Properties

Label 354.2.e.c.19.3
Level 354
Weight 2
Character 354.19
Analytic conductor 2.827
Analytic rank 0
Dimension 84
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 354 = 2 \cdot 3 \cdot 59 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 354.e (of order \(29\) and degree \(28\))

Newform invariants

Self dual: No
Analytic conductor: \(2.82670423155\)
Analytic rank: \(0\)
Dimension: \(84\)
Relative dimension: \(3\) over \(\Q(\zeta_{29})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{29}]$

Embedding invariants

Embedding label 19.3
Character \(\chi\) = 354.19
Dual form 354.2.e.c.205.3

$q$-expansion

\(f(q)\) \(=\) \(q+(0.468408 - 0.883512i) q^{2} +(0.725995 - 0.687699i) q^{3} +(-0.561187 - 0.827689i) q^{4} +(2.03876 - 0.448764i) q^{5} +(-0.267528 - 0.963550i) q^{6} +(-0.284870 + 0.216552i) q^{7} +(-0.994138 + 0.108119i) q^{8} +(0.0541389 - 0.998533i) q^{9} +O(q^{10})\) \(q+(0.468408 - 0.883512i) q^{2} +(0.725995 - 0.687699i) q^{3} +(-0.561187 - 0.827689i) q^{4} +(2.03876 - 0.448764i) q^{5} +(-0.267528 - 0.963550i) q^{6} +(-0.284870 + 0.216552i) q^{7} +(-0.994138 + 0.108119i) q^{8} +(0.0541389 - 0.998533i) q^{9} +(0.558482 - 2.01147i) q^{10} +(-1.78668 - 4.48424i) q^{11} +(-0.976621 - 0.214970i) q^{12} +(0.0677744 + 1.25003i) q^{13} +(0.0578912 + 0.353121i) q^{14} +(1.17151 - 1.72785i) q^{15} +(-0.370138 + 0.928977i) q^{16} +(5.16669 + 3.92761i) q^{17} +(-0.856857 - 0.515554i) q^{18} +(2.53928 - 0.855582i) q^{19} +(-1.51556 - 1.43562i) q^{20} +(-0.0578912 + 0.353121i) q^{21} +(-4.79878 - 0.521898i) q^{22} +(-2.75562 + 1.65800i) q^{23} +(-0.647386 + 0.762162i) q^{24} +(-0.582738 + 0.269603i) q^{25} +(1.13616 + 0.525643i) q^{26} +(-0.647386 - 0.762162i) q^{27} +(0.339103 + 0.114257i) q^{28} +(-1.24596 - 2.35013i) q^{29} +(-0.977832 - 1.84439i) q^{30} +(-1.75943 - 0.592822i) q^{31} +(0.647386 + 0.762162i) q^{32} +(-4.38093 - 2.02684i) q^{33} +(5.89021 - 2.72510i) q^{34} +(-0.483599 + 0.569337i) q^{35} +(-0.856857 + 0.515554i) q^{36} +(-9.72602 - 1.05777i) q^{37} +(0.433502 - 2.64424i) q^{38} +(0.908845 + 0.860904i) q^{39} +(-1.97829 + 0.666562i) q^{40} +(7.74500 + 4.66001i) q^{41} +(0.284870 + 0.216552i) q^{42} +(-0.156164 + 0.391943i) q^{43} +(-2.70889 + 3.99532i) q^{44} +(-0.337730 - 2.06006i) q^{45} +(0.174109 + 3.21125i) q^{46} +(9.69903 + 2.13492i) q^{47} +(0.370138 + 0.928977i) q^{48} +(-1.83844 + 6.62147i) q^{49} +(-0.0347616 + 0.641140i) q^{50} +(6.45201 - 0.701698i) q^{51} +(0.996598 - 0.757594i) q^{52} +(1.99258 + 7.17661i) q^{53} +(-0.976621 + 0.214970i) q^{54} +(-5.65498 - 8.34047i) q^{55} +(0.259786 - 0.246083i) q^{56} +(1.25512 - 2.36741i) q^{57} -2.65999 q^{58} +(5.90865 + 4.90794i) q^{59} -2.08756 q^{60} +(2.50681 - 4.72835i) q^{61} +(-1.34790 + 1.27680i) q^{62} +(0.200812 + 0.296176i) q^{63} +(0.976621 - 0.214970i) q^{64} +(0.699142 + 2.51808i) q^{65} +(-3.84280 + 2.92122i) q^{66} +(-9.01767 + 0.980731i) q^{67} +(0.351364 - 6.48053i) q^{68} +(-0.860362 + 3.09874i) q^{69} +(0.276494 + 0.693947i) q^{70} +(1.30724 + 0.287746i) q^{71} +(0.0541389 + 0.998533i) q^{72} +(1.58671 + 9.67851i) q^{73} +(-5.49030 + 8.09758i) q^{74} +(-0.237659 + 0.596479i) q^{75} +(-2.13316 - 1.62159i) q^{76} +(1.48004 + 0.890513i) q^{77} +(1.18633 - 0.399721i) q^{78} +(-1.00845 - 0.955251i) q^{79} +(-0.337730 + 2.06006i) q^{80} +(-0.994138 - 0.108119i) q^{81} +(7.74500 - 4.66001i) q^{82} +(-5.06181 + 5.95923i) q^{83} +(0.324762 - 0.150251i) q^{84} +(12.2962 + 5.68882i) q^{85} +(0.273137 + 0.321562i) q^{86} +(-2.52075 - 0.849339i) q^{87} +(2.26104 + 4.26478i) q^{88} +(-0.128736 - 0.242821i) q^{89} +(-1.97829 - 0.666562i) q^{90} +(-0.290003 - 0.341417i) q^{91} +(2.91873 + 1.35035i) q^{92} +(-1.68502 + 0.779574i) q^{93} +(6.42933 - 7.56920i) q^{94} +(4.79301 - 2.88386i) q^{95} +(0.994138 + 0.108119i) q^{96} +(1.09015 - 6.64961i) q^{97} +(4.98901 + 4.72584i) q^{98} +(-4.57439 + 1.54129i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84q - 3q^{2} + 3q^{3} - 3q^{4} + 3q^{6} + q^{7} - 3q^{8} - 3q^{9} + O(q^{10}) \) \( 84q - 3q^{2} + 3q^{3} - 3q^{4} + 3q^{6} + q^{7} - 3q^{8} - 3q^{9} - 26q^{11} + 3q^{12} - 3q^{13} + q^{14} - 3q^{16} + 3q^{17} - 3q^{18} + 4q^{19} - q^{21} + 3q^{22} - 2q^{23} + 3q^{24} + 41q^{25} + 26q^{26} + 3q^{27} + q^{28} - 2q^{29} + 8q^{31} - 3q^{32} - 3q^{33} - 26q^{34} + 83q^{35} - 3q^{36} - 53q^{37} + 4q^{38} + 3q^{39} - 7q^{41} - q^{42} + 119q^{43} + 3q^{44} - 31q^{46} - 12q^{47} + 3q^{48} - 38q^{49} - 133q^{50} - 3q^{51} - 32q^{52} - 83q^{53} + 3q^{54} - 83q^{55} + q^{56} - 4q^{57} + 56q^{58} - 57q^{59} - 48q^{61} - 21q^{62} + q^{63} - 3q^{64} - 33q^{65} - 3q^{66} - 88q^{67} - 26q^{68} + 89q^{69} - 62q^{70} - 35q^{71} - 3q^{72} - 71q^{73} - 24q^{74} + 17q^{75} + 33q^{76} + 113q^{77} + 3q^{78} - 5q^{79} - 3q^{81} - 7q^{82} - 51q^{83} - q^{84} + 125q^{85} + 61q^{86} + 31q^{87} + 32q^{88} - 58q^{89} + 173q^{91} - 2q^{92} + 21q^{93} + 17q^{94} + 26q^{95} + 3q^{96} + 20q^{98} + 3q^{99} + O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/354\mathbb{Z}\right)^\times\).

