Properties

Label 354.2.c.a.353.7
Level 354
Weight 2
Character 354.353
Analytic conductor 2.827
Analytic rank 0
Dimension 10
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 354 = 2 \cdot 3 \cdot 59 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 354.c (of order \(2\) and degree \(1\))

Newform invariants

Self dual: No
Analytic conductor: \(2.82670423155\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: 10.0.41542366334681088.1
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 353.7
Root \(-0.869925 - 1.49774i\)
Character \(\chi\) = 354.353
Dual form 354.2.c.a.353.8

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{2} +(0.869925 - 1.49774i) q^{3} +1.00000 q^{4} -1.66014i q^{5} +(-0.869925 + 1.49774i) q^{6} -3.57946 q^{7} -1.00000 q^{8} +(-1.48646 - 2.60585i) q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +(0.869925 - 1.49774i) q^{3} +1.00000 q^{4} -1.66014i q^{5} +(-0.869925 + 1.49774i) q^{6} -3.57946 q^{7} -1.00000 q^{8} +(-1.48646 - 2.60585i) q^{9} +1.66014i q^{10} -4.82340 q^{11} +(0.869925 - 1.49774i) q^{12} +0.418899i q^{13} +3.57946 q^{14} +(-2.48646 - 1.44420i) q^{15} +1.00000 q^{16} +0.742751i q^{17} +(1.48646 + 2.60585i) q^{18} +1.24394 q^{19} -1.66014i q^{20} +(-3.11386 + 5.36111i) q^{21} +4.82340 q^{22} +1.25480 q^{23} +(-0.869925 + 1.49774i) q^{24} +2.24394 q^{25} -0.418899i q^{26} +(-5.19599 - 0.0405586i) q^{27} -3.57946 q^{28} +4.78075i q^{29} +(2.48646 + 1.44420i) q^{30} -10.4469i q^{31} -1.00000 q^{32} +(-4.19599 + 7.22420i) q^{33} -0.742751i q^{34} +5.94240i q^{35} +(-1.48646 - 2.60585i) q^{36} -6.02199i q^{37} -1.24394 q^{38} +(0.627402 + 0.364411i) q^{39} +1.66014i q^{40} -9.24875i q^{41} +(3.11386 - 5.36111i) q^{42} +3.58258i q^{43} -4.82340 q^{44} +(-4.32607 + 2.46773i) q^{45} -1.25480 q^{46} -8.39199 q^{47} +(0.869925 - 1.49774i) q^{48} +5.81253 q^{49} -2.24394 q^{50} +(1.11245 + 0.646138i) q^{51} +0.418899i q^{52} -9.66765i q^{53} +(5.19599 + 0.0405586i) q^{54} +8.00751i q^{55} +3.57946 q^{56} +(1.08213 - 1.86310i) q^{57} -4.78075i q^{58} +(5.47701 + 5.38539i) q^{59} +(-2.48646 - 1.44420i) q^{60} -9.08804i q^{61} +10.4469i q^{62} +(5.32072 + 9.32752i) q^{63} +1.00000 q^{64} +0.695430 q^{65} +(4.19599 - 7.22420i) q^{66} -13.0941i q^{67} +0.742751i q^{68} +(1.09159 - 1.87937i) q^{69} -5.94240i q^{70} +4.01996i q^{71} +(1.48646 + 2.60585i) q^{72} +10.6897i q^{73} +6.02199i q^{74} +(1.95206 - 3.36084i) q^{75} +1.24394 q^{76} +17.2652 q^{77} +(-0.627402 - 0.364411i) q^{78} +3.55772 q^{79} -1.66014i q^{80} +(-4.58087 + 7.74697i) q^{81} +9.24875i q^{82} -2.87316 q^{83} +(-3.11386 + 5.36111i) q^{84} +1.23307 q^{85} -3.58258i q^{86} +(7.16033 + 4.15890i) q^{87} +4.82340 q^{88} +16.0885 q^{89} +(4.32607 - 2.46773i) q^{90} -1.49943i q^{91} +1.25480 q^{92} +(-15.6468 - 9.08804i) q^{93} +8.39199 q^{94} -2.06511i q^{95} +(-0.869925 + 1.49774i) q^{96} +11.5275i q^{97} -5.81253 q^{98} +(7.16979 + 12.5690i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10q - 10q^{2} - q^{3} + 10q^{4} + q^{6} - 2q^{7} - 10q^{8} + 3q^{9} + O(q^{10}) \) \( 10q - 10q^{2} - q^{3} + 10q^{4} + q^{6} - 2q^{7} - 10q^{8} + 3q^{9} + 4q^{11} - q^{12} + 2q^{14} - 7q^{15} + 10q^{16} - 3q^{18} - 6q^{19} - 3q^{21} - 4q^{22} - 8q^{23} + q^{24} + 4q^{25} - 10q^{27} - 2q^{28} + 7q^{30} - 10q^{32} + 3q^{36} + 6q^{38} - 4q^{39} + 3q^{42} + 4q^{44} - 11q^{45} + 8q^{46} - q^{48} + 8q^{49} - 4q^{50} + 2q^{51} + 10q^{54} + 2q^{56} - 3q^{57} + 20q^{59} - 7q^{60} - 19q^{63} + 10q^{64} + 16q^{65} + 14q^{69} - 3q^{72} - 4q^{75} - 6q^{76} + 48q^{77} + 4q^{78} + 6q^{79} + 7q^{81} + 12q^{83} - 3q^{84} - 4q^{85} - 15q^{87} - 4q^{88} - 16q^{89} + 11q^{90} - 8q^{92} - 52q^{93} + q^{96} - 8q^{98} + 2q^{99} + O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/354\mathbb{Z}\right)^\times\).

