Properties

Label 354.2.c.a.353.6
Level 354
Weight 2
Character 354.353
Analytic conductor 2.827
Analytic rank 0
Dimension 10
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 354 = 2 \cdot 3 \cdot 59 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 354.c (of order \(2\) and degree \(1\))

Newform invariants

Self dual: No
Analytic conductor: \(2.82670423155\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: 10.0.41542366334681088.1
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 353.6
Root \(-0.0738304 + 1.73048i\)
Character \(\chi\) = 354.353
Dual form 354.2.c.a.353.5

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{2} +(0.0738304 + 1.73048i) q^{3} +1.00000 q^{4} +2.30520i q^{5} +(-0.0738304 - 1.73048i) q^{6} +3.25240 q^{7} -1.00000 q^{8} +(-2.98910 + 0.255524i) q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +(0.0738304 + 1.73048i) q^{3} +1.00000 q^{4} +2.30520i q^{5} +(-0.0738304 - 1.73048i) q^{6} +3.25240 q^{7} -1.00000 q^{8} +(-2.98910 + 0.255524i) q^{9} -2.30520i q^{10} +4.56636 q^{11} +(0.0738304 + 1.73048i) q^{12} +2.44397i q^{13} -3.25240 q^{14} +(-3.98910 + 0.170194i) q^{15} +1.00000 q^{16} -2.52929i q^{17} +(2.98910 - 0.255524i) q^{18} -1.31396 q^{19} +2.30520i q^{20} +(0.240126 + 5.62821i) q^{21} -4.56636 q^{22} -8.45845 q^{23} +(-0.0738304 - 1.73048i) q^{24} -0.313957 q^{25} -2.44397i q^{26} +(-0.662864 - 5.15370i) q^{27} +3.25240 q^{28} +7.58278i q^{29} +(3.98910 - 0.170194i) q^{30} -1.81032i q^{31} -1.00000 q^{32} +(0.337136 + 7.90198i) q^{33} +2.52929i q^{34} +7.49745i q^{35} +(-2.98910 + 0.255524i) q^{36} -2.83361i q^{37} +1.31396 q^{38} +(-4.22922 + 0.180439i) q^{39} -2.30520i q^{40} -5.77722i q^{41} +(-0.240126 - 5.62821i) q^{42} +11.5497i q^{43} +4.56636 q^{44} +(-0.589033 - 6.89048i) q^{45} +8.45845 q^{46} +0.674272 q^{47} +(0.0738304 + 1.73048i) q^{48} +3.57813 q^{49} +0.313957 q^{50} +(4.37689 - 0.186739i) q^{51} +2.44397i q^{52} -8.22118i q^{53} +(0.662864 + 5.15370i) q^{54} +10.5264i q^{55} -3.25240 q^{56} +(-0.0970099 - 2.27377i) q^{57} -7.58278i q^{58} +(7.51658 - 1.58147i) q^{59} +(-3.98910 + 0.170194i) q^{60} -0.133657i q^{61} +1.81032i q^{62} +(-9.72175 + 0.831066i) q^{63} +1.00000 q^{64} -5.63383 q^{65} +(-0.337136 - 7.90198i) q^{66} +3.33360i q^{67} -2.52929i q^{68} +(-0.624491 - 14.6371i) q^{69} -7.49745i q^{70} -6.35743i q^{71} +(2.98910 - 0.255524i) q^{72} -13.4703i q^{73} +2.83361i q^{74} +(-0.0231795 - 0.543295i) q^{75} -1.31396 q^{76} +14.8516 q^{77} +(4.22922 - 0.180439i) q^{78} +11.0366 q^{79} +2.30520i q^{80} +(8.86942 - 1.52757i) q^{81} +5.77722i q^{82} -9.52592 q^{83} +(0.240126 + 5.62821i) q^{84} +5.83054 q^{85} -11.5497i q^{86} +(-13.1218 + 0.559839i) q^{87} -4.56636 q^{88} +4.28529 q^{89} +(0.589033 + 6.89048i) q^{90} +7.94876i q^{91} -8.45845 q^{92} +(3.13272 - 0.133657i) q^{93} -0.674272 q^{94} -3.02894i q^{95} +(-0.0738304 - 1.73048i) q^{96} -8.58240i q^{97} -3.57813 q^{98} +(-13.6493 + 1.16681i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10q - 10q^{2} - q^{3} + 10q^{4} + q^{6} - 2q^{7} - 10q^{8} + 3q^{9} + O(q^{10}) \) \( 10q - 10q^{2} - q^{3} + 10q^{4} + q^{6} - 2q^{7} - 10q^{8} + 3q^{9} + 4q^{11} - q^{12} + 2q^{14} - 7q^{15} + 10q^{16} - 3q^{18} - 6q^{19} - 3q^{21} - 4q^{22} - 8q^{23} + q^{24} + 4q^{25} - 10q^{27} - 2q^{28} + 7q^{30} - 10q^{32} + 3q^{36} + 6q^{38} - 4q^{39} + 3q^{42} + 4q^{44} - 11q^{45} + 8q^{46} - q^{48} + 8q^{49} - 4q^{50} + 2q^{51} + 10q^{54} + 2q^{56} - 3q^{57} + 20q^{59} - 7q^{60} - 19q^{63} + 10q^{64} + 16q^{65} + 14q^{69} - 3q^{72} - 4q^{75} - 6q^{76} + 48q^{77} + 4q^{78} + 6q^{79} + 7q^{81} + 12q^{83} - 3q^{84} - 4q^{85} - 15q^{87} - 4q^{88} - 16q^{89} + 11q^{90} - 8q^{92} - 52q^{93} + q^{96} - 8q^{98} + 2q^{99} + O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/354\mathbb{Z}\right)^\times\).