\(n\) \(61\) \(119\)
\(\chi(n)\) \(e\left(\frac{19}{29}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.468408 0.883512i 0.331215 0.624737i
\(3\) 0.725995 0.687699i 0.419154 0.397043i
\(4\) −0.561187 0.827689i −0.280594 0.413844i
\(5\) 2.03876 0.448764i 0.911760 0.200693i 0.265767 0.964037i \(-0.414375\pi\)
0.645992 + 0.763344i \(0.276444\pi\)
\(6\) −0.267528 0.963550i −0.109218 0.393368i
\(7\) −0.284870 + 0.216552i −0.107671 + 0.0818491i −0.657624 0.753346i \(-0.728438\pi\)
0.549954 + 0.835195i \(0.314645\pi\)
\(8\) −0.994138 + 0.108119i −0.351481 + 0.0382258i
\(9\) 0.0541389 0.998533i 0.0180463 0.332844i
\(10\) 0.558482 2.01147i 0.176608 0.636083i
\(11\) −1.78668 4.48424i −0.538706 1.35205i −0.906525 0.422152i \(-0.861275\pi\)
0.367820 0.929897i \(-0.380104\pi\)
\(12\) −0.976621 0.214970i −0.281926 0.0620566i
\(13\) 0.0677744 + 1.25003i 0.0187972 + 0.346695i 0.992770 + 0.120030i \(0.0382992\pi\)
−0.973973 + 0.226664i \(0.927218\pi\)
\(14\) 0.0578912 + 0.353121i 0.0154721 + 0.0943755i
\(15\) 1.17151 1.72785i 0.302483 0.446130i
\(16\) −0.370138 + 0.928977i −0.0925345 + 0.232244i
\(17\) 5.16669 + 3.92761i 1.25311 + 0.952586i 0.999890 0.0148242i \(-0.00471887\pi\)
0.253215 + 0.967410i \(0.418512\pi\)
\(18\) −0.856857 0.515554i −0.201963 0.121517i
\(19\) 2.53928 0.855582i 0.582550 0.196284i −0.0125698 0.999921i \(-0.504001\pi\)
0.595120 + 0.803637i \(0.297105\pi\)
\(20\) −1.51556 1.43562i −0.338890 0.321013i
\(21\) −0.0578912 + 0.353121i −0.0126329 + 0.0770572i
\(22\) −4.79878 0.521898i −1.02310 0.111269i
\(23\) −2.75562 + 1.65800i −0.574587 + 0.345718i −0.773005 0.634400i \(-0.781247\pi\)
0.198418 + 0.980118i \(0.436420\pi\)
\(24\) −0.647386 + 0.762162i −0.132147 + 0.155576i
\(25\) −0.582738 + 0.269603i −0.116548 + 0.0539207i
\(26\) 1.13616 + 0.525643i 0.222819 + 0.103087i
\(27\) −0.647386 0.762162i −0.124590 0.146678i
\(28\) 0.339103 + 0.114257i 0.0640844 + 0.0215926i
\(29\) −1.24596 2.35013i −0.231369 0.436409i 0.740458 0.672103i \(-0.234609\pi\)
−0.971827 + 0.235694i \(0.924264\pi\)
\(30\) −0.977832 1.84439i −0.178527 0.336737i
\(31\) −1.75943 0.592822i −0.316003 0.106474i 0.156831 0.987626i \(-0.449872\pi\)
−0.472834 + 0.881152i \(0.656769\pi\)
\(32\) 0.647386 + 0.762162i 0.114443 + 0.134732i
\(33\) −4.38093 2.02684i −0.762623 0.352827i
\(34\) 5.89021 2.72510i 1.01016 0.467351i
\(35\) −0.483599 + 0.569337i −0.0817431 + 0.0962354i
\(36\) −0.856857 + 0.515554i −0.142810 + 0.0859256i
\(37\) −9.72602 1.05777i −1.59895 0.173896i −0.735210 0.677839i \(-0.762917\pi\)
−0.863737 + 0.503943i \(0.831882\pi\)
\(38\) 0.433502 2.64424i 0.0703232 0.428953i
\(39\) 0.908845 + 0.860904i 0.145532 + 0.137855i
\(40\) −1.97829 + 0.666562i −0.312794 + 0.105393i
\(41\) 7.74500 + 4.66001i 1.20957 + 0.727771i 0.969999 0.243109i \(-0.0781672\pi\)
0.239566 + 0.970880i \(0.422995\pi\)
\(42\) 0.284870 + 0.216552i 0.0439563 + 0.0334147i
\(43\) −0.156164 + 0.391943i −0.0238148 + 0.0597707i −0.940403 0.340061i \(-0.889552\pi\)
0.916588 + 0.399832i \(0.130932\pi\)
\(44\) −2.70889 + 3.99532i −0.408381 + 0.602316i
\(45\) −0.337730 2.06006i −0.0503458 0.307096i
\(46\) 0.174109 + 3.21125i 0.0256710 + 0.473473i
\(47\) 9.69903 + 2.13492i 1.41475 + 0.311410i 0.855592 0.517651i \(-0.173194\pi\)
0.559158 + 0.829061i \(0.311125\pi\)
\(48\) 0.370138 + 0.928977i 0.0534248 + 0.134086i
\(49\) −1.83844 + 6.62147i −0.262635 + 0.945925i
\(50\) −0.0347616 + 0.641140i −0.00491604 + 0.0906710i
\(51\) 6.45201 0.701698i 0.903462 0.0982574i
\(52\) 0.996598 0.757594i 0.138203 0.105059i
\(53\) 1.99258 + 7.17661i 0.273701 + 0.985783i 0.964792 + 0.263015i \(0.0847167\pi\)
−0.691091 + 0.722768i \(0.742869\pi\)
\(54\) −0.976621 + 0.214970i −0.132901 + 0.0292538i
\(55\) −5.65498 8.34047i −0.762517 1.12463i
\(56\) 0.259786 0.246083i 0.0347154 0.0328842i
\(57\) 1.25512 2.36741i 0.166245 0.313571i
\(58\) −2.65999 −0.349274
\(59\) 5.90865 + 4.90794i 0.769240 + 0.638959i
\(60\) −2.08756 −0.269503
\(61\) 2.50681 4.72835i 0.320964 0.605403i −0.669557 0.742760i \(-0.733516\pi\)
0.990522 + 0.137358i \(0.0438610\pi\)
\(62\) −1.34790 + 1.27680i −0.171183 + 0.162153i
\(63\) 0.200812 + 0.296176i 0.0252999 + 0.0373146i
\(64\) 0.976621 0.214970i 0.122078 0.0268713i
\(65\) 0.699142 + 2.51808i 0.0867179 + 0.312330i
\(66\) −3.84280 + 2.92122i −0.473016 + 0.359577i
\(67\) −9.01767 + 0.980731i −1.10168 + 0.119815i −0.640846 0.767669i \(-0.721416\pi\)
−0.460838 + 0.887484i \(0.652451\pi\)
\(68\) 0.351364 6.48053i 0.0426092 0.785880i
\(69\) −0.860362 + 3.09874i −0.103575 + 0.373045i
\(70\) 0.276494 + 0.693947i 0.0330473 + 0.0829426i
\(71\) 1.30724 + 0.287746i 0.155141 + 0.0341491i 0.291862 0.956460i \(-0.405725\pi\)
−0.136721 + 0.990610i \(0.543656\pi\)
\(72\) 0.0541389 + 0.998533i 0.00638033 + 0.117678i
\(73\) 1.58671 + 9.67851i 0.185710 + 1.13278i 0.900956 + 0.433910i \(0.142867\pi\)
−0.715246 + 0.698873i \(0.753685\pi\)
\(74\) −5.49030 + 8.09758i −0.638234 + 0.941325i
\(75\) −0.237659 + 0.596479i −0.0274425 + 0.0688755i
\(76\) −2.13316 1.62159i −0.244691 0.186009i
\(77\) 1.48004 + 0.890513i 0.168667 + 0.101483i
\(78\) 1.18633 0.399721i 0.134325 0.0452595i
\(79\) −1.00845 0.955251i −0.113459 0.107474i 0.628867 0.777513i \(-0.283519\pi\)
−0.742326 + 0.670039i \(0.766278\pi\)
\(80\) −0.337730 + 2.06006i −0.0377594 + 0.230322i
\(81\) −0.994138 0.108119i −0.110460 0.0120132i
\(82\) 7.74500 4.66001i 0.855292 0.514612i
\(83\) −5.06181 + 5.95923i −0.555606 + 0.654110i −0.966226 0.257697i \(-0.917037\pi\)
0.410620 + 0.911807i \(0.365312\pi\)
\(84\) 0.324762 0.150251i 0.0354344 0.0163937i
\(85\) 12.2962 + 5.68882i 1.33371 + 0.617039i
\(86\) 0.273137 + 0.321562i 0.0294532 + 0.0346749i
\(87\) −2.52075 0.849339i −0.270253 0.0910587i
\(88\) 2.26104 + 4.26478i 0.241028 + 0.454627i
\(89\) −0.128736 0.242821i −0.0136459 0.0257390i 0.876595 0.481228i \(-0.159809\pi\)
−0.890241 + 0.455489i \(0.849464\pi\)
\(90\) −1.97829 0.666562i −0.208530 0.0702618i
\(91\) −0.290003 0.341417i −0.0304005 0.0357903i
\(92\) 2.91873 + 1.35035i 0.304299 + 0.140784i
\(93\) −1.68502 + 0.779574i −0.174729 + 0.0808381i
\(94\) 6.42933 7.56920i 0.663135 0.780703i
\(95\) 4.79301 2.88386i 0.491753 0.295878i
\(96\) 0.994138 + 0.108119i 0.101464 + 0.0110349i
\(97\) 1.09015 6.64961i 0.110688 0.675165i −0.871945 0.489604i \(-0.837141\pi\)
0.982633 0.185561i \(-0.0594104\pi\)
\(98\) 4.98901 + 4.72584i 0.503966 + 0.477382i
\(99\) −4.57439 + 1.54129i −0.459744 + 0.154906i
\(100\) 0.550173 + 0.331028i 0.0550173 + 0.0331028i
\(101\) −4.25586 3.23522i −0.423474 0.321916i 0.371640 0.928377i \(-0.378796\pi\)
−0.795114 + 0.606461i \(0.792589\pi\)