\(n\) \(61\) \(119\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0.869925 1.49774i 0.502252 0.864722i
\(4\) 1.00000 0.500000
\(5\) 1.66014i 0.742437i −0.928546 0.371218i \(-0.878940\pi\)
0.928546 0.371218i \(-0.121060\pi\)
\(6\) −0.869925 + 1.49774i −0.355146 + 0.611450i
\(7\) −3.57946 −1.35291 −0.676454 0.736485i \(-0.736484\pi\)
−0.676454 + 0.736485i \(0.736484\pi\)
\(8\) −1.00000 −0.353553
\(9\) −1.48646 2.60585i −0.495487 0.868616i
\(10\) 1.66014i 0.524982i
\(11\) −4.82340 −1.45431 −0.727154 0.686474i \(-0.759158\pi\)
−0.727154 + 0.686474i \(0.759158\pi\)
\(12\) 0.869925 1.49774i 0.251126 0.432361i
\(13\) 0.418899i 0.116182i 0.998311 + 0.0580908i \(0.0185013\pi\)
−0.998311 + 0.0580908i \(0.981499\pi\)
\(14\) 3.57946 0.956651
\(15\) −2.48646 1.44420i −0.642001 0.372890i
\(16\) 1.00000 0.250000
\(17\) 0.742751i 0.180143i 0.995935 + 0.0900717i \(0.0287096\pi\)
−0.995935 + 0.0900717i \(0.971290\pi\)
\(18\) 1.48646 + 2.60585i 0.350362 + 0.614204i
\(19\) 1.24394 0.285379 0.142689 0.989768i \(-0.454425\pi\)
0.142689 + 0.989768i \(0.454425\pi\)
\(20\) 1.66014i 0.371218i
\(21\) −3.11386 + 5.36111i −0.679500 + 1.16989i
\(22\) 4.82340 1.02835
\(23\) 1.25480 0.261645 0.130822 0.991406i \(-0.458238\pi\)
0.130822 + 0.991406i \(0.458238\pi\)
\(24\) −0.869925 + 1.49774i −0.177573 + 0.305725i
\(25\) 2.24394 0.448787
\(26\) 0.418899i 0.0821528i
\(27\) −5.19599 0.0405586i −0.999970 0.00780551i
\(28\) −3.57946 −0.676454
\(29\) 4.78075i 0.887763i 0.896085 + 0.443882i \(0.146399\pi\)
−0.896085 + 0.443882i \(0.853601\pi\)
\(30\) 2.48646 + 1.44420i 0.453963 + 0.263673i
\(31\) 10.4469i 1.87632i −0.346198 0.938161i \(-0.612528\pi\)
0.346198 0.938161i \(-0.387472\pi\)
\(32\) −1.00000 −0.176777
\(33\) −4.19599 + 7.22420i −0.730429 + 1.25757i
\(34\) 0.742751i 0.127381i
\(35\) 5.94240i 1.00445i
\(36\) −1.48646 2.60585i −0.247743 0.434308i
\(37\) 6.02199i 0.990010i −0.868890 0.495005i \(-0.835166\pi\)
0.868890 0.495005i \(-0.164834\pi\)
\(38\) −1.24394 −0.201793
\(39\) 0.627402 + 0.364411i 0.100465 + 0.0583524i
\(40\) 1.66014i 0.262491i
\(41\) 9.24875i 1.44441i −0.691678 0.722206i \(-0.743128\pi\)
0.691678 0.722206i \(-0.256872\pi\)
\(42\) 3.11386 5.36111i 0.480479 0.827237i
\(43\) 3.58258i 0.546338i 0.961966 + 0.273169i \(0.0880719\pi\)
−0.961966 + 0.273169i \(0.911928\pi\)
\(44\) −4.82340 −0.727154
\(45\) −4.32607 + 2.46773i −0.644892 + 0.367868i
\(46\) −1.25480 −0.185011
\(47\) −8.39199 −1.22410 −0.612049 0.790820i \(-0.709654\pi\)
−0.612049 + 0.790820i \(0.709654\pi\)
\(48\) 0.869925 1.49774i 0.125563 0.216180i
\(49\) 5.81253 0.830361
\(50\) −2.24394 −0.317341
\(51\) 1.11245 + 0.646138i 0.155774 + 0.0904774i
\(52\) 0.418899i 0.0580908i
\(53\) 9.66765i 1.32795i −0.747753 0.663977i \(-0.768867\pi\)
0.747753 0.663977i \(-0.231133\pi\)
\(54\) 5.19599 + 0.0405586i 0.707085 + 0.00551933i
\(55\) 8.00751i 1.07973i
\(56\) 3.57946 0.478325
\(57\) 1.08213 1.86310i 0.143332 0.246773i
\(58\) 4.78075i 0.627744i
\(59\) 5.47701 + 5.38539i 0.713046 + 0.701118i
\(60\) −2.48646 1.44420i −0.321001 0.186445i
\(61\) 9.08804i 1.16360i −0.813330 0.581802i \(-0.802348\pi\)
0.813330 0.581802i \(-0.197652\pi\)
\(62\) 10.4469i 1.32676i
\(63\) 5.32072 + 9.32752i 0.670348 + 1.17516i
\(64\) 1.00000 0.125000
\(65\) 0.695430 0.0862575
\(66\) 4.19599 7.22420i 0.516491 0.889238i
\(67\) 13.0941i 1.59970i −0.600203 0.799848i \(-0.704913\pi\)
0.600203 0.799848i \(-0.295087\pi\)
\(68\) 0.742751i 0.0900717i
\(69\) 1.09159 1.87937i 0.131411 0.226250i
\(70\) 5.94240i 0.710253i
\(71\) 4.01996i 0.477082i 0.971132 + 0.238541i \(0.0766691\pi\)
−0.971132 + 0.238541i \(0.923331\pi\)
\(72\) 1.48646 + 2.60585i 0.175181 + 0.307102i
\(73\) 10.6897i 1.25113i 0.780172 + 0.625565i \(0.215131\pi\)
−0.780172 + 0.625565i \(0.784869\pi\)
\(74\) 6.02199i 0.700043i
\(75\) 1.95206 3.36084i 0.225404 0.388076i
\(76\) 1.24394 0.142689
\(77\) 17.2652 1.96755
\(78\) −0.627402 0.364411i −0.0710393 0.0412614i
\(79\) 3.55772 0.400275 0.200138 0.979768i \(-0.435861\pi\)
0.200138 + 0.979768i \(0.435861\pi\)
\(80\) 1.66014i 0.185609i
\(81\) −4.58087 + 7.74697i −0.508986 + 0.860775i
\(82\) 9.24875i 1.02135i
\(83\) −2.87316 −0.315370 −0.157685 0.987489i \(-0.550403\pi\)
−0.157685 + 0.987489i \(0.550403\pi\)
\(84\) −3.11386 + 5.36111i −0.339750 + 0.584945i
\(85\) 1.23307 0.133745
\(86\) 3.58258i 0.386320i
\(87\) 7.16033 + 4.15890i 0.767668 + 0.445881i
\(88\) 4.82340 0.514176
\(89\) 16.0885 1.70538 0.852691 0.522415i \(-0.174969\pi\)
0.852691 + 0.522415i \(0.174969\pi\)
\(90\) 4.32607 2.46773i 0.456008 0.260122i
\(91\) 1.49943i 0.157183i
\(92\) 1.25480 0.130822
\(93\) −15.6468 9.08804i −1.62250 0.942386i
\(94\) 8.39199 0.865567
\(95\) 2.06511i 0.211876i
\(96\) −0.869925 + 1.49774i −0.0887864 + 0.152863i
\(97\) 11.5275i 1.17044i 0.810876 + 0.585218i \(0.198991\pi\)
−0.810876 + 0.585218i \(0.801009\pi\)
\(98\) −5.81253 −0.587154
\(99\) 7.16979 + 12.5690i 0.720591 + 1.26324i
\(100\) 2.24394 0.224394
\(101\) 11.2652 1.12092 0.560462 0.828180i \(-0.310624\pi\)
0.560462 + 0.828180i \(0.310624\pi\)
\(102\) −1.11245 0.646138i −0.110149 0.0639771i
\(103\) 1.60162i 0.157812i −0.996882 0.0789059i \(-0.974857\pi\)
0.996882 0.0789059i \(-0.0251427\pi\)
\(104\) 0.418899i 0.0410764i