\(n\) \(61\) \(119\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0.0738304 + 1.73048i 0.0426260 + 0.999091i
\(4\) 1.00000 0.500000
\(5\) 2.30520i 1.03092i 0.856914 + 0.515459i \(0.172379\pi\)
−0.856914 + 0.515459i \(0.827621\pi\)
\(6\) −0.0738304 1.73048i −0.0301411 0.706464i
\(7\) 3.25240 1.22929 0.614647 0.788803i \(-0.289299\pi\)
0.614647 + 0.788803i \(0.289299\pi\)
\(8\) −1.00000 −0.353553
\(9\) −2.98910 + 0.255524i −0.996366 + 0.0851745i
\(10\) 2.30520i 0.728969i
\(11\) 4.56636 1.37681 0.688405 0.725327i \(-0.258311\pi\)
0.688405 + 0.725327i \(0.258311\pi\)
\(12\) 0.0738304 + 1.73048i 0.0213130 + 0.499546i
\(13\) 2.44397i 0.677834i 0.940816 + 0.338917i \(0.110061\pi\)
−0.940816 + 0.338917i \(0.889939\pi\)
\(14\) −3.25240 −0.869242
\(15\) −3.98910 + 0.170194i −1.02998 + 0.0439439i
\(16\) 1.00000 0.250000
\(17\) 2.52929i 0.613444i −0.951799 0.306722i \(-0.900768\pi\)
0.951799 0.306722i \(-0.0992322\pi\)
\(18\) 2.98910 0.255524i 0.704537 0.0602275i
\(19\) −1.31396 −0.301442 −0.150721 0.988576i \(-0.548160\pi\)
−0.150721 + 0.988576i \(0.548160\pi\)
\(20\) 2.30520i 0.515459i
\(21\) 0.240126 + 5.62821i 0.0523998 + 1.22818i
\(22\) −4.56636 −0.973551
\(23\) −8.45845 −1.76371 −0.881854 0.471522i \(-0.843705\pi\)
−0.881854 + 0.471522i \(0.843705\pi\)
\(24\) −0.0738304 1.73048i −0.0150706 0.353232i
\(25\) −0.313957 −0.0627913
\(26\) 2.44397i 0.479301i
\(27\) −0.662864 5.15370i −0.127568 0.991830i
\(28\) 3.25240 0.614647
\(29\) 7.58278i 1.40809i 0.710157 + 0.704043i \(0.248624\pi\)
−0.710157 + 0.704043i \(0.751376\pi\)
\(30\) 3.98910 0.170194i 0.728306 0.0310730i
\(31\) 1.81032i 0.325144i −0.986697 0.162572i \(-0.948021\pi\)
0.986697 0.162572i \(-0.0519789\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0.337136 + 7.90198i 0.0586879 + 1.37556i
\(34\) 2.52929i 0.433770i
\(35\) 7.49745i 1.26730i
\(36\) −2.98910 + 0.255524i −0.498183 + 0.0425873i
\(37\) 2.83361i 0.465843i −0.972496 0.232921i \(-0.925172\pi\)
0.972496 0.232921i \(-0.0748285\pi\)
\(38\) 1.31396 0.213152
\(39\) −4.22922 + 0.180439i −0.677218 + 0.0288934i
\(40\) 2.30520i 0.364484i
\(41\) 5.77722i 0.902250i −0.892461 0.451125i \(-0.851023\pi\)
0.892461 0.451125i \(-0.148977\pi\)
\(42\) −0.240126 5.62821i −0.0370523 0.868451i
\(43\) 11.5497i 1.76131i 0.473760 + 0.880654i \(0.342897\pi\)
−0.473760 + 0.880654i \(0.657103\pi\)
\(44\) 4.56636 0.688405
\(45\) −0.589033 6.89048i −0.0878079 1.02717i
\(46\) 8.45845 1.24713
\(47\) 0.674272 0.0983527 0.0491764 0.998790i \(-0.484340\pi\)
0.0491764 + 0.998790i \(0.484340\pi\)
\(48\) 0.0738304 + 1.73048i 0.0106565 + 0.249773i
\(49\) 3.57813 0.511162
\(50\) 0.313957 0.0444002
\(51\) 4.37689 0.186739i 0.612887 0.0261487i
\(52\) 2.44397i 0.338917i
\(53\) 8.22118i 1.12927i −0.825342 0.564633i \(-0.809018\pi\)
0.825342 0.564633i \(-0.190982\pi\)
\(54\) 0.662864 + 5.15370i 0.0902043 + 0.701330i
\(55\) 10.5264i 1.41938i
\(56\) −3.25240 −0.434621
\(57\) −0.0970099 2.27377i −0.0128493 0.301168i
\(58\) 7.58278i 0.995668i
\(59\) 7.51658 1.58147i 0.978575 0.205890i
\(60\) −3.98910 + 0.170194i −0.514990 + 0.0219719i
\(61\) 0.133657i 0.0171130i −0.999963 0.00855650i \(-0.997276\pi\)
0.999963 0.00855650i \(-0.00272365\pi\)
\(62\) 1.81032i 0.229911i
\(63\) −9.72175 + 0.831066i −1.22483 + 0.104704i
\(64\) 1.00000 0.125000
\(65\) −5.63383 −0.698791
\(66\) −0.337136 7.90198i −0.0414986 0.972666i
\(67\) 3.33360i 0.407264i 0.979048 + 0.203632i \(0.0652745\pi\)
−0.979048 + 0.203632i \(0.934725\pi\)
\(68\) 2.52929i 0.306722i
\(69\) −0.624491 14.6371i −0.0751798 1.76211i
\(70\) 7.49745i 0.896116i
\(71\) 6.35743i 0.754488i −0.926114 0.377244i \(-0.876872\pi\)
0.926114 0.377244i \(-0.123128\pi\)
\(72\) 2.98910 0.255524i 0.352269 0.0301137i
\(73\) 13.4703i 1.57658i −0.615302 0.788292i \(-0.710966\pi\)
0.615302 0.788292i \(-0.289034\pi\)
\(74\) 2.83361i 0.329401i
\(75\) −0.0231795 0.543295i −0.00267654 0.0627343i
\(76\) −1.31396 −0.150721