\(102\) 2.40222 6.02911i 0.237855 0.596971i
\(103\) 0.211766 0.312331i 0.0208659 0.0307749i −0.817113 0.576478i \(-0.804427\pi\)
0.837979 + 0.545703i \(0.183737\pi\)
\(104\) −0.202529 1.23537i −0.0198596 0.121138i
\(105\) 0.0404419 + 0.745906i 0.00394672 + 0.0727930i
\(106\) 7.27396 + 1.60112i 0.706509 + 0.155514i
\(107\) −3.87162 9.71703i −0.374284 0.939381i −0.988633 0.150347i \(-0.951961\pi\)
0.614350 0.789034i \(-0.289418\pi\)
\(108\) −0.267528 + 0.963550i −0.0257429 + 0.0927176i
\(109\) −0.117551 + 2.16810i −0.0112594 + 0.207667i 0.987490 + 0.157679i \(0.0504010\pi\)
−0.998750 + 0.0499879i \(0.984082\pi\)
\(110\) −10.0177 + 1.08950i −0.955155 + 0.103879i
\(111\) −7.78847 + 5.92064i −0.739249 + 0.561962i
\(112\) −0.0957309 0.344791i −0.00904572 0.0325797i
\(113\) 19.8795 4.37581i 1.87011 0.411642i 0.873004 0.487713i \(-0.162169\pi\)
0.997102 + 0.0760710i \(0.0242376\pi\)
\(114\) −1.50372 2.21783i −0.140837 0.207719i
\(115\) −4.87399 + 4.61689i −0.454502 + 0.430527i
\(116\) −1.24596 + 2.35013i −0.115685 + 0.218204i
\(117\) 1.25186 0.115735
\(118\) 7.10389 2.92144i 0.653966 0.268940i
\(119\) −2.32236 −0.212891
\(120\) −0.977832 + 1.84439i −0.0892634 + 0.168369i
\(121\) −8.93021 + 8.45914i −0.811837 + 0.769013i
\(122\) −3.00334 4.42960i −0.271910 0.401037i
\(123\) 8.82752 1.94308i 0.795951 0.175202i
\(124\) 0.496698 + 1.78895i 0.0446048 + 0.160652i
\(125\) −9.37654 + 7.12786i −0.838664 + 0.637535i
\(126\) 0.355737 0.0386887i 0.0316916 0.00344666i
\(127\) 0.0561869 1.03631i 0.00498578 0.0919573i −0.994981 0.100060i \(-0.968096\pi\)
0.999967 + 0.00810283i \(0.00257924\pi\)
\(128\) 0.267528 0.963550i 0.0236464 0.0851666i
\(129\) 0.156164 + 0.391943i 0.0137495 + 0.0345086i
\(130\) 2.55224 + 0.561790i 0.223846 + 0.0492723i
\(131\) −0.610761 11.2648i −0.0533624 0.984212i −0.895532 0.444998i \(-0.853204\pi\)
0.842169 0.539213i \(-0.181278\pi\)
\(132\) 0.780934 + 4.76348i 0.0679715 + 0.414608i
\(133\) −0.538084 + 0.793615i −0.0466578 + 0.0688152i
\(134\) −3.35747 + 8.42661i −0.290041 + 0.727948i
\(135\) −1.66189 1.26334i −0.143033 0.108731i
\(136\) −5.56105 3.34597i −0.476856 0.286915i
\(137\) −15.5492 + 5.23913i −1.32846 + 0.447609i −0.891967 0.452100i \(-0.850675\pi\)
−0.436490 + 0.899709i \(0.643779\pi\)
\(138\) 2.33478 + 2.21162i 0.198749 + 0.188265i
\(139\) 0.611918 3.73253i 0.0519022 0.316589i −0.948097 0.317982i \(-0.896995\pi\)
0.999999 + 0.00139244i \(0.000443226\pi\)
\(140\) 0.742623 + 0.0807651i 0.0627631 + 0.00682590i
\(141\) 8.50964 5.12008i 0.716641 0.431188i
\(142\) 0.866550 1.02018i 0.0727193 0.0856117i
\(143\) 5.48432 2.53732i 0.458622 0.212181i
\(144\) 0.907575 + 0.419889i 0.0756313 + 0.0349908i
\(145\) −3.59487 4.23221i −0.298538 0.351466i
\(146\) 9.29431 + 3.13162i 0.769202 + 0.259174i
\(147\) 3.21888 + 6.07145i 0.265489 + 0.500765i
\(148\) 4.58261 + 8.64372i 0.376688 + 0.710510i
\(149\) −17.0551 5.74654i −1.39721 0.470775i −0.482860 0.875698i \(-0.660402\pi\)
−0.914351 + 0.404923i \(0.867298\pi\)
\(150\) 0.415675 + 0.489371i 0.0339397 + 0.0399569i
\(151\) −20.2435 9.36563i −1.64739 0.762164i −1.00000 6.45095e-6i \(-0.999998\pi\)
−0.647391 0.762158i \(-0.724140\pi\)
\(152\) −2.43189 + 1.12511i −0.197252 + 0.0912585i
\(153\) 4.20157 4.94647i 0.339677 0.399898i
\(154\) 1.48004 0.890513i 0.119265 0.0717596i
\(155\) −3.85309 0.419049i −0.309488 0.0336588i
\(156\) 0.202529 1.23537i 0.0162153 0.0989087i
\(157\) 1.27318 + 1.20602i 0.101611 + 0.0962512i 0.736819 0.676090i \(-0.236327\pi\)
−0.635208 + 0.772341i \(0.719086\pi\)
\(158\) −1.31634 + 0.443527i −0.104722 + 0.0352851i
\(159\) 6.38195 + 3.83989i 0.506121 + 0.304523i
\(160\) 1.66189 + 1.26334i 0.131384 + 0.0998757i
\(161\) 0.425949 1.06905i 0.0335695 0.0842530i
\(162\) −0.561187 + 0.827689i −0.0440910 + 0.0650294i
\(163\) −0.984770 6.00683i −0.0771331 0.470491i −0.996943 0.0781278i \(-0.975106\pi\)
0.919810 0.392364i \(-0.128342\pi\)
\(164\) −0.489353 9.02559i −0.0382121 0.704780i
\(165\) −9.84123 2.16622i −0.766139 0.168640i
\(166\) 2.89405 + 7.26352i 0.224622 + 0.563759i
\(167\) −0.925502 + 3.33336i −0.0716175 + 0.257943i −0.990688 0.136149i \(-0.956527\pi\)
0.919071 + 0.394093i \(0.128941\pi\)
\(168\) 0.0193728 0.357310i 0.00149464 0.0275670i
\(169\) 11.3658 1.23611i 0.874294 0.0950852i
\(170\) 10.7858 8.19914i 0.827231 0.628845i
\(171\) −0.716853 2.58187i −0.0548191 0.197441i
\(172\) 0.412044 0.0906977i 0.0314181 0.00691564i
\(173\) 10.9615 + 16.1670i 0.833387 + 1.22915i 0.971098 + 0.238681i \(0.0767151\pi\)
−0.137711 + 0.990472i \(0.543975\pi\)
\(174\) −1.93114 + 1.82927i −0.146399 + 0.138677i
\(175\) 0.107621 0.202995i 0.00813539 0.0153450i
\(176\) 4.82707 0.363854
\(177\) 7.66484 0.500231i 0.576125 0.0375997i
\(178\) −0.274836 −0.0205998
\(179\) 3.15217 5.94561i 0.235604 0.444396i −0.737313 0.675551i \(-0.763906\pi\)
0.972917 + 0.231155i \(0.0742505\pi\)
\(180\) −1.51556 + 1.43562i −0.112963 + 0.107004i
\(181\) −4.88018 7.19772i −0.362741 0.535002i 0.601900 0.798572i \(-0.294411\pi\)
−0.964640 + 0.263569i \(0.915100\pi\)
\(182\) −0.437486 + 0.0962980i −0.0324286 + 0.00713808i
\(183\) −1.43175 5.15669i −0.105838 0.381194i
\(184\) 2.56021 1.94622i 0.188741 0.143477i
\(185\) −20.3037 + 2.20816i −1.49276 + 0.162347i
\(186\) −0.100515 + 1.85390i −0.00737014 + 0.135934i
\(187\) 8.38112 30.1861i 0.612888 2.20742i
\(188\) −3.67592 9.22587i −0.268094 0.672866i
\(189\) 0.349469 + 0.0769238i 0.0254201 + 0.00559539i
\(190\) −0.302837 5.58551i −0.0219701 0.405215i
\(191\) −2.97468 18.1448i −0.215240 1.31291i −0.844434 0.535660i \(-0.820063\pi\)
0.629194 0.777249i \(-0.283385\pi\)
\(192\) 0.561187 0.827689i 0.0405002 0.0597333i
\(193\) −0.800104 + 2.00811i −0.0575928 + 0.144547i −0.954957 0.296743i \(-0.904100\pi\)
0.897365 + 0.441290i \(0.145479\pi\)
\(194\) −5.36437 4.07789i −0.385140 0.292776i
\(195\) 2.23926 + 1.34732i 0.160357 + 0.0964833i
\(196\) 6.51223 2.19423i 0.465159 0.156730i
\(197\) −18.2518 17.2890i −1.30039 1.23179i −0.956138 0.292915i \(-0.905375\pi\)
−0.344250 0.938878i \(-0.611867\pi\)
\(198\) −0.780934 + 4.76348i −0.0554985 + 0.338526i
\(199\) 7.95310 + 0.864951i 0.563780 + 0.0613148i 0.385571 0.922678i \(-0.374004\pi\)
0.178209 + 0.983993i \(0.442970\pi\)
\(200\) 0.550173 0.331028i 0.0389031 0.0234072i
\(201\) −5.87234 + 6.91345i −0.414203 + 0.487638i
\(202\) −4.85184 + 2.24470i −0.341374 + 0.157936i
\(203\) 0.863863 + 0.399666i 0.0606313 + 0.0280510i
\(204\) −4.20157 4.94647i −0.294169 0.346322i
\(205\) 17.8814 + 6.02495i 1.24889 + 0.420801i
\(206\) −0.176756 0.333396i −0.0123151 0.0232288i
\(207\) 1.50639 + 2.84134i 0.104701 + 0.197487i
