −0.0129702 + 0.0280347i
\(726\) 487.172 + 1163.47i 0.671035 + 1.60258i
\(727\) −186.147 + 40.9741i −0.256049 + 0.0563606i −0.341140 0.940013i \(-0.610813\pi\)
0.0850910 + 0.996373i \(0.472882\pi\)
\(728\) −77.4418 128.709i −0.106376 0.176798i
\(729\) 197.858 701.636i 0.271411 0.962464i
\(730\) 165.688 244.371i 0.226970 0.334755i
\(731\) 1311.92 + 215.078i 1.79469 + 0.294225i
\(732\) −149.385 + 44.2874i −0.204078 + 0.0605019i
\(733\) 353.157 + 334.528i 0.481796 + 0.456382i 0.889635 0.456672i \(-0.150959\pi\)
−0.407839 + 0.913054i \(0.633717\pi\)
\(734\) −63.0263 66.5360i −0.0858669 0.0906486i
\(735\) −82.5051 453.711i −0.112252 0.617294i
\(736\) 7.98414 + 1.75744i 0.0108480 + 0.00238783i
\(737\) 172.686 + 512.515i 0.234310 + 0.695407i
\(738\) −667.688 + 678.028i −0.904726 + 0.918737i
\(739\) 683.673 + 150.488i 0.925132 + 0.203637i 0.651895 0.758310i \(-0.273974\pi\)
0.273238 + 0.961947i \(0.411905\pi\)
\(740\) 354.708 + 19.2317i 0.479335 + 0.0259888i
\(741\) 162.535 + 106.125i 0.219345 + 0.143218i
\(742\) 121.707 + 115.287i 0.164025 + 0.155373i
\(743\) 493.316 26.7468i 0.663952 0.0359984i 0.280917 0.959732i \(-0.409362\pi\)
0.383035 + 0.923734i \(0.374879\pi\)
\(744\) −25.2238 351.940i −0.0339030 0.473037i
\(745\) 655.416 966.667i 0.879754 1.29754i
\(746\) 99.6473 916.242i 0.133576 1.22821i
\(747\) 859.008 + 539.815i 1.14994 + 0.722645i
\(748\) −1102.62 + 242.705i −1.47409 + 0.324472i
\(749\) 853.697 139.957i 1.13978 0.186858i
\(750\) 107.541 532.491i 0.143388 0.709988i
\(751\) −188.979 680.641i −0.251636 0.906312i −0.976158 0.2