\(77\) 14.8516 1.69250
\(78\) 4.22922 0.180439i 0.478865 0.0204307i
\(79\) 11.0366 1.24171 0.620856 0.783925i \(-0.286785\pi\)
0.620856 + 0.783925i \(0.286785\pi\)
\(80\) 2.30520i 0.257729i
\(81\) 8.86942 1.52757i 0.985491 0.169730i
\(82\) 5.77722i 0.637987i
\(83\) −9.52592 −1.04561 −0.522803 0.852454i \(-0.675114\pi\)
−0.522803 + 0.852454i \(0.675114\pi\)
\(84\) 0.240126 + 5.62821i 0.0261999 + 0.614088i
\(85\) 5.83054 0.632410
\(86\) 11.5497i 1.24543i
\(87\) −13.1218 + 0.559839i −1.40681 + 0.0600211i
\(88\) −4.56636 −0.486776
\(89\) 4.28529 0.454240 0.227120 0.973867i \(-0.427069\pi\)
0.227120 + 0.973867i \(0.427069\pi\)
\(90\) 0.589033 + 6.89048i 0.0620896 + 0.726320i
\(91\) 7.94876i 0.833257i
\(92\) −8.45845 −0.881854
\(93\) 3.13272 0.133657i 0.324848 0.0138596i
\(94\) −0.674272 −0.0695459
\(95\) 3.02894i 0.310762i
\(96\) −0.0738304 1.73048i −0.00753528 0.176616i
\(97\) 8.58240i 0.871411i −0.900089 0.435706i \(-0.856499\pi\)
0.900089 0.435706i \(-0.143501\pi\)
\(98\) −3.57813 −0.361446
\(99\) −13.6493 + 1.16681i −1.37181 + 0.117269i
\(100\) −0.313957 −0.0313957
\(101\) 8.85165 0.880772 0.440386 0.897809i \(-0.354842\pi\)
0.440386 + 0.897809i \(0.354842\pi\)
\(102\) −4.37689 + 0.186739i −0.433376 + 0.0184899i
\(103\) 13.6040i 1.34044i 0.742162 + 0.670221i \(0.233800\pi\)
−0.742162 + 0.670221i \(0.766200\pi\)
\(104\) 2.44397i 0.239651i
\(105\) −12.9742 + 0.553540i −1.26615 + 0.0540199i
\(106\) 8.22118i 0.798512i
\(107\) 11.2988i 1.09230i −0.837689 0.546148i \(-0.816094\pi\)
0.837689 0.546148i \(-0.183906\pi\)
\(108\) −0.662864 5.15370i −0.0637841 0.495915i
\(109\) 19.2424i 1.84309i −0.388269 0.921546i \(-0.626927\pi\)
0.388269 0.921546i \(-0.373073\pi\)
\(110\) 10.5264i 1.00365i
\(111\) 4.90350 0.209207i 0.465419 0.0198570i
\(112\) 3.25240 0.307323
\(113\) 9.70743 0.913198 0.456599 0.889673i \(-0.349067\pi\)
0.456599 + 0.889673i \(0.349067\pi\)
\(114\) 0.0970099 + 2.27377i 0.00908581 + 0.212958i
\(115\) 19.4984i 1.81824i
\(116\) 7.58278i 0.704043i
\(117\) −0.624491 7.30525i −0.0577342 0.675371i
\(118\) −7.51658 + 1.58147i −0.691957 + 0.145586i
\(119\) 8.22629i 0.754103i
\(120\) 3.98910 0.170194i 0.364153 0.0155365i
\(121\) 9.85165 0.895604
\(122\) 0.133657i 0.0121007i
\(123\) 9.99734 0.426534i 0.901430 0.0384593i
\(124\) 1.81032i 0.162572i
\(125\) 10.8023i 0.966185i
\(126\) 9.72175 0.831066i 0.866083 0.0740372i
\(127\) −3.14080 −0.278701 −0.139350 0.990243i \(-0.544501\pi\)
−0.139350 + 0.990243i \(0.544501\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −19.9864 + 0.852717i −1.75971 + 0.0750775i
\(130\) 5.63383 0.494120
\(131\) 10.9596 0.957541 0.478771 0.877940i \(-0.341083\pi\)
0.478771 + 0.877940i \(0.341083\pi\)
\(132\) 0.337136 + 7.90198i 0.0293439 + 0.687779i
\(133\) −4.27352 −0.370561
\(134\) 3.33360i 0.287979i
\(135\) 11.8803 1.52803i 1.02249 0.131512i
\(136\) 2.52929i 0.216885i
\(137\) 13.7212i 1.17228i 0.810209 + 0.586141i \(0.199354\pi\)
−0.810209 + 0.586141i \(0.800646\pi\)
\(138\) 0.624491 + 14.6371i 0.0531602 + 1.24600i
\(139\) −20.5507 −1.74309 −0.871545 0.490315i \(-0.836882\pi\)
−0.871545 + 0.490315i \(0.836882\pi\)
\(140\) 7.49745i 0.633650i
\(141\) 0.0497818 + 1.16681i 0.00419238 + 0.0982633i
\(142\) 6.35743i 0.533503i
\(143\) 11.1600i 0.933248i
\(144\) −2.98910 + 0.255524i −0.249092 + 0.0212936i
\(145\) −17.4798 −1.45162
\(146\) 13.4703i 1.11481i
\(147\) 0.264175 + 6.19187i 0.0217888 + 0.510697i
\(148\) 2.83361i 0.232921i
\(149\) 17.0984 1.40076 0.700378 0.713772i \(-0.253015\pi\)
0.700378 + 0.713772i \(0.253015\pi\)
\(150\) 0.0231795 + 0.543295i 0.00189260 + 0.0443598i
\(151\) 13.9649i 1.13644i 0.822875 + 0.568222i \(0.192369\pi\)
−0.822875 + 0.568222i \(0.807631\pi\)
\(152\) 1.31396 0.106576
\(153\) 0.646294 + 7.56031i 0.0522498 + 0.611215i
\(154\) −14.8516 −1.19678
\(155\) 4.17316 0.335196
\(156\) −4.22922 + 0.180439i −0.338609 + 0.0144467i
\(157\) 12.3655i 0.986872i 0.869782 + 0.493436i \(0.164259\pi\)