\(105\) 8.90018 + 5.16945i 0.868569 + 0.504486i
\(106\) 9.66765i 0.939005i
\(107\) 0.0585239i 0.00565772i −0.999996 0.00282886i \(-0.999100\pi\)
0.999996 0.00282886i \(-0.000900456\pi\)
\(108\) −5.19599 0.0405586i −0.499985 0.00390275i
\(109\) 5.56810i 0.533327i −0.963790 0.266664i \(-0.914079\pi\)
0.963790 0.266664i \(-0.0859212\pi\)
\(110\) 8.00751i 0.763486i
\(111\) −9.01939 5.23868i −0.856083 0.497234i
\(112\) −3.57946 −0.338227
\(113\) −3.43798 −0.323418 −0.161709 0.986839i \(-0.551701\pi\)
−0.161709 + 0.986839i \(0.551701\pi\)
\(114\) −1.08213 + 1.86310i −0.101351 + 0.174495i
\(115\) 2.08315i 0.194255i
\(116\) 4.78075i 0.443882i
\(117\) 1.09159 0.622676i 0.100917 0.0575664i
\(118\) −5.47701 5.38539i −0.504199 0.495765i
\(119\) 2.65865i 0.243718i
\(120\) 2.48646 + 1.44420i 0.226982 + 0.131837i
\(121\) 12.2652 1.11501
\(122\) 9.08804i 0.822793i
\(123\) −13.8522 8.04572i −1.24901 0.725458i
\(124\) 10.4469i 0.938161i
\(125\) 12.0259i 1.07563i
\(126\) −5.32072 9.32752i −0.474008 0.830962i
\(127\) −22.0994 −1.96101 −0.980503 0.196505i \(-0.937041\pi\)
−0.980503 + 0.196505i \(0.937041\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 5.36578 + 3.11658i 0.472431 + 0.274399i
\(130\) −0.695430 −0.0609933
\(131\) 13.6966 1.19667 0.598337 0.801245i \(-0.295828\pi\)
0.598337 + 0.801245i \(0.295828\pi\)
\(132\) −4.19599 + 7.22420i −0.365214 + 0.628786i
\(133\) −4.45262 −0.386091
\(134\) 13.0941i 1.13116i
\(135\) −0.0673329 + 8.62608i −0.00579510 + 0.742414i
\(136\) 0.742751i 0.0636903i
\(137\) 7.16560i 0.612199i −0.952000 0.306099i \(-0.900976\pi\)
0.952000 0.306099i \(-0.0990240\pi\)
\(138\) −1.09159 + 1.87937i −0.0929219 + 0.159983i
\(139\) 5.20504 0.441486 0.220743 0.975332i \(-0.429152\pi\)
0.220743 + 0.975332i \(0.429152\pi\)
\(140\) 5.94240i 0.502225i
\(141\) −7.30040 + 12.5690i −0.614805 + 1.05850i
\(142\) 4.01996i 0.337348i
\(143\) 2.02051i 0.168964i
\(144\) −1.48646 2.60585i −0.123872 0.217154i
\(145\) 7.93672 0.659108
\(146\) 10.6897i 0.884682i
\(147\) 5.05647 8.70567i 0.417050 0.718031i
\(148\) 6.02199i 0.495005i
\(149\) −8.82075 −0.722624 −0.361312 0.932445i \(-0.617671\pi\)
−0.361312 + 0.932445i \(0.617671\pi\)
\(150\) −1.95206 + 3.36084i −0.159385 + 0.274411i
\(151\) 0.872794i 0.0710270i −0.999369 0.0355135i \(-0.988693\pi\)
0.999369 0.0355135i \(-0.0113067\pi\)
\(152\) −1.24394 −0.100897
\(153\) 1.93549 1.10407i 0.156475 0.0892587i
\(154\) −17.2652 −1.39127
\(155\) −17.3434 −1.39305
\(156\) 0.627402 + 0.364411i 0.0502324 + 0.0291762i
\(157\) 23.3287i 1.86183i 0.365231 + 0.930917i \(0.380990\pi\)
−0.365231 + 0.930917i \(0.619010\pi\)
\(158\) −3.55772 −0.283037
\(159\) −14.4796 8.41013i −1.14831 0.666967i
\(160\) 1.66014i 0.131246i
\(161\) −4.49152 −0.353981
\(162\) 4.58087 7.74697i 0.359907 0.608660i
\(163\) 4.74255 0.371465 0.185732 0.982600i \(-0.440534\pi\)
0.185732 + 0.982600i \(0.440534\pi\)
\(164\) 9.24875i 0.722206i
\(165\) 11.9932 + 6.96594i 0.933668 + 0.542297i
\(166\) 2.87316 0.223001
\(167\) 7.18517i 0.556005i 0.960580 + 0.278003i \(0.0896724\pi\)
−0.960580 + 0.278003i \(0.910328\pi\)
\(168\) 3.11386 5.36111i 0.240240 0.413618i
\(169\) 12.8245 0.986502
\(170\) −1.23307 −0.0945721
\(171\) −1.84906 3.24151i −0.141401 0.247884i
\(172\) 3.58258i 0.273169i
\(173\) 4.12797 0.313843 0.156922 0.987611i \(-0.449843\pi\)
0.156922 + 0.987611i \(0.449843\pi\)
\(174\) −7.16033 4.15890i −0.542823 0.315285i
\(175\) −8.03208 −0.607168
\(176\) −4.82340 −0.363577
\(177\) 12.8305 3.51826i 0.964400 0.264448i
\(178\) −16.0885 −1.20589
\(179\) −12.7736 −0.954746 −0.477373 0.878701i \(-0.658411\pi\)
−0.477373 + 0.878701i \(0.658411\pi\)
\(180\) −4.32607 + 2.46773i −0.322446 + 0.183934i
\(181\) −6.91511 −0.513996 −0.256998 0.966412i \(-0.582733\pi\)
−0.256998 + 0.966412i \(0.582733\pi\)
\(182\) 1.49943i 0.111145i
\(183\) −13.6115 7.90592i −1.00619 0.584422i
\(184\) −1.25480 −0.0925054
\(185\) −9.99735 −0.735020
\(186\) 15.6468 + 9.08804i 1.14728 + 0.666368i
\(187\) 3.58258i 0.261984i
\(188\) −8.39199 −0.612049
\(189\) 18.5988 + 0.145178i 1.35287 + 0.0105601i
\(190\) 2.06511i 0.149819i
\(191\) −3.69921 −0.267665 −0.133833 0.991004i \(-0.542728\pi\)
−0.133833 + 0.991004i \(0.542728\pi\)
\(192\) 0.869925 1.49774i 0.0627814 0.108090i
\(193\) −11.9714 −0.861724 −0.430862 0.902418i \(-0.641790\pi\)
−0.430862 + 0.902418i \(0.641790\pi\)
\(194\) 11.5275i 0.827623i
\(195\) 0.604972 1.04157i 0.0433230 0.0745887i
\(196\) 5.81253 0.415181
\(197\) 12.7702i 0.909841i −0.890532 0.454920i \(-0.849668\pi\)
0.890532 0.454920i \(-0.150332\pi\)
\(198\) −7.16979 12.5690i −0.509534 0.893242i
\(199\) 7.63327 0.541108 0.270554 0.962705i \(-0.412793\pi\)
0.270554 + 0.962705i \(0.412793\pi\)
\(200\) −2.24394 −0.158670
\(201\) −19.6115 11.3909i −1.38329 0.803450i
\(202\) −11.2652 −0.792613
\(203\) 17.1125i 1.20106i
\(204\) 1.11245 + 0.646138i 0.0778870 + 0.0452387i
\(205\) −15.3542 −1.07239
\(206\) 1.60162i 0.111590i
\(207\) −1.86522 3.26983i −0.129641 0.227269i
\(208\) 0.418899i 0.0290454i
\(209\) −6.00000 −0.415029
\(210\) −8.90018 5.16945i −0.614171 0.356726i
\(211\) 18.3522i 1.26342i −0.775204 0.631710i \(-0.782353\pi\)
0.775204 0.631710i \(-0.217647\pi\)
\(212\) 9.66765i 0.663977i
\(213\) 6.02086 + 3.49707i 0.412543 + 0.239615i