\(208\) −1.18633 0.399721i −0.0822572 0.0277157i
\(209\) −8.37352 9.85807i −0.579208 0.681897i
\(210\) 0.677961 + 0.313658i 0.0467837 + 0.0216445i
\(211\) −20.7682 + 9.60839i −1.42974 + 0.661469i −0.973563 0.228420i \(-0.926644\pi\)
−0.456178 + 0.889888i \(0.650782\pi\)
\(212\) 4.82179 5.67665i 0.331162 0.389874i
\(213\) 1.14693 0.690087i 0.0785866 0.0472840i
\(214\) −10.3986 1.13092i −0.710835 0.0773079i
\(215\) −0.142491 + 0.869156i −0.00971780 + 0.0592760i
\(216\) 0.725995 + 0.687699i 0.0493977 + 0.0467920i
\(217\) 0.629585 0.212132i 0.0427390 0.0144005i
\(218\) 1.86048 + 1.11942i 0.126008 + 0.0758164i
\(219\) 7.80785 + 5.93537i 0.527606 + 0.401075i
\(220\) −3.72981 + 9.36113i −0.251464 + 0.631127i
\(221\) −4.55944 + 6.72468i −0.306701 + 0.452351i
\(222\) 1.58277 + 9.65449i 0.106229 + 0.647967i
\(223\) −0.473550 8.73412i −0.0317113 0.584880i −0.970606 0.240675i \(-0.922631\pi\)
0.938894 0.344205i \(-0.111852\pi\)
\(224\) −0.349469 0.0769238i −0.0233499 0.00513969i
\(225\) 0.237659 + 0.596479i 0.0158439 + 0.0397653i
\(226\) 5.44565 19.6134i 0.362239 1.30467i
\(227\) 0.971818 17.9241i 0.0645018 1.18967i −0.769773 0.638318i \(-0.779631\pi\)
0.834275 0.551349i \(-0.185887\pi\)
\(228\) −2.66383 + 0.289709i −0.176417 + 0.0191865i
\(229\) −18.5063 + 14.0681i −1.22293 + 0.929647i −0.998989 0.0449555i \(-0.985685\pi\)
−0.223941 + 0.974603i \(0.571892\pi\)
\(230\) 1.79606 + 6.46882i 0.118429 + 0.426541i
\(231\) 1.68691 0.371317i 0.110991 0.0244309i
\(232\) 1.49275 + 2.20165i 0.0980040 + 0.144545i
\(233\) 18.3407 17.3732i 1.20154 1.13816i 0.214662 0.976688i \(-0.431135\pi\)
0.986878 0.161471i \(-0.0516237\pi\)
\(234\) 0.586382 1.10603i 0.0383330 0.0723037i
\(235\) 20.7320 1.35241
\(236\) 0.746392 7.64480i 0.0485860 0.497634i
\(237\) −1.38905 −0.0902287
\(238\) −1.08782 + 2.05184i −0.0705126 + 0.133001i
\(239\) −1.82541 + 1.72912i −0.118076 + 0.111847i −0.744460 0.667667i \(-0.767293\pi\)
0.626384 + 0.779515i \(0.284534\pi\)
\(240\) 1.17151 + 1.72785i 0.0756208 + 0.111532i
\(241\) 0.965328 0.212485i 0.0621823 0.0136874i −0.183770 0.982969i \(-0.558830\pi\)
0.245953 + 0.969282i \(0.420899\pi\)
\(242\) 3.29077 + 11.8523i 0.211539 + 0.761893i
\(243\) −0.796093 + 0.605174i −0.0510694 + 0.0388219i
\(244\) −5.32039 + 0.578627i −0.340603 + 0.0370428i
\(245\) −0.776657 + 14.3246i −0.0496188 + 0.915165i
\(246\) 2.41815 8.70938i 0.154175 0.555290i
\(247\) 1.24160 + 3.11617i 0.0790009 + 0.198277i
\(248\) 1.81321 + 0.399118i 0.115139 + 0.0253440i
\(249\) 0.423304 + 7.80738i 0.0268258 + 0.494772i
\(250\) 1.90550 + 11.6230i 0.120514 + 0.735106i
\(251\) 3.10384 4.57783i 0.195913 0.288950i −0.717026 0.697047i \(-0.754497\pi\)
0.912939 + 0.408097i \(0.133807\pi\)
\(252\) 0.132448 0.332420i 0.00834345 0.0209405i
\(253\) 12.3583 + 9.39454i 0.776960 + 0.590630i
\(254\) −0.889271 0.535056i −0.0557978 0.0335724i
\(255\) 12.8392 4.32602i 0.804020 0.270906i
\(256\) −0.725995 0.687699i −0.0453747 0.0429812i
\(257\) 1.64149 10.0126i 0.102393 0.624570i −0.884915 0.465753i \(-0.845784\pi\)
0.987308 0.158817i \(-0.0507681\pi\)
\(258\) 0.419435 + 0.0456163i 0.0261129 + 0.00283994i
\(259\) 2.99971 1.80486i 0.186393 0.112149i
\(260\) 1.69184 1.99179i 0.104923 0.123525i
\(261\) −2.41414 + 1.11690i −0.149432 + 0.0691344i
\(262\) −10.2387 4.73692i −0.632548 0.292648i
\(263\) 2.73039 + 3.21446i 0.168363 + 0.198212i 0.839873 0.542784i \(-0.182630\pi\)
−0.671510 + 0.740996i \(0.734354\pi\)
\(264\) 4.57439 + 1.54129i 0.281534 + 0.0948600i
\(265\) 7.28298 + 13.7372i 0.447390 + 0.843867i
\(266\) 0.449125 + 0.847140i 0.0275376 + 0.0519415i
\(267\) −0.260449 0.0877556i −0.0159392 0.00537055i
\(268\) 5.87234 + 6.91345i 0.358710 + 0.422306i
\(269\) 11.5648 + 5.35046i 0.705120 + 0.326223i 0.739473 0.673187i \(-0.235075\pi\)
−0.0343530 + 0.999410i \(0.510937\pi\)
\(270\) −1.89462 + 0.876545i −0.115303 + 0.0533448i
\(271\) −17.3614 + 20.4394i −1.05463 + 1.24161i −0.0851688 + 0.996367i \(0.527143\pi\)
−0.969462 + 0.245241i \(0.921133\pi\)
\(272\) −5.56105 + 3.34597i −0.337188 + 0.202879i
\(273\) −0.445333 0.0484329i −0.0269528 0.00293129i
\(274\) −2.65454 + 16.1920i −0.160366 + 0.978192i
\(275\) 2.25013 + 2.13144i 0.135688 + 0.128531i
\(276\) 3.04762 1.02686i 0.183445 0.0618099i
\(277\) −5.21322 3.13669i −0.313232 0.188465i 0.350253 0.936655i \(-0.386096\pi\)
−0.663485 + 0.748190i \(0.730923\pi\)
\(278\) −3.01111 2.28899i −0.180594 0.137284i
\(279\) −0.687206 + 1.72476i −0.0411419 + 0.103258i
\(280\) 0.419208 0.618285i 0.0250525 0.0369496i
\(281\) −3.90947 23.8467i −0.233219 1.42258i −0.800639 0.599147i \(-0.795507\pi\)
0.567420 0.823429i \(-0.307942\pi\)
\(282\) −0.537665 9.91665i −0.0320175 0.590528i
\(283\) −18.6955 4.11519i −1.11133 0.244623i −0.378884 0.925444i \(-0.623692\pi\)
−0.732449 + 0.680821i \(0.761623\pi\)
\(284\) −0.495443 1.24347i −0.0293991 0.0737863i
\(285\) 1.49648 5.38982i 0.0886436 0.319265i
\(286\) 0.327152 6.03396i 0.0193449 0.356796i
\(287\) −3.21545 + 0.349701i −0.189802 + 0.0206422i
\(288\) 0.796093 0.605174i 0.0469102 0.0356602i
\(289\) 6.72052 + 24.2051i 0.395325 + 1.42383i
\(290\) −5.42307 + 1.19371i −0.318454 + 0.0700970i
\(291\) −3.78149 5.57728i −0.221675 0.326946i
\(292\) 7.12035 6.74476i 0.416687 0.394707i
\(293\) −6.81438 + 12.8533i −0.398101 + 0.750897i −0.998820 0.0485624i \(-0.984536\pi\)
0.600720 + 0.799460i \(0.294881\pi\)
\(294\) 6.87195 0.400781
\(295\) 14.2488 + 7.35451i 0.829597 + 0.428196i
\(296\) 9.78337 0.568647
\(297\) −2.26104 + 4.26478i −0.131199 + 0.247467i
\(298\) −13.0659 + 12.3767i −0.756888 + 0.716962i
\(299\) −2.25931 3.33223i −0.130659 0.192708i
\(300\) 0.627071 0.138029i 0.0362039 0.00796909i
\(301\) −0.0403896 0.145470i −0.00232802 0.00838477i
\(302\) −17.7569 + 13.4984i −1.02179 + 0.776747i
\(303\) −5.31459 + 0.577997i −0.305315 + 0.0332051i
\(304\) −0.145067 + 2.67561i −0.00832019 + 0.153457i
\(305\) 2.98886 10.7649i 0.171142 0.616397i
\(306\) −2.40222 6.02911i −0.137326 0.344661i
\(307\) 19.5808 + 4.31005i 1.11753 + 0.245988i 0.735075 0.677985i \(-0.237147\pi\)
0.382458 + 0.923973i \(0.375078\pi\)
\(308\) −0.0935138 1.72476i −0.00532844 0.0982773i
\(309\) −0.0610490 0.372382i −0.00347296 0.0211841i
\(310\) −2.17505 + 3.20797i −0.123535 + 0.182200i
\(311\) −5.62426 + 14.1158i −0.318923 + 0.800435i 0.678884 + 0.734245i \(0.262464\pi\)
−0.997807 + 0.0661902i \(0.978916\pi\)
\(312\) −0.996598 0.757594i −0.0564212 0.0428903i
\(313\) 25.6912 + 15.4579i 1.45215 + 0.873732i 0.999836 0.0181238i \(-0.00576930\pi\)
0.452319 + 0.891856i \(0.350597\pi\)
\(314\) 1.66191 0.559962i 0.0937868 0.0316005i
\(315\) 0.542320 + 0.513713i 0.0305563 + 0.0289444i