−0.869782 + 0.493436i \(0.835741\pi\)
\(158\) −11.0366 −0.878023
\(159\) 14.2266 0.606973i 1.12824 0.0481361i
\(160\) 2.30520i 0.182242i
\(161\) −27.5103 −2.16811
\(162\) −8.86942 + 1.52757i −0.696847 + 0.120017i
\(163\) −2.07360 −0.162417 −0.0812083 0.996697i \(-0.525878\pi\)
−0.0812083 + 0.996697i \(0.525878\pi\)
\(164\) 5.77722i 0.451125i
\(165\) −18.2157 + 0.777167i −1.41809 + 0.0605024i
\(166\) 9.52592 0.739355
\(167\) 17.7195i 1.37118i 0.727989 + 0.685589i \(0.240455\pi\)
−0.727989 + 0.685589i \(0.759545\pi\)
\(168\) −0.240126 5.62821i −0.0185261 0.434226i
\(169\) 7.02703 0.540541
\(170\) −5.83054 −0.447182
\(171\) 3.92755 0.335747i 0.300347 0.0256752i
\(172\) 11.5497i 0.880654i
\(173\) 1.06747 0.0811585 0.0405792 0.999176i \(-0.487080\pi\)
0.0405792 + 0.999176i \(0.487080\pi\)
\(174\) 13.1218 0.559839i 0.994763 0.0424413i
\(175\) −1.02111 −0.0771890
\(176\) 4.56636 0.344202
\(177\) 3.29165 + 12.8905i 0.247415 + 0.968910i
\(178\) −4.28529 −0.321196
\(179\) 12.6586 0.946151 0.473076 0.881022i \(-0.343144\pi\)
0.473076 + 0.881022i \(0.343144\pi\)
\(180\) −0.589033 6.89048i −0.0439040 0.513586i
\(181\) 12.2036 0.907088 0.453544 0.891234i \(-0.350160\pi\)
0.453544 + 0.891234i \(0.350160\pi\)
\(182\) 7.94876i 0.589201i
\(183\) 0.231290 0.00986794i 0.0170975 0.000729459i
\(184\) 8.45845 0.623565
\(185\) 6.53205 0.480246
\(186\) −3.13272 + 0.133657i −0.229702 + 0.00980020i
\(187\) 11.5497i 0.844596i
\(188\) 0.674272 0.0491764
\(189\) −2.15590 16.7619i −0.156819 1.21925i
\(190\) 3.02894i 0.219742i
\(191\) −17.4916 −1.26565 −0.632824 0.774296i \(-0.718104\pi\)
−0.632824 + 0.774296i \(0.718104\pi\)
\(192\) 0.0738304 + 1.73048i 0.00532825 + 0.124886i
\(193\) 3.92668 0.282648 0.141324 0.989963i \(-0.454864\pi\)
0.141324 + 0.989963i \(0.454864\pi\)
\(194\) 8.58240i 0.616181i
\(195\) −0.415948 9.74922i −0.0297867 0.698156i
\(196\) 3.57813 0.255581
\(197\) 1.63966i 0.116821i −0.998293 0.0584106i \(-0.981397\pi\)
0.998293 0.0584106i \(-0.0186033\pi\)
\(198\) 13.6493 1.16681i 0.970014 0.0829218i
\(199\) −20.5203 −1.45464 −0.727322 0.686297i \(-0.759235\pi\)
−0.727322 + 0.686297i \(0.759235\pi\)
\(200\) 0.313957 0.0222001
\(201\) −5.76871 + 0.246121i −0.406893 + 0.0173600i
\(202\) −8.85165 −0.622800
\(203\) 24.6623i 1.73095i
\(204\) 4.37689 0.186739i 0.306443 0.0130743i
\(205\) 13.3177 0.930145
\(206\) 13.6040i 0.947835i
\(207\) 25.2831 2.16133i 1.75730 0.150223i
\(208\) 2.44397i 0.169458i
\(209\) −6.00000 −0.415029
\(210\) 12.9742 0.553540i 0.895302 0.0381979i
\(211\) 17.9919i 1.23862i −0.785148 0.619308i \(-0.787413\pi\)
0.785148 0.619308i \(-0.212587\pi\)
\(212\) 8.22118i 0.564633i
\(213\) 11.0014 0.469371i 0.753802 0.0321608i
\(214\) 11.2988i 0.772369i
\(215\) −26.6243 −1.81576
\(216\) 0.662864 + 5.15370i 0.0451022 + 0.350665i
\(217\) 5.88790i 0.399697i
\(218\) 19.2424i 1.30326i
\(219\) 23.3101 0.994520i 1.57515 0.0672034i
\(220\) 10.5264i 0.709689i
\(221\) 6.18151 0.415813
\(222\) −4.90350 + 0.209207i −0.329101 + 0.0140410i
\(223\) 12.8745 0.862138 0.431069 0.902319i \(-0.358137\pi\)
0.431069 + 0.902319i \(0.358137\pi\)
\(224\) −3.25240 −0.217310
\(225\) 0.938447 0.0802233i 0.0625632 0.00534822i
\(226\) −9.70743 −0.645729
\(227\) −6.85578 −0.455034 −0.227517 0.973774i \(-0.573061\pi\)
−0.227517 + 0.973774i \(0.573061\pi\)
\(228\) −0.0970099 2.27377i −0.00642464 0.150584i
\(229\) 19.9984i 1.32153i −0.750592 0.660766i \(-0.770231\pi\)
0.750592 0.660766i \(-0.229769\pi\)
\(230\) 19.4984i 1.28569i
\(231\) 1.09650 + 25.7004i 0.0721446 + 1.69096i
\(232\) 7.58278i 0.497834i
\(233\) 3.71058 0.243088 0.121544 0.992586i \(-0.461215\pi\)
0.121544 + 0.992586i \(0.461215\pi\)
\(234\) 0.624491 + 7.30525i 0.0408242 + 0.477559i
\(235\) 1.55433i 0.101394i
\(236\) 7.51658 1.58147i 0.489288 0.102945i
\(237\) 0.814835 + 19.0985i 0.0529292 + 1.24058i
\(238\) 8.22629i 0.533231i
\(239\) 27.3300i 1.76783i −0.467649 0.883914i \(-0.654899\pi\)