\(214\) 0.0585239i 0.00400061i
\(215\) 5.94758 0.405622
\(216\) 5.19599 + 0.0405586i 0.353543 + 0.00275966i
\(217\) 37.3943i 2.53849i
\(218\) 5.56810i 0.377119i
\(219\) 16.0103 + 9.29920i 1.08188 + 0.628382i
\(220\) 8.00751i 0.539866i
\(221\) −0.311137 −0.0209294
\(222\) 9.01939 + 5.23868i 0.605342 + 0.351597i
\(223\) −11.9108 −0.797607 −0.398804 0.917036i \(-0.630574\pi\)
−0.398804 + 0.917036i \(0.630574\pi\)
\(224\) 3.57946 0.239163
\(225\) −3.33552 5.84736i −0.222368 0.389824i
\(226\) 3.43798 0.228691
\(227\) 8.70313 0.577647 0.288823 0.957382i \(-0.406736\pi\)
0.288823 + 0.957382i \(0.406736\pi\)
\(228\) 1.08213 1.86310i 0.0716659 0.123387i
\(229\) 17.0329i 1.12557i 0.826604 + 0.562783i \(0.190270\pi\)
−0.826604 + 0.562783i \(0.809730\pi\)
\(230\) 2.08315i 0.137359i
\(231\) 15.0194 25.8587i 0.988203 1.70138i
\(232\) 4.78075i 0.313872i
\(233\) 9.87973 0.647243 0.323621 0.946187i \(-0.395100\pi\)
0.323621 + 0.946187i \(0.395100\pi\)
\(234\) −1.09159 + 0.622676i −0.0713592 + 0.0407056i
\(235\) 13.9319i 0.908815i
\(236\) 5.47701 + 5.38539i 0.356523 + 0.350559i
\(237\) 3.09495 5.32855i 0.201039 0.346127i
\(238\) 2.65865i 0.172334i
\(239\) 6.14770i 0.397662i −0.980034 0.198831i \(-0.936286\pi\)
0.980034 0.198831i \(-0.0637145\pi\)
\(240\) −2.48646 1.44420i −0.160500 0.0932225i
\(241\) 16.4096 1.05703 0.528516 0.848923i \(-0.322749\pi\)
0.528516 + 0.848923i \(0.322749\pi\)
\(242\) −12.2652 −0.788434
\(243\) 7.61795 + 13.6003i 0.488692 + 0.872457i
\(244\) 9.08804i 0.581802i
\(245\) 9.64961i 0.616491i
\(246\) 13.8522 + 8.04572i 0.883187 + 0.512977i
\(247\) 0.521083i 0.0331557i
\(248\) 10.4469i 0.663380i
\(249\) −2.49944 + 4.30325i −0.158395 + 0.272708i
\(250\) 12.0259i 0.760588i
\(251\) 5.45388i 0.344246i −0.985075 0.172123i \(-0.944937\pi\)
0.985075 0.172123i \(-0.0550626\pi\)
\(252\) 5.32072 + 9.32752i 0.335174 + 0.587579i
\(253\) −6.05242 −0.380512
\(254\) 22.0994 1.38664
\(255\) 1.07268 1.84682i 0.0671737 0.115652i
\(256\) 1.00000 0.0625000
\(257\) 20.1335i 1.25589i 0.778256 + 0.627947i \(0.216105\pi\)
−0.778256 + 0.627947i \(0.783895\pi\)
\(258\) −5.36578 3.11658i −0.334059 0.194030i
\(259\) 21.5555i 1.33939i
\(260\) 0.695430 0.0431288
\(261\) 12.4579 7.10640i 0.771125 0.439875i
\(262\) −13.6966 −0.846176
\(263\) 28.6271i 1.76522i 0.470102 + 0.882612i \(0.344217\pi\)
−0.470102 + 0.882612i \(0.655783\pi\)
\(264\) 4.19599 7.22420i 0.258246 0.444619i
\(265\) −16.0496 −0.985922
\(266\) 4.45262 0.273008
\(267\) 13.9958 24.0965i 0.856531 1.47468i
\(268\) 13.0941i 0.799848i
\(269\) 5.51883 0.336489 0.168244 0.985745i \(-0.446190\pi\)
0.168244 + 0.985745i \(0.446190\pi\)
\(270\) 0.0673329 8.62608i 0.00409775 0.524966i
\(271\) −30.9726 −1.88145 −0.940725 0.339170i \(-0.889854\pi\)
−0.940725 + 0.339170i \(0.889854\pi\)
\(272\) 0.742751i 0.0450359i
\(273\) −2.24576 1.30439i −0.135920 0.0789454i
\(274\) 7.16560i 0.432890i
\(275\) −10.8234 −0.652675
\(276\) 1.09159 1.87937i 0.0657057 0.113125i
\(277\) 19.9781 1.20037 0.600185 0.799861i \(-0.295094\pi\)
0.600185 + 0.799861i \(0.295094\pi\)
\(278\) −5.20504 −0.312177
\(279\) −27.2231 + 15.5289i −1.62980 + 0.929693i
\(280\) 5.94240i 0.355126i
\(281\) 23.4938i 1.40152i 0.713395 + 0.700762i \(0.247156\pi\)
−0.713395 + 0.700762i \(0.752844\pi\)
\(282\) 7.30040 12.5690i 0.434733 0.748475i
\(283\) 13.7557i 0.817692i 0.912603 + 0.408846i \(0.134069\pi\)
−0.912603 + 0.408846i \(0.865931\pi\)
\(284\) 4.01996i 0.238541i
\(285\) −3.09300 1.79649i −0.183213 0.106415i
\(286\) 2.02051i 0.119476i
\(287\) 33.1055i 1.95416i
\(288\) 1.48646 + 2.60585i 0.0875905 + 0.153551i
\(289\) 16.4483 0.967548
\(290\) −7.93672 −0.466060
\(291\) 17.2652 + 10.0280i 1.01210 + 0.587853i
\(292\) 10.6897i 0.625565i
\(293\) 19.3118i 1.12821i −0.825704 0.564103i \(-0.809222\pi\)
0.825704 0.564103i \(-0.190778\pi\)
\(294\) −5.05647 + 8.70567i −0.294899 + 0.507725i
\(295\) 8.94049 9.09259i 0.520536 0.529391i
\(296\) 6.02199i 0.350021i
\(297\) 25.0623 + 0.195630i 1.45426 + 0.0113516i
\(298\) 8.82075 0.510972
\(299\) 0.525636i 0.0303983i
\(300\) 1.95206 3.36084i 0.112702 0.194038i
\(301\) 12.8237i 0.739146i
\(302\) 0.872794i 0.0502237i
\(303\) 9.79984 16.8723i 0.562986 0.969287i
\(304\) 1.24394 0.0713447
\(305\) −15.0874 −0.863903
\(306\) −1.93549 + 1.10407i −0.110645 + 0.0631154i
\(307\) −26.6117 −1.51881 −0.759404 0.650619i \(-0.774509\pi\)
−0.759404 + 0.650619i \(0.774509\pi\)
\(308\) 17.2652 0.983773
\(309\) −2.39881 1.39329i −0.136463 0.0792613i
\(310\) 17.3434 0.985036
\(311\) 13.4625i 0.763389i −0.924288 0.381695i \(-0.875341\pi\)
0.924288 0.381695i \(-0.124659\pi\)
\(312\) −0.627402 0.364411i −0.0355196 0.0206307i
\(313\) 4.24421i 0.239897i −0.992780 0.119949i \(-0.961727\pi\)
0.992780 0.119949i \(-0.0382730\pi\)
\(314\) 23.3287i 1.31652i
\(315\) 15.4850 8.83314i 0.872480 0.497691i
\(316\) 3.55772 0.200138
\(317\) 5.48243i 0.307924i −0.988077 0.153962i \(-0.950797\pi\)
0.988077 0.153962i \(-0.0492033\pi\)
\(318\) 14.4796 + 8.41013i 0.811978 + 0.471617i
\(319\) 23.0595i 1.29108i
\(320\) 1.66014i 0.0928046i
\(321\) −0.0876537 0.0509114i −0.00489235 0.00284160i
\(322\) 4.49152 0.250303
\(323\) 0.923935i 0.0514091i
\(324\) −4.58087 + 7.74697i −0.254493 + 0.430387i
\(325\) 0.939982i 0.0521408i