\(316\) −0.224724 + 1.37075i −0.0126417 + 0.0771110i
\(317\) 4.79813 + 0.521828i 0.269490 + 0.0293088i 0.241866 0.970310i \(-0.422240\pi\)
0.0276237 + 0.999618i \(0.491206\pi\)
\(318\) 6.38195 3.83989i 0.357882 0.215330i
\(319\) −8.31242 + 9.78614i −0.465406 + 0.547919i
\(320\) 1.89462 0.876545i 0.105913 0.0490003i
\(321\) −9.49318 4.39201i −0.529857 0.245138i
\(322\) −0.745002 0.877084i −0.0415173 0.0488780i
\(323\) 16.4800 + 5.55277i 0.916973 + 0.308964i
\(324\) 0.468408 + 0.883512i 0.0260227 + 0.0490840i
\(325\) −0.376506 0.710165i −0.0208848 0.0393929i
\(326\) −5.76838 1.94359i −0.319481 0.107646i
\(327\) 1.40566 + 1.65487i 0.0777332 + 0.0915146i
\(328\) −8.20343 3.79531i −0.452959 0.209561i
\(329\) −3.22528 + 1.49217i −0.177815 + 0.0822662i
\(330\) −6.52359 + 7.68017i −0.359112 + 0.422779i
\(331\) 14.0861 8.47531i 0.774241 0.465845i −0.0728176 0.997345i \(-0.523199\pi\)
0.847058 + 0.531500i \(0.178371\pi\)
\(332\) 7.77301 + 0.845366i 0.426599 + 0.0463955i
\(333\) −1.58277 + 9.65449i −0.0867354 + 0.529063i
\(334\) 2.51155 + 2.37907i 0.137426 + 0.130177i
\(335\) −17.9447 + 6.04628i −0.980425 + 0.330344i
\(336\) −0.306613 0.184483i −0.0167271 0.0100644i
\(337\) 5.37465 + 4.08570i 0.292776 + 0.222562i 0.741243 0.671237i \(-0.234237\pi\)
−0.448467 + 0.893799i \(0.648030\pi\)
\(338\) 4.23173 10.6208i 0.230176 0.577698i
\(339\) 11.4232 16.8479i 0.620422 0.915055i
\(340\) −2.19189 13.3699i −0.118872 0.725085i
\(341\) 0.485195 + 8.94890i 0.0262748 + 0.484610i
\(342\) −2.61690 0.576022i −0.141505 0.0311477i
\(343\) −1.83732 4.61131i −0.0992057 0.248988i
\(344\) 0.112872 0.406529i 0.00608567 0.0219186i
\(345\) −0.363463 + 6.70368i −0.0195682 + 0.360914i
\(346\) 19.4182 2.11186i 1.04393 0.113534i
\(347\) 6.42834 4.88670i 0.345091 0.262332i −0.418243 0.908335i \(-0.637354\pi\)
0.763334 + 0.646004i \(0.223561\pi\)
\(348\) 0.711623 + 2.56303i 0.0381470 + 0.137393i
\(349\) −5.51281 + 1.21346i −0.295094 + 0.0649551i −0.360050 0.932933i \(-0.617240\pi\)
0.0649558 + 0.997888i \(0.479309\pi\)
\(350\) −0.128938 0.190169i −0.00689202 0.0101650i
\(351\) 0.908845 0.860904i 0.0485106 0.0459517i
\(352\) 2.26104 4.26478i 0.120514 0.227313i
\(353\) −11.4939 −0.611760 −0.305880 0.952070i \(-0.598951\pi\)
−0.305880 + 0.952070i \(0.598951\pi\)
\(354\) 3.14832 7.00629i 0.167331 0.372380i
\(355\) 2.79428 0.148305
\(356\) −0.128736 + 0.242821i −0.00682297 + 0.0128695i
\(357\) −1.68603 + 1.59709i −0.0892340 + 0.0845269i
\(358\) −3.77652 5.56995i −0.199595 0.294381i
\(359\) −31.9516 + 7.03307i −1.68634 + 0.371191i −0.951643 0.307205i \(-0.900606\pi\)
−0.734696 + 0.678396i \(0.762675\pi\)
\(360\) 0.558482 + 2.01147i 0.0294346 + 0.106014i
\(361\) −9.40987 + 7.15319i −0.495256 + 0.376484i
\(362\) −8.64519 + 0.940221i −0.454381 + 0.0494169i
\(363\) −0.665943 + 12.2826i −0.0349529 + 0.644669i
\(364\) −0.119842 + 0.431631i −0.00628141 + 0.0226236i
\(365\) 7.57828 + 19.0201i 0.396666 + 0.995555i
\(366\) −5.22664 1.15047i −0.273201 0.0601361i
\(367\) −0.264316 4.87502i −0.0137972 0.254474i −0.997292 0.0735393i \(-0.976571\pi\)
0.983495 0.180934i \(-0.0579122\pi\)
\(368\) −0.520285 3.17360i −0.0271217 0.165435i
\(369\) 5.07248 7.48135i 0.264063 0.389464i
\(370\) −7.55948 + 18.9729i −0.392998 + 0.986352i
\(371\) −2.12173 1.61290i −0.110155 0.0837376i
\(372\) 1.59086 + 0.957187i 0.0824821 + 0.0496279i
\(373\) 1.63405 0.550577i 0.0846081 0.0285078i −0.276679 0.960962i \(-0.589234\pi\)
0.361287 + 0.932455i \(0.382337\pi\)
\(374\) −22.7440 21.5442i −1.17606 1.11402i
\(375\) −1.90550 + 11.6230i −0.0983996 + 0.600211i
\(376\) −9.87300 1.07375i −0.509161 0.0553746i
\(377\) 2.85328 1.71676i 0.146951 0.0884178i
\(378\) 0.231657 0.272728i 0.0119152 0.0140276i
\(379\) 10.4485 4.83398i 0.536702 0.248305i −0.132763 0.991148i \(-0.542385\pi\)
0.669466 + 0.742843i \(0.266523\pi\)
\(380\) −5.07671 2.34874i −0.260430 0.120488i
\(381\) −0.671876 0.790993i −0.0344212 0.0405238i
\(382\) −17.4245 5.87099i −0.891514 0.300386i
\(383\) 13.7205 + 25.8797i 0.701087 + 1.32239i 0.936559 + 0.350510i \(0.113992\pi\)
−0.235472 + 0.971881i \(0.575664\pi\)
\(384\) −0.468408 0.883512i −0.0239034 0.0450865i
\(385\) 3.41708 + 1.15135i 0.174150 + 0.0586781i
\(386\) 1.39941 + 1.64752i 0.0712283 + 0.0838565i
\(387\) 0.382913 + 0.177155i 0.0194646 + 0.00900527i
\(388\) −6.11558 + 2.82937i −0.310472 + 0.143640i
\(389\) 20.5293 24.1690i 1.04088 1.22542i 0.0671413 0.997743i \(-0.478612\pi\)
0.973737 0.227674i \(-0.0731120\pi\)
\(390\) 2.23926 1.34732i 0.113389 0.0682240i
\(391\) −20.7494 2.25664i −1.04934 0.114123i
\(392\) 1.11176 6.78143i 0.0561523 0.342514i
\(393\) −8.19022 7.75819i −0.413142 0.391349i
\(394\) −23.8244 + 8.02737i −1.20026 + 0.404413i
\(395\) −2.48466 1.49497i −0.125017 0.0752201i
\(396\) 3.84280 + 2.92122i 0.193108 + 0.146797i
\(397\) 13.1339 32.9637i 0.659173 1.65440i −0.0931883 0.995649i \(-0.529706\pi\)
0.752361 0.658751i \(-0.228915\pi\)
\(398\) 4.48949 6.62151i 0.225038 0.331906i
\(399\) 0.155122 + 0.946201i 0.00776580 + 0.0473693i
\(400\) −0.0347616 0.641140i −0.00173808 0.0320570i
\(401\) −8.33124 1.83384i −0.416042 0.0915778i 0.00201620 0.999998i \(-0.499358\pi\)
−0.418058 + 0.908420i \(0.637289\pi\)
\(402\) 3.35747 + 8.42661i 0.167455 + 0.420281i
\(403\) 0.621797 2.23951i 0.0309739 0.111558i
\(404\) −0.289423 + 5.33809i −0.0143993 + 0.265580i
\(405\) −2.07533 + 0.225705i −0.103124 + 0.0112154i
\(406\) 0.757750 0.576027i 0.0376065 0.0285877i
\(407\) 12.6340 + 45.5037i 0.626246 + 2.25553i
\(408\) −6.33832 + 1.39517i −0.313793 + 0.0690712i
\(409\) 6.24482 + 9.21043i 0.308787 + 0.455426i 0.950142 0.311818i \(-0.100938\pi\)
−0.641355 + 0.767244i \(0.721628\pi\)
\(410\) 13.6989 12.9763i 0.676541 0.640854i
\(411\) −7.68569 + 14.4968i −0.379107 + 0.715072i
\(412\) −0.377354 −0.0185909
\(413\) −2.74602 0.118592i −0.135123 0.00583554i
\(414\) 3.21597 0.158056
\(415\) −7.64552 + 14.4210i −0.375304 + 0.707898i
\(416\) −0.908845 + 0.860904i −0.0445598 + 0.0422093i
\(417\) −2.12261 3.13062i −0.103945 0.153307i
\(418\) −12.6319 + 2.78050i −0.617849 + 0.135999i
\(419\) 2.69327 + 9.70028i 0.131575 + 0.473889i 0.999750 0.0223687i \(-0.00712076\pi\)
−0.868175 + 0.496258i \(0.834707\pi\)
\(420\) 0.594683 0.452066i 0.0290176 0.0220586i
\(421\) 34.0443 3.70254i 1.65922 0.180451i 0.770034 0.638003i \(-0.220239\pi\)
0.889182 + 0.457553i \(0.151274\pi\)
\(422\) −1.23887 + 22.8496i −0.0603072 + 1.11230i
\(423\) 2.65688 9.56923i 0.129182 0.465272i
\(424\) −2.75682 6.91910i −0.133883 0.336021i
\(425\) −4.06972 0.895813i −0.197410 0.0434533i
\(426\) −0.0724669 1.33657i −0.00351103 0.0647572i