0.467649 0.883914i \(-0.345101\pi\)
\(240\) −3.98910 + 0.170194i −0.257495 + 0.0109860i
\(241\) −20.6469 −1.32998 −0.664991 0.746851i \(-0.731565\pi\)
−0.664991 + 0.746851i \(0.731565\pi\)
\(242\) −9.85165 −0.633288
\(243\) 3.29826 + 15.2355i 0.211583 + 0.977360i
\(244\) 0.133657i 0.00855650i
\(245\) 8.24832i 0.526966i
\(246\) −9.99734 + 0.426534i −0.637407 + 0.0271948i
\(247\) 3.21126i 0.204328i
\(248\) 1.81032i 0.114956i
\(249\) −0.703303 16.4844i −0.0445700 1.04466i
\(250\) 10.8023i 0.683196i
\(251\) 8.11629i 0.512296i −0.966638 0.256148i \(-0.917547\pi\)
0.966638 0.256148i \(-0.0824534\pi\)
\(252\) −9.72175 + 0.831066i −0.612413 + 0.0523522i
\(253\) −38.6243 −2.42829
\(254\) 3.14080 0.197071
\(255\) 0.430471 + 10.0896i 0.0269571 + 0.631836i
\(256\) 1.00000 0.0625000
\(257\) 4.73061i 0.295087i −0.989056 0.147544i \(-0.952863\pi\)
0.989056 0.147544i \(-0.0471367\pi\)
\(258\) 19.9864 0.852717i 1.24430 0.0530878i
\(259\) 9.21605i 0.572657i
\(260\) −5.63383 −0.349396
\(261\) −1.93758 22.6657i −0.119933 1.40297i
\(262\) −10.9596 −0.677084
\(263\) 21.4373i 1.32188i 0.750438 + 0.660941i \(0.229842\pi\)
−0.750438 + 0.660941i \(0.770158\pi\)
\(264\) −0.337136 7.90198i −0.0207493 0.486333i
\(265\) 18.9515 1.16418
\(266\) 4.27352 0.262026
\(267\) 0.316385 + 7.41559i 0.0193624 + 0.453827i
\(268\) 3.33360i 0.203632i
\(269\) −10.2002 −0.621917 −0.310958 0.950424i \(-0.600650\pi\)
−0.310958 + 0.950424i \(0.600650\pi\)
\(270\) −11.8803 + 1.52803i −0.723013 + 0.0929932i
\(271\) −18.6667 −1.13392 −0.566961 0.823745i \(-0.691881\pi\)
−0.566961 + 0.823745i \(0.691881\pi\)
\(272\) 2.52929i 0.153361i
\(273\) −13.7551 + 0.586860i −0.832499 + 0.0355184i
\(274\) 13.7212i 0.828929i
\(275\) −1.43364 −0.0864517
\(276\) −0.624491 14.6371i −0.0375899 0.881053i
\(277\) −16.7548 −1.00670 −0.503349 0.864083i \(-0.667899\pi\)
−0.503349 + 0.864083i \(0.667899\pi\)
\(278\) 20.5507 1.23255
\(279\) 0.462580 + 5.41123i 0.0276939 + 0.323962i
\(280\) 7.49745i 0.448058i
\(281\) 20.1007i 1.19911i −0.800335 0.599553i \(-0.795345\pi\)
0.800335 0.599553i \(-0.204655\pi\)
\(282\) −0.0497818 1.16681i −0.00296446 0.0694827i
\(283\) 16.1703i 0.961224i −0.876933 0.480612i \(-0.840415\pi\)
0.876933 0.480612i \(-0.159585\pi\)
\(284\) 6.35743i 0.377244i
\(285\) 5.24150 0.223628i 0.310480 0.0132466i
\(286\) 11.1600i 0.659906i
\(287\) 18.7898i 1.10913i
\(288\) 2.98910 0.255524i 0.176134 0.0150569i
\(289\) 10.6027 0.623686
\(290\) 17.4798 1.02645
\(291\) 14.8516 0.633642i 0.870619 0.0371448i
\(292\) 13.4703i 0.788292i
\(293\) 13.7092i 0.800901i 0.916318 + 0.400451i \(0.131146\pi\)
−0.916318 + 0.400451i \(0.868854\pi\)
\(294\) −0.264175 6.19187i −0.0154070 0.361117i
\(295\) 3.64560 + 17.3272i 0.212255 + 1.00883i
\(296\) 2.83361i 0.164700i
\(297\) −3.02688 23.5336i −0.175637 1.36556i
\(298\) −17.0984 −0.990484
\(299\) 20.6722i 1.19550i
\(300\) −0.0231795 0.543295i −0.00133827 0.0313671i
\(301\) 37.5642i 2.16516i
\(302\) 13.9649i 0.803588i
\(303\) 0.653521 + 15.3176i 0.0375438 + 0.879972i
\(304\) −1.31396 −0.0753606
\(305\) 0.308106 0.0176421
\(306\) −0.646294 7.56031i −0.0369462 0.432194i
\(307\) −4.75594 −0.271436 −0.135718 0.990748i \(-0.543334\pi\)
−0.135718 + 0.990748i \(0.543334\pi\)
\(308\) 14.8516 0.846251
\(309\) −23.5414 + 1.00439i −1.33922 + 0.0571376i
\(310\) −4.17316 −0.237020
\(311\) 5.88211i 0.333544i −0.985996 0.166772i \(-0.946666\pi\)
0.985996 0.166772i \(-0.0533343\pi\)
\(312\) 4.22922 0.180439i 0.239433 0.0102153i
\(313\) 1.28702i 0.0727467i 0.999338 + 0.0363733i \(0.0115806\pi\)
−0.999338 + 0.0363733i \(0.988419\pi\)
\(314\) 12.3655i 0.697824i
\(315\) −1.91577 22.4106i −0.107942 1.26269i
\(316\) 11.0366 0.620856
\(317\) 26.3959i 1.48254i −0.671205 0.741272i \(-0.734223\pi\)
0.671205 0.741272i \(-0.265777\pi\)
\(318\) −14.2266 + 0.606973i −0.797786 + 0.0340374i
\(319\) 34.6257i 1.93867i
\(320\) 2.30520i 0.128865i