\(326\) −4.74255 −0.262665
\(327\) −8.33957 4.84383i −0.461179 0.267864i
\(328\) 9.24875i 0.510677i
\(329\) 30.0388 1.65609
\(330\) −11.9932 6.96594i −0.660203 0.383462i
\(331\) 32.1662 1.76802 0.884008 0.467472i \(-0.154835\pi\)
0.884008 + 0.467472i \(0.154835\pi\)
\(332\) −2.87316 −0.157685
\(333\) −15.6924 + 8.95145i −0.859938 + 0.490537i
\(334\) 7.18517i 0.393155i
\(335\) −21.7380 −1.18767
\(336\) −3.11386 + 5.36111i −0.169875 + 0.292472i
\(337\) 17.9638i 0.978550i −0.872129 0.489275i \(-0.837261\pi\)
0.872129 0.489275i \(-0.162739\pi\)
\(338\) −12.8245 −0.697562
\(339\) −2.99078 + 5.14920i −0.162437 + 0.279666i
\(340\) 1.23307 0.0668726
\(341\) 50.3896i 2.72875i
\(342\) 1.84906 + 3.24151i 0.0999858 + 0.175281i
\(343\) 4.25050 0.229506
\(344\) 3.58258i 0.193160i
\(345\) −3.12002 1.81218i −0.167976 0.0975647i
\(346\) −4.12797 −0.221921
\(347\) 30.2193 1.62226 0.811129 0.584868i \(-0.198854\pi\)
0.811129 + 0.584868i \(0.198854\pi\)
\(348\) 7.16033 + 4.15890i 0.383834 + 0.222940i
\(349\) 27.1281i 1.45214i −0.687623 0.726068i \(-0.741346\pi\)
0.687623 0.726068i \(-0.258654\pi\)
\(350\) 8.03208 0.429333
\(351\) 0.0169899 2.17660i 0.000906856 0.116178i
\(352\) 4.82340 0.257088
\(353\) −15.5292 −0.826534 −0.413267 0.910610i \(-0.635612\pi\)
−0.413267 + 0.910610i \(0.635612\pi\)
\(354\) −12.8305 + 3.51826i −0.681934 + 0.186993i
\(355\) 6.67370 0.354203
\(356\) 16.0885 0.852691
\(357\) −3.98196 2.31282i −0.210748 0.122408i
\(358\) 12.7736 0.675107
\(359\) 9.70378i 0.512146i −0.966657 0.256073i \(-0.917571\pi\)
0.966657 0.256073i \(-0.0824287\pi\)
\(360\) 4.32607 2.46773i 0.228004 0.130061i
\(361\) −17.4526 −0.918559
\(362\) 6.91511 0.363450
\(363\) 10.6698 18.3700i 0.560017 0.964176i
\(364\) 1.49943i 0.0785915i
\(365\) 17.7463 0.928885
\(366\) 13.6115 + 7.90592i 0.711487 + 0.413249i
\(367\) 21.1320i 1.10308i −0.834147 0.551541i \(-0.814040\pi\)
0.834147 0.551541i \(-0.185960\pi\)
\(368\) 1.25480 0.0654112
\(369\) −24.1008 + 13.7479i −1.25464 + 0.715687i
\(370\) 9.99735 0.519737
\(371\) 34.6050i 1.79660i
\(372\) −15.6468 9.08804i −0.811248 0.471193i
\(373\) −26.4779 −1.37097 −0.685486 0.728085i \(-0.740410\pi\)
−0.685486 + 0.728085i \(0.740410\pi\)
\(374\) 3.58258i 0.185251i
\(375\) −18.0118 10.4617i −0.930123 0.540239i
\(376\) 8.39199 0.432784
\(377\) −2.00265 −0.103142
\(378\) −18.5988 0.145178i −0.956622 0.00746714i
\(379\) 2.78409 0.143009 0.0715047 0.997440i \(-0.477220\pi\)
0.0715047 + 0.997440i \(0.477220\pi\)
\(380\) 2.06511i 0.105938i
\(381\) −19.2248 + 33.0992i −0.984918 + 1.69572i
\(382\) 3.69921 0.189268
\(383\) 35.3588i 1.80675i −0.428853 0.903374i \(-0.641082\pi\)
0.428853 0.903374i \(-0.358918\pi\)
\(384\) −0.869925 + 1.49774i −0.0443932 + 0.0764313i
\(385\) 28.6626i 1.46078i
\(386\) 11.9714 0.609331
\(387\) 9.33565 5.32536i 0.474558 0.270703i
\(388\) 11.5275i 0.585218i
\(389\) 12.5625i 0.636943i −0.947932 0.318472i \(-0.896830\pi\)
0.947932 0.318472i \(-0.103170\pi\)
\(390\) −0.604972 + 1.04157i −0.0306340 + 0.0527422i
\(391\) 0.932006i 0.0471336i
\(392\) −5.81253 −0.293577
\(393\) 11.9150 20.5139i 0.601031 1.03479i
\(394\) 12.7702i 0.643354i
\(395\) 5.90632i 0.297179i
\(396\) 7.16979 + 12.5690i 0.360295 + 0.631618i
\(397\) 32.5653i 1.63440i −0.576351 0.817202i \(-0.695524\pi\)
0.576351 0.817202i \(-0.304476\pi\)
\(398\) −7.63327 −0.382621
\(399\) −3.87345 + 6.66888i −0.193915 + 0.333861i
\(400\) 2.24394 0.112197
\(401\) −25.7353 −1.28516 −0.642581 0.766218i \(-0.722136\pi\)
−0.642581 + 0.766218i \(0.722136\pi\)
\(402\) 19.6115 + 11.3909i 0.978135 + 0.568125i
\(403\) 4.37620 0.217994
\(404\) 11.2652 0.560462
\(405\) 12.8611 + 7.60489i 0.639071 + 0.377890i
\(406\) 17.1125i 0.849280i
\(407\) 29.0465i 1.43978i
\(408\) −1.11245 0.646138i −0.0550744 0.0319886i
\(409\) 2.79568i 0.138237i 0.997608 + 0.0691186i \(0.0220187\pi\)
−0.997608 + 0.0691186i \(0.977981\pi\)
\(410\) 15.3542 0.758291
\(411\) −10.7322 6.23354i −0.529381 0.307478i
\(412\) 1.60162i 0.0789059i
\(413\) −19.6047 19.2768i −0.964685 0.948548i
\(414\) 1.86522 + 3.26983i 0.0916704 + 0.160703i
\(415\) 4.76985i 0.234143i
\(416\) 0.418899i 0.0205382i
\(417\) 4.52799 7.79580i 0.221737 0.381762i
\(418\) 6.00000 0.293470
\(419\) −26.4494 −1.29214 −0.646070 0.763278i \(-0.723589\pi\)
−0.646070 + 0.763278i \(0.723589\pi\)
\(420\) 8.90018 + 5.16945i 0.434284 + 0.252243i
\(421\) 11.9509i 0.582452i −0.956654 0.291226i \(-0.905937\pi\)
0.956654 0.291226i \(-0.0940631\pi\)
\(422\) 18.3522i 0.893374i
\(423\) 12.4744 + 21.8682i 0.606524 + 1.06327i
\(424\) 9.66765i 0.469503i
\(425\) 1.66669i 0.0808461i
\(426\) −6.02086 3.49707i −0.291712 0.169433i
\(427\) 32.5303i 1.57425i
\(428\) 0.0585239i 0.00282886i
\(429\) −3.02621 1.75770i −0.146107 0.0848624i
\(430\) −5.94758 −0.286818
\(431\) 11.5375 0.555742 0.277871 0.960618i \(-0.410371\pi\)
0.277871 + 0.960618i \(0.410371\pi\)
\(432\) −5.19599 0.0405586i −0.249992 0.00195138i
\(433\) −36.2956 −1.74425 −0.872127 0.489279i \(-0.837260\pi\)
−0.872127 + 0.489279i \(0.837260\pi\)
\(434\) 37.3943i 1.79499i
\(435\) 6.90435 11.8872i 0.331038 0.569945i
\(436\) 5.56810i 0.266664i
\(437\) 1.56090 0.0746678
\(438\) −16.0103 9.29920i −0.765004 0.444333i
\(439\) 11.5445 0.550988 0.275494 0.961303i \(-0.411159\pi\)