\(427\) 0.309820 + 1.88982i 0.0149932 + 0.0914547i
\(428\) −5.86998 + 8.65757i −0.283736 + 0.418479i
\(429\) 2.23668 5.61364i 0.107988 0.271029i
\(430\) 0.701166 + 0.533013i 0.0338132 + 0.0257042i
\(431\) 31.9222 + 19.2070i 1.53764 + 0.925168i 0.996443 + 0.0842721i \(0.0268565\pi\)
0.541198 + 0.840895i \(0.317971\pi\)
\(432\) 0.947653 0.319302i 0.0455940 0.0153624i
\(433\) 11.8211 + 11.1975i 0.568086 + 0.538120i 0.916923 0.399064i \(-0.130665\pi\)
−0.348837 + 0.937183i \(0.613423\pi\)
\(434\) 0.107482 0.655611i 0.00515930 0.0314703i
\(435\) −5.52035 0.600374i −0.264680 0.0287857i
\(436\) 1.86048 1.11942i 0.0891009 0.0536103i
\(437\) −5.57873 + 6.56779i −0.266867 + 0.314180i
\(438\) 8.90123 4.11815i 0.425317 0.196773i
\(439\) −15.9113 7.36136i −0.759406 0.351339i 0.00167238 0.999999i \(-0.499468\pi\)
−0.761078 + 0.648660i \(0.775330\pi\)
\(440\) 6.52359 + 7.68017i 0.311000 + 0.366138i
\(441\) 6.51223 + 2.19423i 0.310106 + 0.104487i
\(442\) 3.80565 + 7.17822i 0.181016 + 0.341433i
\(443\) 15.1971 + 28.6648i 0.722036 + 1.36191i 0.923954 + 0.382503i \(0.124938\pi\)
−0.201918 + 0.979402i \(0.564717\pi\)
\(444\) 9.27124 + 3.12384i 0.439994 + 0.148251i
\(445\) −0.371430 0.437281i −0.0176075 0.0207291i
\(446\) −7.93852 3.67275i −0.375900 0.173910i
\(447\) −16.3338 + 7.55684i −0.772564 + 0.357426i
\(448\) −0.231657 + 0.272728i −0.0109448 + 0.0128852i
\(449\) −8.99308 + 5.41096i −0.424410 + 0.255359i −0.711698 0.702485i \(-0.752074\pi\)
0.287289 + 0.957844i \(0.407246\pi\)
\(450\) 0.638318 + 0.0694213i 0.0300906 + 0.00327255i
\(451\) 7.05874 43.0564i 0.332383 2.02745i
\(452\) −14.7779 13.9984i −0.695095 0.658429i
\(453\) −21.1374 + 7.12202i −0.993122 + 0.334622i
\(454\) −15.3810 9.25442i −0.721865 0.434332i
\(455\) −0.744461 0.565924i −0.0349009 0.0265309i
\(456\) −0.991801 + 2.48923i −0.0464453 + 0.116569i
\(457\) −0.345511 + 0.509590i −0.0161623 + 0.0238376i −0.835684 0.549210i \(-0.814929\pi\)
0.819522 + 0.573048i \(0.194239\pi\)
\(458\) 3.76085 + 22.9402i 0.175733 + 1.07192i
\(459\) −0.351364 6.48053i −0.0164003 0.302485i
\(460\) 6.55657 + 1.44321i 0.305702 + 0.0672900i
\(461\) −11.6057 29.1280i −0.540529 1.35663i −0.905000 0.425411i \(-0.860129\pi\)
0.364471 0.931215i \(-0.381250\pi\)
\(462\) 0.462100 1.66433i 0.0214988 0.0774318i
\(463\) 0.476973 8.79725i 0.0221668 0.408843i −0.966301 0.257414i \(-0.917130\pi\)
0.988468 0.151429i \(-0.0483875\pi\)
\(464\) 2.64440 0.287596i 0.122763 0.0133513i
\(465\) −3.08551 + 2.34554i −0.143087 + 0.108772i
\(466\) −6.75853 24.3420i −0.313083 1.12762i
\(467\) 33.5458 7.38399i 1.55231 0.341690i 0.645680 0.763608i \(-0.276574\pi\)
0.906634 + 0.421918i \(0.138643\pi\)
\(468\) −0.702528 1.03615i −0.0324744 0.0478961i
\(469\) 2.35648 2.23218i 0.108812 0.103072i
\(470\) 9.71106 18.3170i 0.447938 0.844901i
\(471\) 1.75371 0.0808066
\(472\) −6.40465 4.24033i −0.294798 0.195177i
\(473\) 2.03658 0.0936421
\(474\) −0.650644 + 1.22725i −0.0298851 + 0.0563692i
\(475\) −1.24906 + 1.18318i −0.0573110 + 0.0542879i
\(476\) 1.30328 + 1.92220i 0.0597358 + 0.0881037i
\(477\) 7.27396 1.60112i 0.333052 0.0733102i
\(478\) 0.672660 + 2.42270i 0.0307668 + 0.110812i
\(479\) −10.7986 + 8.20891i −0.493402 + 0.375075i −0.822084 0.569366i \(-0.807189\pi\)
0.328682 + 0.944441i \(0.393396\pi\)
\(480\) 2.07533 0.225705i 0.0947252 0.0103020i
\(481\) 0.663062 12.2295i 0.0302330 0.557615i
\(482\) 0.264435 0.952409i 0.0120447 0.0433810i
\(483\) −0.425949 1.06905i −0.0193813 0.0486435i
\(484\) 12.0131 + 2.64427i 0.546048 + 0.120194i
\(485\) −0.761560 14.0462i −0.0345807 0.637803i
\(486\) 0.161782 + 0.986827i 0.00733858 + 0.0447634i
\(487\) −20.5808 + 30.3544i −0.932606 + 1.37549i −0.00578688 + 0.999983i \(0.501842\pi\)
−0.926819 + 0.375508i \(0.877468\pi\)
\(488\) −1.98089 + 4.97166i −0.0896708 + 0.225057i
\(489\) −4.84583 3.68371i −0.219136 0.166583i
\(490\) 12.2922 + 7.39595i 0.555303 + 0.334115i
\(491\) 12.3327 4.15535i 0.556565 0.187529i −0.0269416 0.999637i \(-0.508577\pi\)
0.583506 + 0.812108i \(0.301680\pi\)
\(492\) −6.56216 6.21601i −0.295845 0.280239i
\(493\) 2.79292 17.0361i 0.125787 0.767265i
\(494\) 3.33475 + 0.362676i 0.150037 + 0.0163176i
\(495\) −8.63439 + 5.19514i −0.388087 + 0.233504i
\(496\) 1.20195 1.41505i 0.0539692 0.0635374i
\(497\) −0.434705 + 0.201116i −0.0194992 + 0.00902129i
\(498\) 7.09619 + 3.28305i 0.317988 + 0.147117i
\(499\) −5.18237 6.10115i −0.231995 0.273125i 0.633830 0.773472i \(-0.281482\pi\)
−0.865825 + 0.500347i \(0.833206\pi\)
\(500\) 11.1616 + 3.76080i 0.499164 + 0.168188i
\(501\) 1.62044 + 3.05647i 0.0723958 + 0.136553i
\(502\) −2.59070 4.88657i −0.115628 0.218098i
\(503\) −39.7827 13.4043i −1.77382 0.597670i −0.774434 0.632655i \(-0.781965\pi\)
−0.999388 + 0.0349853i \(0.988862\pi\)
\(504\) −0.231657 0.272728i −0.0103188 0.0121483i
\(505\) −10.1285 4.68595i −0.450713 0.208522i
\(506\) 14.0889 6.51823i 0.626329 0.289771i
\(507\) 7.40147 8.71368i 0.328711 0.386988i
\(508\) −0.889271 + 0.535056i −0.0394550 + 0.0237393i
\(509\) −9.09404 0.989036i −0.403086 0.0438383i −0.0956693 0.995413i \(-0.530499\pi\)
−0.307417 + 0.951575i \(0.599465\pi\)
\(510\) 2.19189 13.3699i 0.0970583 0.592030i
\(511\) −2.54791 2.41351i −0.112713 0.106767i
\(512\) −0.947653 + 0.319302i −0.0418807 + 0.0141113i
\(513\) −2.29598 1.38145i −0.101370 0.0609924i
\(514\) −8.07738 6.14027i −0.356278 0.270836i
\(515\) 0.291576 0.731801i 0.0128484 0.0322470i
\(516\) 0.236769 0.349209i 0.0104232 0.0153730i
\(517\) −7.75562 47.3072i −0.341092 2.08057i
\(518\) −0.189531 3.49569i −0.00832751 0.153592i
\(519\) 19.0760 + 4.19895i 0.837345 + 0.184314i
\(520\) −0.967296 2.42773i −0.0424187 0.106463i
\(521\) 10.1628 36.6032i 0.445242 1.60362i −0.311730 0.950171i \(-0.600909\pi\)
0.756973 0.653447i \(-0.226678\pi\)
\(522\) −0.144009 + 2.65609i −0.00630310 + 0.116254i
\(523\) 4.49778 0.489163i 0.196674 0.0213896i −0.00925168 0.999957i \(-0.502945\pi\)
0.205926 + 0.978568i \(0.433979\pi\)
\(524\) −8.98101 + 6.82719i −0.392337 + 0.298247i
\(525\) −0.0614671 0.221384i −0.00268264 0.00966201i
\(526\) 4.11895 0.906650i 0.179595 0.0395318i
\(527\) −6.76206 9.97329i −0.294560 0.434443i
\(528\) 3.50443 3.31958i 0.152511 0.144466i
\(529\) −5.92891 + 11.1831i −0.257779 + 0.486222i
\(530\) 15.5484 0.675377
\(531\) 5.22063 5.63427i 0.226556 0.244507i
\(532\) 0.958832 0.0415707
\(533\) −5.30022 + 9.99727i −0.229578 + 0.433030i
\(534\) −0.199530 + 0.189005i −0.00863450 + 0.00817903i
\(535\) −12.2539 18.0732i −0.529784 0.781373i
\(536\) 8.85877 1.94996i 0.382641 0.0842256i
\(537\) −1.80034 6.48423i −0.0776903 0.279815i
\(538\) 10.1443 7.71146i 0.437350 0.332465i