\(321\) 19.5523 0.834194i 1.09130 0.0465602i
\(322\) 27.5103 1.53309
\(323\) 3.32338i 0.184918i
\(324\) 8.86942 1.52757i 0.492745 0.0848650i
\(325\) 0.767299i 0.0425621i
\(326\) 2.07360 0.114846
\(327\) 33.2986 1.42068i 1.84142 0.0785636i
\(328\) 5.77722i 0.318993i
\(329\) 2.19301 0.120904
\(330\) 18.2157 0.777167i 1.00274 0.0427816i
\(331\) 15.7151 0.863778 0.431889 0.901927i \(-0.357847\pi\)
0.431889 + 0.901927i \(0.357847\pi\)
\(332\) −9.52592 −0.522803
\(333\) 0.724054 + 8.46994i 0.0396779 + 0.464150i
\(334\) 17.7195i 0.969569i
\(335\) −7.68461 −0.419855
\(336\) 0.240126 + 5.62821i 0.0131000 + 0.307044i
\(337\) 14.1561i 0.771130i −0.922681 0.385565i \(-0.874007\pi\)
0.922681 0.385565i \(-0.125993\pi\)
\(338\) −7.02703 −0.382220
\(339\) 0.716703 + 16.7985i 0.0389260 + 0.912368i
\(340\) 5.83054 0.316205
\(341\) 8.26659i 0.447661i
\(342\) −3.92755 + 0.335747i −0.212377 + 0.0181551i
\(343\) −11.1293 −0.600926
\(344\) 11.5497i 0.622717i
\(345\) 33.7416 1.43958i 1.81659 0.0775042i
\(346\) −1.06747 −0.0573877
\(347\) −17.5880 −0.944174 −0.472087 0.881552i \(-0.656499\pi\)
−0.472087 + 0.881552i \(0.656499\pi\)
\(348\) −13.1218 + 0.559839i −0.703403 + 0.0300105i
\(349\) 7.43449i 0.397959i 0.980004 + 0.198980i \(0.0637628\pi\)
−0.980004 + 0.198980i \(0.936237\pi\)
\(350\) 1.02111 0.0545808
\(351\) 12.5955 1.62002i 0.672296 0.0864701i
\(352\) −4.56636 −0.243388
\(353\) −7.10990 −0.378422 −0.189211 0.981936i \(-0.560593\pi\)
−0.189211 + 0.981936i \(0.560593\pi\)
\(354\) −3.29165 12.8905i −0.174949 0.685123i
\(355\) 14.6552 0.777815
\(356\) 4.28529 0.227120
\(357\) 14.2354 0.607350i 0.753417 0.0321444i
\(358\) −12.6586 −0.669030
\(359\) 23.3922i 1.23459i 0.786731 + 0.617296i \(0.211772\pi\)
−0.786731 + 0.617296i \(0.788228\pi\)
\(360\) 0.589033 + 6.89048i 0.0310448 + 0.363160i
\(361\) −17.2735 −0.909133
\(362\) −12.2036 −0.641408
\(363\) 0.727351 + 17.0480i 0.0381760 + 0.894790i
\(364\) 7.94876i 0.416628i
\(365\) 31.0518 1.62533
\(366\) −0.231290 + 0.00986794i −0.0120897 + 0.000515805i
\(367\) 5.80088i 0.302803i −0.988472 0.151402i \(-0.951621\pi\)
0.988472 0.151402i \(-0.0483787\pi\)
\(368\) −8.45845 −0.440927
\(369\) 1.47621 + 17.2687i 0.0768487 + 0.898971i
\(370\) −6.53205 −0.339585
\(371\) 26.7386i 1.38820i
\(372\) 3.13272 0.133657i 0.162424 0.00692979i
\(373\) 10.9210 0.565469 0.282735 0.959198i \(-0.408758\pi\)
0.282735 + 0.959198i \(0.408758\pi\)
\(374\) 11.5497i 0.597219i
\(375\) −18.6931 + 0.797536i −0.965307 + 0.0411846i
\(376\) −0.674272 −0.0347729
\(377\) −18.5320 −0.954449
\(378\) 2.15590 + 16.7619i 0.110888 + 0.862140i
\(379\) 35.6952 1.83354 0.916770 0.399415i \(-0.130787\pi\)
0.916770 + 0.399415i \(0.130787\pi\)
\(380\) 3.02894i 0.155381i
\(381\) −0.231886 5.43507i −0.0118799 0.278447i
\(382\) 17.4916 0.894948
\(383\) 20.9229i 1.06911i −0.845134 0.534554i \(-0.820479\pi\)
0.845134 0.534554i \(-0.179521\pi\)
\(384\) −0.0738304 1.73048i −0.00376764 0.0883080i
\(385\) 34.2361i 1.74483i
\(386\) −3.92668 −0.199863
\(387\) −2.95121 34.5231i −0.150019 1.75491i
\(388\) 8.58240i 0.435706i
\(389\) 1.93248i 0.0979805i 0.998799 + 0.0489903i \(0.0156003\pi\)
−0.998799 + 0.0489903i \(0.984400\pi\)
\(390\) 0.415948 + 9.74922i 0.0210624 + 0.493671i
\(391\) 21.3939i 1.08194i
\(392\) −3.57813 −0.180723
\(393\) 0.809149 + 18.9653i 0.0408162 + 0.956671i
\(394\) 1.63966i 0.0826051i
\(395\) 25.4415i 1.28010i
\(396\) −13.6493 + 1.16681i −0.685903 + 0.0586345i
\(397\) 19.2875i 0.968012i 0.875065 + 0.484006i \(0.160819\pi\)
−0.875065 + 0.484006i \(0.839181\pi\)
\(398\) 20.5203 1.02859
\(399\) −0.315516 7.39522i −0.0157955 0.370224i
\(400\) −0.313957 −0.0156978
\(401\) 4.84743 0.242069 0.121035 0.992648i \(-0.461379\pi\)
0.121035 + 0.992648i \(0.461379\pi\)
\(402\) 5.76871 0.246121i 0.287717 0.0122754i
\(403\) 4.42437 0.220393
\(404\) 8.85165 0.440386
\(405\) 3.52136 + 20.4458i 0.174978 + 1.01596i
\(406\) 24.6623i 1.22397i