0.275494 + 0.961303i \(0.411159\pi\)
\(440\) 8.00751i 0.381743i
\(441\) −8.64009 15.1466i −0.411433 0.721265i
\(442\) 0.311137 0.0147993
\(443\) 12.3499 0.586762 0.293381 0.955996i \(-0.405220\pi\)
0.293381 + 0.955996i \(0.405220\pi\)
\(444\) −9.01939 5.23868i −0.428041 0.248617i
\(445\) 26.7092i 1.26614i
\(446\) 11.9108 0.563993
\(447\) −7.67339 + 13.2112i −0.362939 + 0.624868i
\(448\) −3.57946 −0.169114
\(449\) 28.4979i 1.34490i 0.740143 + 0.672450i \(0.234758\pi\)
−0.740143 + 0.672450i \(0.765242\pi\)
\(450\) 3.33552 + 5.84736i 0.157238 + 0.275647i
\(451\) 44.6104i 2.10062i
\(452\) −3.43798 −0.161709
\(453\) −1.30722 0.759266i −0.0614186 0.0356734i
\(454\) −8.70313 −0.408458
\(455\) −2.48926 −0.116699
\(456\) −1.08213 + 1.86310i −0.0506755 + 0.0872475i
\(457\) 22.4605i 1.05066i −0.850900 0.525328i \(-0.823943\pi\)
0.850900 0.525328i \(-0.176057\pi\)
\(458\) 17.0329i 0.795896i
\(459\) 0.0301249 3.85933i 0.00140611 0.180138i
\(460\) 2.08315i 0.0971274i
\(461\) 6.76019i 0.314854i 0.987531 + 0.157427i \(0.0503198\pi\)
−0.987531 + 0.157427i \(0.949680\pi\)
\(462\) −15.0194 + 25.8587i −0.698765 + 1.20306i
\(463\) 32.1740i 1.49525i 0.664119 + 0.747627i \(0.268807\pi\)
−0.664119 + 0.747627i \(0.731193\pi\)
\(464\) 4.78075i 0.221941i
\(465\) −15.0874 + 25.9759i −0.699662 + 1.20460i
\(466\) −9.87973 −0.457670
\(467\) −29.7721 −1.37769 −0.688844 0.724909i \(-0.741882\pi\)
−0.688844 + 0.724909i \(0.741882\pi\)
\(468\) 1.09159 0.622676i 0.0504586 0.0287832i
\(469\) 46.8697i 2.16424i
\(470\) 13.9319i 0.642629i
\(471\) 34.9404 + 20.2942i 1.60997 + 0.935109i
\(472\) −5.47701 5.38539i −0.252100 0.247883i
\(473\) 17.2802i 0.794545i
\(474\) −3.09495 + 5.32855i −0.142156 + 0.244749i
\(475\) 2.79132 0.128074
\(476\) 2.65865i 0.121859i
\(477\) −25.1924 + 14.3706i −1.15348 + 0.657983i
\(478\) 6.14770i 0.281189i
\(479\) 11.4600i 0.523623i 0.965119 + 0.261811i \(0.0843199\pi\)
−0.965119 + 0.261811i \(0.915680\pi\)
\(480\) 2.48646 + 1.44420i 0.113491 + 0.0659183i
\(481\) 2.52261 0.115021
\(482\) −16.4096 −0.747435
\(483\) −3.90729 + 6.72714i −0.177788 + 0.306095i
\(484\) 12.2652 0.557507
\(485\) 19.1372 0.868975
\(486\) −7.61795 13.6003i −0.345557 0.616920i
\(487\) 8.42054 0.381571 0.190786 0.981632i \(-0.438896\pi\)
0.190786 + 0.981632i \(0.438896\pi\)
\(488\) 9.08804i 0.411396i
\(489\) 4.12566 7.10311i 0.186569 0.321214i
\(490\) 9.64961i 0.435925i
\(491\) 7.10664i 0.320718i 0.987059 + 0.160359i \(0.0512652\pi\)
−0.987059 + 0.160359i \(0.948735\pi\)
\(492\) −13.8522 8.04572i −0.624507 0.362729i
\(493\) −3.55091 −0.159925
\(494\) 0.521083i 0.0234447i
\(495\) 20.8663 11.9028i 0.937872 0.534993i
\(496\) 10.4469i 0.469081i
\(497\) 14.3893i 0.645448i
\(498\) 2.49944 4.30325i 0.112002 0.192833i
\(499\) 33.2330 1.48771 0.743856 0.668340i \(-0.232995\pi\)
0.743856 + 0.668340i \(0.232995\pi\)
\(500\) 12.0259i 0.537817i
\(501\) 10.7615 + 6.25056i 0.480790 + 0.279254i
\(502\) 5.45388i 0.243419i
\(503\) −41.4063 −1.84621 −0.923107 0.384544i \(-0.874359\pi\)
−0.923107 + 0.384544i \(0.874359\pi\)
\(504\) −5.32072 9.32752i −0.237004 0.415481i
\(505\) 18.7017i 0.832216i
\(506\) 6.05242 0.269063
\(507\) 11.1564 19.2078i 0.495472 0.853049i
\(508\) −22.0994 −0.980503
\(509\) 7.71730 0.342063 0.171032 0.985266i \(-0.445290\pi\)
0.171032 + 0.985266i \(0.445290\pi\)
\(510\) −1.07268 + 1.84682i −0.0474990 + 0.0817786i
\(511\) 38.2632i 1.69266i
\(512\) −1.00000 −0.0441942
\(513\) −6.46349 0.0504523i −0.285370 0.00222753i
\(514\) 20.1335i 0.888052i
\(515\) −2.65891 −0.117165
\(516\) 5.36578 + 3.11658i 0.236215 + 0.137200i
\(517\) 40.4779 1.78022
\(518\) 21.5555i 0.947093i
\(519\) 3.59102 6.18263i 0.157628 0.271387i
\(520\) −0.695430 −0.0304966
\(521\) 40.0700i 1.75550i −0.479122 0.877748i \(-0.659045\pi\)
0.479122 0.877748i \(-0.340955\pi\)
\(522\) −12.4579 + 7.10640i −0.545268 + 0.311039i
\(523\) 1.42446 0.0622872 0.0311436 0.999515i \(-0.490085\pi\)
0.0311436 + 0.999515i \(0.490085\pi\)
\(524\) 13.6966 0.598337
\(525\) −6.98731 + 12.0300i −0.304951 + 0.525031i
\(526\) 28.6271i 1.24820i
\(527\) 7.75946 0.338007
\(528\) −4.19599 + 7.22420i −0.182607 + 0.314393i
\(529\) −21.4255 −0.931542
\(530\) 16.0496 0.697152
\(531\) 5.89214 22.2774i 0.255697 0.966757i
\(532\) −4.45262 −0.193046
\(533\) 3.87429 0.167814
\(534\) −13.9958 + 24.0965i −0.605659 + 1.04276i
\(535\) −0.0971579 −0.00420050
\(536\) 13.0941i 0.565578i
\(537\) −11.1121 + 19.1316i −0.479523 + 0.825589i
\(538\) −5.51883 −0.237933
\(539\) −28.0361 −1.20760
\(540\) −0.0673329 + 8.62608i −0.00289755 + 0.371207i
\(541\) 23.6082i 1.01500i 0.861653 + 0.507498i \(0.169429\pi\)
−0.861653 + 0.507498i \(0.830571\pi\)
\(542\) 30.9726 1.33039
\(543\) −6.01563 + 10.3571i −0.258156 + 0.444464i
\(544\) 0.742751i 0.0318452i
\(545\) −9.24382 −0.395962
\(546\) 2.24576 + 1.30439i 0.0961097 + 0.0558229i
\(547\) 21.2284 0.907660 0.453830 0.891088i \(-0.350057\pi\)
0.453830 + 0.891088i \(0.350057\pi\)
\(548\) 7.16560i 0.306099i
\(549\) −23.6820 + 13.5090i −1.01073 + 0.576551i
\(550\) 10.8234 0.461511
\(551\) 5.94695i 0.253349i
\(552\) −1.09159 + 1.87937i −0.0464610 + 0.0799914i
\(553\) −12.7347 −0.541536
\(554\) −19.9781 −0.848790
\(555\) −8.69695 + 14.9734i −0.369165 + 0.635587i
\(556\) 5.20504 0.220743