\(539\) 32.9770 3.58646i 1.42042 0.154480i
\(540\) −0.113018 + 2.08450i −0.00486354 + 0.0897026i
\(541\) 9.02684 32.5118i 0.388094 1.39779i −0.469259 0.883061i \(-0.655479\pi\)
0.857353 0.514729i \(-0.172107\pi\)
\(542\) 9.92626 + 24.9130i 0.426369 + 1.07011i
\(543\) −8.49285 1.86942i −0.364463 0.0802244i
\(544\) 0.351364 + 6.48053i 0.0150646 + 0.277851i
\(545\) 0.733309 + 4.47299i 0.0314115 + 0.191602i
\(546\) −0.251389 + 0.370771i −0.0107584 + 0.0158675i
\(547\) 12.0130 30.1504i 0.513640 1.28914i −0.412155 0.911114i \(-0.635224\pi\)
0.925795 0.378026i \(-0.123397\pi\)
\(548\) 13.0624 + 9.92976i 0.557997 + 0.424178i
\(549\) −4.58570 2.75912i −0.195713 0.117756i
\(550\) 2.93713 0.989636i 0.125240 0.0421982i
\(551\) −5.17457 4.90162i −0.220444 0.208816i
\(552\) 0.520285 3.17360i 0.0221448 0.135077i
\(553\) 0.494137 + 0.0537407i 0.0210129 + 0.00228529i
\(554\) −5.21322 + 3.13669i −0.221488 + 0.133265i
\(555\) −13.2218 + 15.5659i −0.561235 + 0.660737i
\(556\) −3.43278 + 1.58817i −0.145582 + 0.0673535i
\(557\) 23.1365 + 10.7041i 0.980324 + 0.453546i 0.843547 0.537056i \(-0.180463\pi\)
0.136777 + 0.990602i \(0.456326\pi\)
\(558\) 1.20195 + 1.41505i 0.0508826 + 0.0599036i
\(559\) −0.500522 0.168645i −0.0211698 0.00713294i
\(560\) −0.349902 0.659985i −0.0147861 0.0278895i
\(561\) −14.6743 27.6786i −0.619549 1.16859i
\(562\) −22.9001 7.71594i −0.965982 0.325477i
\(563\) 15.7464 + 18.5381i 0.663633 + 0.781289i 0.986253 0.165239i \(-0.0528397\pi\)
−0.322621 + 0.946528i \(0.604564\pi\)
\(564\) −9.01333 4.17001i −0.379530 0.175589i
\(565\) 38.5658 17.8424i 1.62247 0.750636i
\(566\) −12.3930 + 14.5901i −0.520915 + 0.613269i
\(567\) 0.306613 0.184483i 0.0128765 0.00774756i
\(568\) −1.33069 0.144721i −0.0558345 0.00607237i
\(569\) 3.76479 22.9642i 0.157828 0.962708i −0.782553 0.622585i \(-0.786083\pi\)
0.940381 0.340124i \(-0.110469\pi\)
\(570\) −4.06101 3.84679i −0.170097 0.161124i
\(571\) −38.4418 + 12.9526i −1.60874 + 0.542048i −0.973188 0.230010i \(-0.926124\pi\)
−0.635552 + 0.772058i \(0.719228\pi\)
\(572\) −5.17784 3.11540i −0.216496 0.130261i
\(573\) −14.6377 11.1273i −0.611500 0.464851i
\(574\) −1.19718 + 3.00469i −0.0499693 + 0.125413i
\(575\) 1.15880 1.70911i 0.0483254 0.0712747i
\(576\) −0.161782 0.986827i −0.00674092 0.0411178i
\(577\) −1.33852 24.6876i −0.0557233 1.02776i −0.884015 0.467459i \(-0.845170\pi\)
0.828291 0.560298i \(-0.189313\pi\)
\(578\) 24.5335 + 5.40022i 1.02046 + 0.224620i
\(579\) 0.800104 + 2.00811i 0.0332512 + 0.0834542i
\(580\) −1.48556 + 5.35049i −0.0616844 + 0.222167i
\(581\) 0.151473 2.79375i 0.00628415 0.115904i
\(582\) −6.69888 + 0.728547i −0.277677 + 0.0301992i
\(583\) 28.6215 21.7575i 1.18538 0.901104i
\(584\) −2.62384 9.45022i −0.108575 0.391053i
\(585\) 2.55224 0.561790i 0.105522 0.0232272i
\(586\) 8.16412 + 12.0412i 0.337257 + 0.497417i
\(587\) −9.09360 + 8.61391i −0.375333 + 0.355534i −0.851993 0.523554i \(-0.824606\pi\)
0.476660 + 0.879088i \(0.341847\pi\)
\(588\) 3.21888 6.07145i 0.132744 0.250383i
\(589\) −4.97489 −0.204987
\(590\) 13.1721 9.14408i 0.542285 0.376456i
\(591\) −25.1404 −1.03414
\(592\) 4.58261 8.64372i 0.188344 0.355255i
\(593\) 4.69649 4.44875i 0.192862 0.182688i −0.585175 0.810907i \(-0.698974\pi\)
0.778037 + 0.628219i \(0.216216\pi\)
\(594\) 2.70889 + 3.99532i 0.111147 + 0.163930i
\(595\) −4.73474 + 1.04219i −0.194105 + 0.0427258i
\(596\) 4.81477 + 17.3412i 0.197221 + 0.710324i
\(597\) 6.36874 4.84139i 0.260655 0.198145i
\(598\) −4.00234 + 0.435281i −0.163668 + 0.0178000i
\(599\) −0.0812100 + 1.49783i −0.00331815 + 0.0611997i −0.999724 0.0235136i \(-0.992515\pi\)
0.996405 + 0.0847133i \(0.0269974\pi\)
\(600\) 0.171775 0.618678i 0.00701269 0.0252574i
\(601\) 2.15480 + 5.40813i 0.0878960 + 0.220602i 0.966353 0.257219i \(-0.0828061\pi\)
−0.878457 + 0.477821i \(0.841427\pi\)
\(602\) −0.147444 0.0324548i −0.00600935 0.00132276i
\(603\) 0.491086 + 9.05754i 0.0199986 + 0.368852i
\(604\) 3.60855 + 22.0112i 0.146830 + 0.895622i
\(605\) −14.4104 + 21.2537i −0.585864 + 0.864085i
\(606\) −1.97873 + 4.96625i −0.0803806 + 0.201740i
\(607\) 29.6975 + 22.5754i 1.20538 + 0.916309i 0.998078 0.0619678i \(-0.0197376\pi\)
0.207305 + 0.978276i \(0.433531\pi\)
\(608\) 2.29598 + 1.38145i 0.0931145 + 0.0560251i
\(609\) 0.902011 0.303923i 0.0365513 0.0123156i
\(610\) −8.11092 7.68307i −0.328402 0.311079i
\(611\) −2.01136 + 12.2687i −0.0813707 + 0.496340i
\(612\) −6.45201 0.701698i −0.260807 0.0283645i
\(613\) −13.2352 + 7.96333i −0.534563 + 0.321636i −0.757111 0.653286i \(-0.773390\pi\)
0.222548 + 0.974922i \(0.428562\pi\)
\(614\) 12.9798 15.2810i 0.523821 0.616690i
\(615\) 17.1252 7.92295i 0.690554 0.319484i
\(616\) −1.56765 0.725272i −0.0631624 0.0292220i
\(617\) −14.3347 16.8761i −0.577094 0.679408i 0.393723 0.919229i \(-0.371187\pi\)
−0.970817 + 0.239821i \(0.922911\pi\)
\(618\) −0.357600 0.120490i −0.0143848 0.00484680i
\(619\) 18.1452 + 34.2255i 0.729317 + 1.37564i 0.919184 + 0.393828i \(0.128849\pi\)
−0.189867 + 0.981810i \(0.560806\pi\)
\(620\) 1.81546 + 3.42432i 0.0729107 + 0.137524i
\(621\) 3.04762 + 1.02686i 0.122297 + 0.0412066i
\(622\) 9.83705 + 11.5811i 0.394430 + 0.464359i
\(623\) 0.0892563 + 0.0412943i 0.00357598 + 0.00165442i
\(624\) −1.13616 + 0.525643i −0.0454827 + 0.0210426i
\(625\) −13.8394 + 16.2930i −0.553575 + 0.651719i
\(626\) 25.6912 15.4579i 1.02683 0.617822i
\(627\) −12.8585 1.39845i −0.513520 0.0558487i
\(628\) 0.283718 1.73061i 0.0113216 0.0690587i
\(629\) −46.0968 43.6652i −1.83800 1.74104i
\(630\) 0.707899 0.238519i 0.0282034 0.00950282i
\(631\) 15.7758 + 9.49198i 0.628024 + 0.377870i 0.793699 0.608311i \(-0.208153\pi\)
−0.165675 + 0.986180i \(0.552980\pi\)
\(632\) 1.10582 + 0.840619i 0.0439870 + 0.0334380i
\(633\) −8.46993 + 21.2579i −0.336649 + 0.844926i
\(634\) 2.70853 3.99478i 0.107569 0.158653i
\(635\) −0.350506 2.13799i −0.0139094 0.0848436i
\(636\) −0.403231 7.43717i −0.0159892 0.294903i
\(637\) −8.40160 1.84933i −0.332884 0.0732732i
\(638\) 4.75256 + 11.9280i 0.188156 + 0.472235i
\(639\) 0.358096 1.28975i 0.0141661 0.0510216i
\(640\) 0.113018 2.08450i 0.00446744 0.0823971i
\(641\) 7.20213 0.783279i 0.284467 0.0309376i 0.0352267 0.999379i \(-0.488785\pi\)
0.249240 + 0.968442i \(0.419819\pi\)
\(642\) −8.32708 + 6.33008i −0.328644 + 0.249828i
\(643\) 9.68715 + 34.8900i 0.382024 + 1.37593i 0.865649 + 0.500651i \(0.166906\pi\)
−0.483625 + 0.875275i \(0.660680\pi\)
\(644\) −1.12388 + 0.247384i −0.0442870 + 0.00974831i
\(645\) 0.494271 + 0.728995i 0.0194619 + 0.0287041i
\(646\) 12.6253 11.9593i 0.496737 0.470534i
\(647\) −11.2298 + 21.1816i −0.441488 + 0.832734i 0.558507 + 0.829500i \(0.311374\pi\)