\(407\) 12.9393i 0.641377i
\(408\) −4.37689 + 0.186739i −0.216688 + 0.00924495i
\(409\) 36.9306i 1.82610i −0.407849 0.913049i \(-0.633721\pi\)
0.407849 0.913049i \(-0.366279\pi\)
\(410\) −13.3177 −0.657712
\(411\) −23.7442 + 1.01304i −1.17122 + 0.0499697i
\(412\) 13.6040i 0.670221i
\(413\) 24.4470 5.14357i 1.20296 0.253099i
\(414\) −25.2831 + 2.16133i −1.24260 + 0.106224i
\(415\) 21.9592i 1.07793i
\(416\) 2.44397i 0.119825i
\(417\) −1.51727 35.5626i −0.0743010 1.74151i
\(418\) 6.00000 0.293470
\(419\) −24.1961 −1.18206 −0.591028 0.806651i \(-0.701278\pi\)
−0.591028 + 0.806651i \(0.701278\pi\)
\(420\) −12.9742 + 0.553540i −0.633074 + 0.0270100i
\(421\) 23.5993i 1.15016i 0.818097 + 0.575080i \(0.195029\pi\)
−0.818097 + 0.575080i \(0.804971\pi\)
\(422\) 17.9919i 0.875834i
\(423\) −2.01547 + 0.172292i −0.0979953 + 0.00837715i
\(424\) 8.22118i 0.399256i
\(425\) 0.794089i 0.0385190i
\(426\) −11.0014 + 0.469371i −0.533018 + 0.0227411i
\(427\) 0.434706i 0.0210369i
\(428\) 11.2988i 0.546148i
\(429\) −19.3122 + 0.823949i −0.932400 + 0.0397806i
\(430\) 26.6243 1.28394
\(431\) 30.4771 1.46803 0.734016 0.679132i \(-0.237644\pi\)
0.734016 + 0.679132i \(0.237644\pi\)
\(432\) −0.662864 5.15370i −0.0318920 0.247957i
\(433\) −37.7340 −1.81338 −0.906689 0.421799i \(-0.861399\pi\)
−0.906689 + 0.421799i \(0.861399\pi\)
\(434\) 5.88790i 0.282628i
\(435\) −1.29054 30.2484i −0.0618768 1.45030i
\(436\) 19.2424i 0.921546i
\(437\) 11.1140 0.531656
\(438\) −23.3101 + 0.994520i −1.11380 + 0.0475200i
\(439\) −6.37650 −0.304334 −0.152167 0.988355i \(-0.548625\pi\)
−0.152167 + 0.988355i \(0.548625\pi\)
\(440\) 10.5264i 0.501826i
\(441\) −10.6954 + 0.914297i −0.509304 + 0.0435379i
\(442\) −6.18151 −0.294024
\(443\) −21.9885 −1.04471 −0.522353 0.852730i \(-0.674946\pi\)
−0.522353 + 0.852730i \(0.674946\pi\)
\(444\) 4.90350 0.209207i 0.232710 0.00992851i
\(445\) 9.87846i 0.468284i
\(446\) −12.8745 −0.609624
\(447\) 1.26238 + 29.5884i 0.0597086 + 1.39948i
\(448\) 3.25240 0.153662
\(449\) 23.7841i 1.12244i 0.827666 + 0.561221i \(0.189668\pi\)
−0.827666 + 0.561221i \(0.810332\pi\)
\(450\) −0.938447 + 0.0802233i −0.0442388 + 0.00378176i
\(451\) 26.3809i 1.24223i
\(452\) 9.70743 0.456599
\(453\) −24.1659 + 1.03103i −1.13541 + 0.0484421i
\(454\) 6.85578 0.321758
\(455\) −18.3235 −0.859019
\(456\) 0.0970099 + 2.27377i 0.00454291 + 0.106479i
\(457\) 8.86945i 0.414896i −0.978246 0.207448i \(-0.933484\pi\)
0.978246 0.207448i \(-0.0665157\pi\)
\(458\) 19.9984i 0.934465i
\(459\) −13.0352 + 1.67658i −0.608432 + 0.0782560i
\(460\) 19.4984i 0.909119i
\(461\) 17.7652i 0.827408i 0.910411 + 0.413704i \(0.135765\pi\)
−0.910411 + 0.413704i \(0.864235\pi\)
\(462\) −1.09650 25.7004i −0.0510139 1.19569i
\(463\) 27.7798i 1.29104i 0.763745 + 0.645518i \(0.223359\pi\)
−0.763745 + 0.645518i \(0.776641\pi\)
\(464\) 7.58278i 0.352022i
\(465\) 0.308106 + 7.22156i 0.0142881 + 0.334892i
\(466\) −3.71058 −0.171889
\(467\) 8.59729 0.397835 0.198918 0.980016i \(-0.436257\pi\)
0.198918 + 0.980016i \(0.436257\pi\)
\(468\) −0.624491 7.30525i −0.0288671 0.337685i
\(469\) 10.8422i 0.500646i
\(470\) 1.55433i 0.0716961i
\(471\) −21.3982 + 0.912948i −0.985975 + 0.0420664i
\(472\) −7.51658 + 1.58147i −0.345979 + 0.0727930i
\(473\) 52.7400i 2.42499i
\(474\) −0.814835 19.0985i −0.0374266 0.877225i
\(475\) 0.412525 0.0189280
\(476\) 8.22629i 0.377051i
\(477\) 2.10071 + 24.5739i 0.0961847 + 1.12516i
\(478\) 27.3300i 1.25004i
\(479\) 33.5116i 1.53119i 0.643326 + 0.765593i \(0.277554\pi\)
−0.643326 + 0.765593i \(0.722446\pi\)
\(480\) 3.98910 0.170194i 0.182077 0.00776826i
\(481\) 6.92525 0.315764
\(482\) 20.6469 0.940439
\(483\) −2.03110 47.6059i −0.0924181 2.16614i
\(484\) 9.85165 0.447802
\(485\) 19.7842 0.898353
\(486\) −3.29826 15.2355i −0.149612 0.691098i
\(487\) 15.2524 0.691152 0.345576 0.938391i \(-0.387683\pi\)
0.345576 + 0.938391i \(0.387683\pi\)
\(488\) 0.133657i 0.00605036i