\(557\) 27.9493i 1.18425i −0.805846 0.592126i \(-0.798289\pi\)
0.805846 0.592126i \(-0.201711\pi\)
\(558\) 27.2231 15.5289i 1.15244 0.657392i
\(559\) −1.50074 −0.0634745
\(560\) 5.94240i 0.251112i
\(561\) −5.36578 3.11658i −0.226543 0.131582i
\(562\) 23.4938i 0.991027i
\(563\) 39.1650 1.65061 0.825304 0.564689i \(-0.191004\pi\)
0.825304 + 0.564689i \(0.191004\pi\)
\(564\) −7.30040 + 12.5690i −0.307402 + 0.529252i
\(565\) 5.70752i 0.240117i
\(566\) 13.7557i 0.578196i
\(567\) 16.3970 27.7300i 0.688611 1.16455i
\(568\) 4.01996i 0.168674i
\(569\) 7.87708 0.330224 0.165112 0.986275i \(-0.447201\pi\)
0.165112 + 0.986275i \(0.447201\pi\)
\(570\) 3.09300 + 1.79649i 0.129551 + 0.0752467i
\(571\) 21.5046i 0.899939i −0.893044 0.449969i \(-0.851435\pi\)
0.893044 0.449969i \(-0.148565\pi\)
\(572\) 2.02051i 0.0844819i
\(573\) −3.21804 + 5.54046i −0.134435 + 0.231456i
\(574\) 33.1055i 1.38180i
\(575\) 2.81570 0.117423
\(576\) −1.48646 2.60585i −0.0619358 0.108577i
\(577\) 33.8946 1.41105 0.705526 0.708684i \(-0.250711\pi\)
0.705526 + 0.708684i \(0.250711\pi\)
\(578\) −16.4483 −0.684160
\(579\) −10.4143 + 17.9301i −0.432802 + 0.745151i
\(580\) 7.93672 0.329554
\(581\) 10.2844 0.426667
\(582\) −17.2652 10.0280i −0.715663 0.415675i
\(583\) 46.6309i 1.93125i
\(584\) 10.6897i 0.442341i
\(585\) −1.03373 1.81218i −0.0427394 0.0749246i
\(586\) 19.3118i 0.797762i
\(587\) 7.95528 0.328349 0.164175 0.986431i \(-0.447504\pi\)
0.164175 + 0.986431i \(0.447504\pi\)
\(588\) 5.05647 8.70567i 0.208525 0.359016i
\(589\) 12.9953i 0.535463i
\(590\) −8.94049 + 9.09259i −0.368074 + 0.374336i
\(591\) −19.1265 11.1091i −0.786759 0.456969i
\(592\) 6.02199i 0.247502i
\(593\) 5.58810i 0.229476i 0.993396 + 0.114738i \(0.0366028\pi\)
−0.993396 + 0.114738i \(0.963397\pi\)
\(594\) −25.0623 0.195630i −1.02832 0.00802680i
\(595\) −4.41372 −0.180945
\(596\) −8.82075 −0.361312
\(597\) 6.64038 11.4327i 0.271773 0.467908i
\(598\) 0.525636i 0.0214948i
\(599\) 32.0609i 1.30997i −0.755640 0.654987i \(-0.772674\pi\)
0.755640 0.654987i \(-0.227326\pi\)
\(600\) −1.95206 + 3.36084i −0.0796924 + 0.137206i
\(601\) 21.2151i 0.865383i 0.901542 + 0.432691i \(0.142436\pi\)
−0.901542 + 0.432691i \(0.857564\pi\)
\(602\) 12.8237i 0.522655i
\(603\) −34.1211 + 19.4638i −1.38952 + 0.792628i
\(604\) 0.872794i 0.0355135i
\(605\) 20.3619i 0.827827i
\(606\) −9.79984 + 16.8723i −0.398091 + 0.685390i
\(607\) 21.2904 0.864151 0.432076 0.901837i \(-0.357781\pi\)
0.432076 + 0.901837i \(0.357781\pi\)
\(608\) −1.24394 −0.0504483
\(609\) −25.6301 14.8866i −1.03858 0.603236i
\(610\) 15.0874 0.610872
\(611\) 3.51539i 0.142218i
\(612\) 1.93549 1.10407i 0.0782377 0.0446293i
\(613\) 9.86776i 0.398555i 0.979943 + 0.199277i \(0.0638595\pi\)
−0.979943 + 0.199277i \(0.936140\pi\)
\(614\) 26.6117 1.07396
\(615\) −13.3570 + 22.9967i −0.538607 + 0.927314i
\(616\) −17.2652 −0.695633
\(617\) 26.3747i 1.06181i −0.847432 0.530904i \(-0.821853\pi\)
0.847432 0.530904i \(-0.178147\pi\)
\(618\) 2.39881 + 1.39329i 0.0964941 + 0.0560462i
\(619\) 7.99178 0.321217 0.160608 0.987018i \(-0.448654\pi\)
0.160608 + 0.987018i \(0.448654\pi\)
\(620\) −17.3434 −0.696526
\(621\) −6.51995 0.0508931i −0.261637 0.00204227i
\(622\) 13.4625i 0.539798i
\(623\) −57.5883 −2.30723
\(624\) 0.627402 + 0.364411i 0.0251162 + 0.0145881i
\(625\) −8.74506 −0.349803
\(626\) 4.24421i 0.169633i
\(627\) −5.21955 + 8.98645i −0.208449 + 0.358884i
\(628\) 23.3287i 0.930917i
\(629\) 4.47284 0.178344
\(630\) −15.4850 + 8.83314i −0.616937 + 0.351921i
\(631\) −25.0296 −0.996411 −0.498206 0.867059i \(-0.666008\pi\)
−0.498206 + 0.867059i \(0.666008\pi\)
\(632\) −3.55772 −0.141519
\(633\) −27.4869 15.9651i −1.09251 0.634555i
\(634\) 5.48243i 0.217735i
\(635\) 36.6881i 1.45592i
\(636\) −14.4796 8.41013i −0.574155 0.333483i
\(637\) 2.43486i 0.0964727i
\(638\) 23.0595i 0.912933i
\(639\) 10.4754 5.97551i 0.414400 0.236388i
\(640\) 1.66014i 0.0656228i
\(641\) 9.52542i 0.376232i 0.982147 + 0.188116i \(0.0602380\pi\)
−0.982147 + 0.188116i \(0.939762\pi\)
\(642\) 0.0876537 + 0.0509114i 0.00345942 + 0.00200931i
\(643\) 23.2413 0.916547 0.458273 0.888811i \(-0.348468\pi\)
0.458273 + 0.888811i \(0.348468\pi\)
\(644\) −4.49152 −0.176991
\(645\) 5.17395 8.90794i 0.203724 0.350750i
\(646\) 0.923935i 0.0363517i
\(647\) 8.94338i 0.351601i −0.984426 0.175800i \(-0.943749\pi\)
0.984426 0.175800i \(-0.0562513\pi\)
\(648\) 4.58087 7.74697i 0.179954 0.304330i
\(649\) −26.4178 25.9759i −1.03699 1.01964i
\(650\) 0.939982i 0.0368691i
\(651\) 56.0071 + 32.5303i 2.19509 + 1.27496i
\(652\) 4.74255 0.185732
\(653\) 16.9383i 0.662846i 0.943482 + 0.331423i \(0.107529\pi\)
−0.943482 + 0.331423i \(0.892471\pi\)
\(654\) 8.33957 + 4.84383i 0.326103 + 0.189409i
\(655\) 22.7382i 0.888455i
\(656\) 9.24875i 0.361103i
\(657\) 27.8556 15.8898i 1.08675 0.619918i
\(658\) −30.0388 −1.17103
\(659\) 14.0859 0.548709 0.274354 0.961629i \(-0.411536\pi\)
0.274354 + 0.961629i \(0.411536\pi\)
\(660\) 11.9932 + 6.96594i 0.466834 + 0.271149i
\(661\) 0.840963 0.0327097 0.0163548 0.999866i \(-0.494794\pi\)
0.0163548 + 0.999866i \(0.494794\pi\)
\(662\) −32.1662 −1.25018
\(663\) −0.270666 + 0.466003i −0.0105118 + 0.0180981i
\(664\) 2.87316 0.111500
\(665\) 7.39197i 0.286648i