−0.999995 + 0.00323455i \(0.998970\pi\)
\(648\) 1.00000 0.0392837
\(649\) 11.4515 35.2647i 0.449510 1.38426i
\(650\) −0.803798 −0.0315275
\(651\) 0.311193 0.586972i 0.0121966 0.0230053i
\(652\) −4.41915 + 4.18604i −0.173067 + 0.163938i
\(653\) 24.5653 + 36.2311i 0.961315 + 1.41783i 0.907865 + 0.419263i \(0.137711\pi\)
0.0534500 + 0.998571i \(0.482978\pi\)
\(654\) 2.12052 0.466762i 0.0829190 0.0182519i
\(655\) −6.30044 22.6921i −0.246179 0.886655i
\(656\) −7.19576 + 5.47007i −0.280947 + 0.213571i
\(657\) 9.75022 1.06040i 0.380392 0.0413701i
\(658\) −0.192395 + 3.54852i −0.00750035 + 0.138336i
\(659\) −10.4754 + 37.7289i −0.408063 + 1.46971i 0.419199 + 0.907894i \(0.362311\pi\)
−0.827262 + 0.561816i \(0.810103\pi\)
\(660\) 3.72981 + 9.36113i 0.145183 + 0.364381i
\(661\) −45.9008 10.1035i −1.78533 0.392981i −0.805467 0.592640i \(-0.798086\pi\)
−0.979865 + 0.199659i \(0.936017\pi\)
\(662\) −0.890002 16.4151i −0.0345909 0.637992i
\(663\) 1.31442 + 8.01761i 0.0510479 + 0.311378i
\(664\) 4.38783 6.47157i 0.170281 0.251146i
\(665\) −0.740877 + 1.85946i −0.0287300 + 0.0721068i
\(666\) 7.78847 + 5.92064i 0.301797 + 0.229420i
\(667\) 7.32993 + 4.41027i 0.283816 + 0.170766i
\(668\) 3.27836 1.10461i 0.126844 0.0427386i
\(669\) −6.35025 6.01527i −0.245515 0.232564i
\(670\) −3.06350 + 18.6865i −0.118353 + 0.721923i
\(671\) −25.6819 2.79308i −0.991439 0.107826i
\(672\) −0.306613 + 0.184483i −0.0118279 + 0.00711659i
\(673\) −26.3897 + 31.0684i −1.01725 + 1.19760i −0.0371042 + 0.999311i \(0.511813\pi\)
−0.980144 + 0.198286i \(0.936463\pi\)
\(674\) 6.12730 2.83479i 0.236015 0.109192i
\(675\) 0.582738 + 0.269603i 0.0224296 + 0.0103770i
\(676\) −7.40147 8.71368i −0.284672 0.335142i
\(677\) 29.4866 + 9.93518i 1.13326 + 0.381840i 0.822566 0.568670i \(-0.192542\pi\)
0.310695 + 0.950510i \(0.399438\pi\)
\(678\) −9.53464 17.9842i −0.366176 0.690681i
\(679\) 1.12944 + 2.13035i 0.0433438 + 0.0817551i
\(680\) −12.8392 4.32602i −0.492360 0.165895i
\(681\) −11.6209 13.6812i −0.445313 0.524263i
\(682\) 8.13373 + 3.76306i 0.311456 + 0.144095i
\(683\) 8.83414 4.08711i 0.338029 0.156389i −0.243529 0.969894i \(-0.578305\pi\)
0.581558 + 0.813505i \(0.302443\pi\)
\(684\) −1.73470 + 2.04224i −0.0663278 + 0.0780872i
\(685\) −29.3499 + 17.6592i −1.12140 + 0.674725i
\(686\) −4.93477 0.536688i −0.188410 0.0204908i
\(687\) −3.76085 + 22.9402i −0.143485 + 0.875221i
\(688\) −0.306303 0.290146i −0.0116777 0.0110617i
\(689\) −8.83589 + 2.97716i −0.336621 + 0.113421i
\(690\) 5.75254 + 3.46119i 0.218995 + 0.131765i
\(691\) −17.8188 13.5455i −0.677860 0.515296i 0.208659 0.977988i \(-0.433090\pi\)
−0.886519 + 0.462693i \(0.846883\pi\)
\(692\) 7.22979 18.1454i 0.274836 0.689785i
\(693\) 0.969335 1.42966i 0.0368220 0.0543084i
\(694\) −1.30637 7.96848i −0.0495890 0.302479i
\(695\) −0.427476 7.88433i −0.0162151 0.299070i
\(696\) 2.59780 + 0.571819i 0.0984694 + 0.0216748i
\(697\) 21.7132 + 54.4961i 0.822448 + 2.06419i
\(698\) −1.51014 + 5.43903i −0.0571597 + 0.205870i
\(699\) 1.36770 25.2258i 0.0517313 0.954127i
\(700\) −0.228412 + 0.0248413i −0.00863317 + 0.000938914i
\(701\) −18.1828 + 13.8222i −0.686755 + 0.522058i −0.889363 0.457202i \(-0.848852\pi\)
0.202608 + 0.979260i \(0.435058\pi\)
\(702\) −0.334908 1.20623i −0.0126403 0.0455262i
\(703\) −25.6020 + 5.63544i −0.965599 + 0.212545i
\(704\) −2.70889 3.99532i −0.102095 0.150579i
\(705\) 15.0514 14.2574i 0.566867 0.536965i
\(706\) −5.38385 + 10.1550i −0.202624 + 0.382189i
\(707\) 1.91296 0.0719442
\(708\) −4.71544 6.06338i −0.177217 0.227876i
\(709\) 43.9863 1.65194 0.825970 0.563715i \(-0.190628\pi\)
0.825970 + 0.563715i \(0.190628\pi\)
\(710\) 1.30886 2.46878i 0.0491208 0.0926516i
\(711\) −1.00845 + 0.955251i −0.0378197 + 0.0358247i
\(712\) 0.154234 + 0.227479i 0.00578018 + 0.00852513i
\(713\) 5.83123 1.28355i 0.218381 0.0480694i
\(714\) 0.621298 + 2.23771i 0.0232515 + 0.0837444i
\(715\) 10.0425 7.63414i 0.375570 0.285501i
\(716\) −6.69007 + 0.727589i −0.250020 + 0.0271913i
\(717\) −0.136124 + 2.51066i −0.00508365 + 0.0937625i
\(718\) −8.75258 + 31.5239i −0.326643 + 1.17646i
\(719\) −8.91960 22.3865i −0.332645 0.834876i −0.996228 0.0867734i \(-0.972344\pi\)
0.663583 0.748103i \(-0.269035\pi\)
\(720\) 2.03876 + 0.448764i 0.0759800 + 0.0167245i
\(721\) 0.00731038 + 0.134832i 0.000272253 + 0.00502141i
\(722\) 1.91227 + 11.6643i 0.0711674 + 0.434102i
\(723\) 0.554698 0.818119i 0.0206295 0.0304262i
\(724\) −3.21878 + 8.07854i −0.119625 + 0.300236i
\(725\) 1.35967 + 1.03360i 0.0504970 + 0.0383868i
\(726\) 10.5399 + 6.34164i 0.391172 + 0.235360i
\(727\) −49.9388 + 16.8263i −1.85213 + 0.624054i −0.858294 + 0.513159i \(0.828475\pi\)
−0.993832 + 0.110895i \(0.964628\pi\)
\(728\) 0.325216 + 0.308061i 0.0120533 + 0.0114175i
\(729\) −0.161782 + 0.986827i −0.00599193 + 0.0365491i
\(730\) 20.3542 + 2.21365i 0.753342 + 0.0819309i
\(731\) −2.34625 + 1.41169i −0.0867792 + 0.0522133i
\(732\) −3.46466 + 4.07891i −0.128057 + 0.150761i
\(733\) 25.5958 11.8419i 0.945404 0.437391i 0.114262 0.993451i \(-0.463550\pi\)
0.831142 + 0.556060i \(0.187688\pi\)
\(734\) −4.43094 2.04997i −0.163549 0.0756659i
\(735\) 9.28717 + 10.9337i 0.342562 + 0.403296i
\(736\) −3.04762 1.02686i −0.112337 0.0378507i
\(737\) 20.5096 + 38.6851i 0.755479 + 1.42499i
\(738\) −4.23387 7.98593i −0.155851 0.293966i
\(739\) 0.994245 + 0.335000i 0.0365739 + 0.0123232i 0.337529 0.941315i \(-0.390409\pi\)
−0.300955 + 0.953638i \(0.597305\pi\)
\(740\) 13.2218 + 15.5659i 0.486044 + 0.572215i
\(741\) 3.04438 + 1.40848i 0.111838 + 0.0517419i
\(742\) −2.41886 + 1.11908i −0.0887990 + 0.0410828i
\(743\) 14.7849 17.4062i 0.542406 0.638570i −0.420858 0.907127i \(-0.638271\pi\)
0.963264 + 0.268557i \(0.0865467\pi\)
\(744\) 1.59086 0.957187i 0.0583237 0.0350922i
\(745\) −37.3501 4.06207i −1.36840 0.148823i
\(746\) 0.278963 1.70160i 0.0102136 0.0623000i
\(747\) 5.67645 + 5.37702i 0.207690 + 0.196735i
\(748\) −29.6880 + 10.0031i −1.08550 + 0.365748i
\(749\) 3.20715 + 1.92968i 0.117187 + 0.0705089i
\(750\) 9.37654 + 7.12786i 0.342383 + 0.260273i
\(751\) −13.1747 + 33.0659i −0.480750 + 1.20659i 0.466047 + 0.884760i \(0.345678\pi\)
−0.946797 + 0.321832i \(0.895701\pi\)
\(752\) −5.57327 + 8.21996i −0.203236 + 0.299751i
\(753\) −0.894792 5.45799i −0.0326080 0.198900i
\(754\) −0.180279 3.32505i −0.00656538 0.121091i
\(755\) −45.4745 10.0097i −1.65499 0.364290i
\(756\) −0.132448 0.332420i −0.00481709 0.0120900i
\(757\) −2.50329 + 9.01603i −0.0909836 + 0.327693i −0.995009 0.0997855i \(-0.968184\pi\)
0.904025 + 0.427479i \(0.140598\pi\)
\(758\) 0.623275 11.4956