\(666\) 15.6924 8.95145i 0.608068 0.346862i
\(667\) 5.99891i 0.232279i
\(668\) 7.18517i 0.278003i
\(669\) −10.3615 + 17.8393i −0.400599 + 0.689708i
\(670\) 21.7380 0.839812
\(671\) 43.8352i 1.69224i
\(672\) 3.11386 5.36111i 0.120120 0.206809i
\(673\) 26.8836i 1.03629i −0.855293 0.518144i \(-0.826623\pi\)
0.855293 0.518144i \(-0.173377\pi\)
\(674\) 17.9638i 0.691940i
\(675\) −11.6595 0.0910109i −0.448774 0.00350301i
\(676\) 12.8245 0.493251
\(677\) 9.79922i 0.376615i 0.982110 + 0.188307i \(0.0603001\pi\)
−0.982110 + 0.188307i \(0.939700\pi\)
\(678\) 2.99078 5.14920i 0.114860 0.197754i
\(679\) 41.2621i 1.58349i
\(680\) −1.23307 −0.0472861
\(681\) 7.57107 13.0350i 0.290124 0.499504i
\(682\) 50.3896i 1.92952i
\(683\) 31.2678 1.19643 0.598215 0.801336i \(-0.295877\pi\)
0.598215 + 0.801336i \(0.295877\pi\)
\(684\) −1.84906 3.24151i −0.0707007 0.123942i
\(685\) −11.8959 −0.454519
\(686\) −4.25050 −0.162285
\(687\) 25.5109 + 14.8174i 0.973302 + 0.565318i
\(688\) 3.58258i 0.136585i
\(689\) 4.04977 0.154284
\(690\) 3.12002 + 1.81218i 0.118777 + 0.0689887i
\(691\) 32.2762i 1.22784i 0.789366 + 0.613922i \(0.210409\pi\)
−0.789366 + 0.613922i \(0.789591\pi\)
\(692\) 4.12797 0.156922
\(693\) −25.6640 44.9903i −0.974893 1.70904i
\(694\) −30.2193 −1.14711
\(695\) 8.64109i 0.327775i
\(696\) −7.16033 4.15890i −0.271412 0.157643i
\(697\) 6.86952 0.260201
\(698\) 27.1281i 1.02681i
\(699\) 8.59463 14.7973i 0.325079 0.559685i
\(700\) −8.03208 −0.303584
\(701\) 50.5534 1.90938 0.954688 0.297607i \(-0.0961886\pi\)
0.954688 + 0.297607i \(0.0961886\pi\)
\(702\) −0.0169899 + 2.17660i −0.000641244 + 0.0821503i
\(703\) 7.49098i 0.282528i
\(704\) −4.82340 −0.181789
\(705\) 20.8663 + 12.1197i 0.785872 + 0.456454i
\(706\) 15.5292 0.584448
\(707\) −40.3231 −1.51651
\(708\) 12.8305 3.51826i 0.482200 0.132224i
\(709\) 17.5937 0.660746 0.330373 0.943850i \(-0.392825\pi\)
0.330373 + 0.943850i \(0.392825\pi\)
\(710\) −6.67370 −0.250459
\(711\) −5.28842 9.27089i −0.198331 0.347685i
\(712\) −16.0885 −0.602944
\(713\) 13.1088i 0.490930i
\(714\) 3.98196 + 2.31282i 0.149021 + 0.0865552i
\(715\) −3.35434 −0.125445
\(716\) −12.7736 −0.477373
\(717\) −9.20767 5.34804i −0.343867 0.199726i
\(718\) 9.70378i 0.362142i
\(719\) 51.0870 1.90522 0.952612 0.304187i \(-0.0983849\pi\)
0.952612 + 0.304187i \(0.0983849\pi\)
\(720\) −4.32607 + 2.46773i −0.161223 + 0.0919669i
\(721\) 5.73292i 0.213505i
\(722\) 17.4526 0.649519
\(723\) 14.2751 24.5773i 0.530896 0.914039i
\(724\) −6.91511 −0.256998
\(725\) 10.7277i 0.398417i
\(726\) −10.6698 + 18.3700i −0.395992 + 0.681776i
\(727\) 27.9108 1.03515 0.517577 0.855636i \(-0.326834\pi\)
0.517577 + 0.855636i \(0.326834\pi\)
\(728\) 1.49943i 0.0555726i
\(729\) 26.9967 + 0.421485i 0.999878 + 0.0156105i
\(730\) −17.7463 −0.656821
\(731\) −2.66096 −0.0984193
\(732\) −13.6115 7.90592i −0.503097 0.292211i
\(733\) 24.5303 0.906047 0.453024 0.891498i \(-0.350345\pi\)
0.453024 + 0.891498i \(0.350345\pi\)
\(734\) 21.1320i 0.779997i
\(735\) −14.4526 8.39444i −0.533093 0.309634i
\(736\) −1.25480 −0.0462527
\(737\) 63.1579i 2.32645i
\(738\) 24.1008 13.7479i 0.887164 0.506067i
\(739\) 17.0899i 0.628661i 0.949314 + 0.314331i \(0.101780\pi\)
−0.949314 + 0.314331i \(0.898220\pi\)
\(740\) −9.99735 −0.367510
\(741\) 0.780448 + 0.453304i 0.0286705 + 0.0166525i
\(742\) 34.6050i 1.27039i
\(743\) 1.24732i 0.0457597i −0.999738 0.0228798i \(-0.992716\pi\)
0.999738 0.0228798i \(-0.00728352\pi\)
\(744\) 15.6468 + 9.08804i 0.573639 + 0.333184i
\(745\) 14.6437i 0.536502i
\(746\) 26.4779 0.969424
\(747\) 4.27084 + 7.48702i 0.156262 + 0.273936i
\(748\) 3.58258i 0.130992i
\(749\) 0.209484i 0.00765438i
\(750\) 18.0118 + 10.4617i 0.657696 + 0.382006i
\(751\) 42.5159i 1.55143i −0.631085 0.775714i \(-0.717390\pi\)
0.631085 0.775714i \(-0.282610\pi\)
\(752\) −8.39199 −0.306024
\(753\) −8.16850 4.74447i −0.297677 0.172898i
\(754\) 2.00265 0.0729322
\(755\) −1.44896 −0.0527331
\(756\) 18.5988 + 0.145178i 0.676434 + 0.00528007i
\(757\) −15.0798 −0.548086 −0.274043 0.961717i \(-0.588361\pi\)
−0.274043 + 0.961717i \(0.588361\pi\)
\(758\) −2.78409 −0.101123
\(759\) −5.26515 + 9.06496i −0.191113 + 0.329037i
\(760\) 2.06511i 0.0749094i
\(761\) 19.8632i 0.720039i 0.932945 + 0.360019i \(0.117230\pi\)
−0.932945 + 0.360019i \(0.882770\pi\)
\(762\) 19.2248 33.0992i 0.696442 1.19906i
\(763\) 19.9308i 0.721543i
\(764\) −3.69921 −0.133833
\(765\) −1.83291 3.21319i −0.0662690 0.116173i
\(766\) 35.3588i 1.27756i
\(767\) −2.25593 + 2.29431i −0.0814570 + 0.0828428i
\(768\) 0.869925 1.49774i 0.0313907 0.0540451i
\(769\) 34.3092i 1.23722i 0.785698 + 0.618610i \(0.212304\pi\)
−0.785698 + 0.618610i \(0.787696\pi\)
\(770\) 28.6626i 1.03293i
\(771\) 30.1548 + 17.5147i 1.08600 + 0.630775i
\(772\) −11.9714 −0.430862
\(773\) −1.83830 −0.0661190 −0.0330595 0.999453i \(-0.510525\pi\)
−0.0330595 + 0.999453i \(0.510525\pi\)
\(774\) −9.33565 + 5.32536i −0.335563 + 0.191416i
\(775\) 23.4422i 0.842070i
\(776\) 11.5275i 0.413812i
\(777\) 32.2845 + 18.7517i 1.15820 + 0.672712i
\(778\) 12.5625i 0.450387i
\(779\) 11.5049i 0.412204i
\(780\) 0.604972 1.04157i 0.0216615 0.0372944i
\(781\) 19.3899i 0.693824i
\(782\) 0.932006i 0.0333285i
\(783\) 0.193901 24.8408i 0.00692944 0.887736i
\(784\)