\(489\) −0.153094 3.58831i −0.00692317 0.162269i
\(490\) 8.24832i 0.372621i
\(491\) 11.8006i 0.532552i 0.963897 + 0.266276i \(0.0857932\pi\)
−0.963897 + 0.266276i \(0.914207\pi\)
\(492\) 9.99734 0.426534i 0.450715 0.0192296i
\(493\) 19.1791 0.863782
\(494\) 3.21126i 0.144482i
\(495\) −2.68974 31.4644i −0.120895 1.41422i
\(496\) 1.81032i 0.0812859i
\(497\) 20.6769i 0.927486i
\(498\) 0.703303 + 16.4844i 0.0315157 + 0.738683i
\(499\) −13.2132 −0.591506 −0.295753 0.955265i \(-0.595570\pi\)
−0.295753 + 0.955265i \(0.595570\pi\)
\(500\) 10.8023i 0.483093i
\(501\) −30.6632 + 1.30824i −1.36993 + 0.0584478i
\(502\) 8.11629i 0.362248i
\(503\) −10.2884 −0.458739 −0.229369 0.973339i \(-0.573666\pi\)
−0.229369 + 0.973339i \(0.573666\pi\)
\(504\) 9.72175 0.831066i 0.433041 0.0370186i
\(505\) 20.4048i 0.908003i
\(506\) 38.6243 1.71706
\(507\) 0.518809 + 12.1601i 0.0230411 + 0.540050i
\(508\) −3.14080 −0.139350
\(509\) −20.9356 −0.927953 −0.463977 0.885847i \(-0.653578\pi\)
−0.463977 + 0.885847i \(0.653578\pi\)
\(510\) −0.430471 10.0896i −0.0190616 0.446775i
\(511\) 43.8110i 1.93808i
\(512\) −1.00000 −0.0441942
\(513\) 0.870974 + 6.77174i 0.0384545 + 0.298979i
\(514\) 4.73061i 0.208658i
\(515\) −31.3599 −1.38188
\(516\) −19.9864 + 0.852717i −0.879854 + 0.0375388i
\(517\) 3.07897 0.135413
\(518\) 9.21605i 0.404930i
\(519\) 0.0788120 + 1.84724i 0.00345946 + 0.0810847i
\(520\) 5.63383 0.247060
\(521\) 29.3907i 1.28763i −0.765181 0.643815i \(-0.777351\pi\)
0.765181 0.643815i \(-0.222649\pi\)
\(522\) 1.93758 + 22.6657i 0.0848055 + 0.992049i
\(523\) −21.0950 −0.922419 −0.461210 0.887291i \(-0.652584\pi\)
−0.461210 + 0.887291i \(0.652584\pi\)
\(524\) 10.9596 0.478771
\(525\) −0.0753892 1.76701i −0.00329026 0.0771188i
\(526\) 21.4373i 0.934711i
\(527\) −4.57884 −0.199457
\(528\) 0.337136 + 7.90198i 0.0146720 + 0.343890i
\(529\) 48.5454 2.11067
\(530\) −18.9515 −0.823200
\(531\) −22.0637 + 6.64783i −0.957483 + 0.288491i
\(532\) −4.27352 −0.185280
\(533\) 14.1193 0.611575
\(534\) −0.316385 7.41559i −0.0136913 0.320904i
\(535\) 26.0460 1.12607
\(536\) 3.33360i 0.143989i
\(537\) 0.934593 + 21.9055i 0.0403306 + 0.945291i
\(538\) 10.2002 0.439762
\(539\) 16.3390 0.703772
\(540\) 11.8803 1.52803i 0.511247 0.0657562i
\(541\) 11.6743i 0.501917i 0.967998 + 0.250959i \(0.0807458\pi\)
−0.967998 + 0.250959i \(0.919254\pi\)
\(542\) 18.6667 0.801804
\(543\) 0.900998 + 21.1181i 0.0386655 + 0.906263i
\(544\) 2.52929i 0.108443i
\(545\) 44.3577 1.90008
\(546\) 13.7551 0.586860i 0.588666 0.0251153i
\(547\) 26.6015 1.13740 0.568699 0.822546i \(-0.307447\pi\)
0.568699 + 0.822546i \(0.307447\pi\)
\(548\) 13.7212i 0.586141i
\(549\) 0.0341525 + 0.399513i 0.00145759 + 0.0170508i
\(550\) 1.43364 0.0611306
\(551\) 9.96344i 0.424457i
\(552\) 0.624491 + 14.6371i 0.0265801 + 0.622998i
\(553\) 35.8954 1.52643
\(554\) 16.7548 0.711843
\(555\) 0.482263 + 11.3036i 0.0204709 + 0.479809i
\(556\) −20.5507 −0.871545
\(557\) 1.86705i 0.0791096i 0.999217 + 0.0395548i \(0.0125940\pi\)
−0.999217 + 0.0395548i \(0.987406\pi\)
\(558\) −0.462580 5.41123i −0.0195826 0.229076i
\(559\) −28.2270 −1.19387
\(560\) 7.49745i 0.316825i
\(561\) 19.9864 0.852717i 0.843828 0.0360017i
\(562\) 20.1007i 0.847896i
\(563\) −31.9221 −1.34536 −0.672678 0.739935i \(-0.734856\pi\)
−0.672678 + 0.739935i \(0.734856\pi\)
\(564\) 0.0497818 + 1.16681i 0.00209619 + 0.0491317i
\(565\) 22.3776i 0.941432i
\(566\) 16.1703i 0.679688i
\(567\) 28.8469 4.96827i 1.21146 0.208648i
\(568\) 6.35743i 0.266752i
\(569\) −14.8215 −0.621348 −0.310674 0.950517i \(-0.600555\pi\)
−0.310674 + 0.950517i \(0.600555\pi\)
\(570\) −5.24150 + 0.223628i −0.219542 + 0.00936673i
\(571\) 34.3763i 1.43860i −0.694699 0.719301i \(-0.744462\pi\)
0.694699 0.719301i \(-0.255538\pi\)
\(572\) 11.1600i 0.466624i
\(573\) −1.29141 30.2688i −0.0539495 1.26450i
\(574\) 18.7898i 0.784273i
\(575\) 2.65559 0.110746
\(576\) −2.98910 + 0.255524i −0.124546 + 0.0106468i
\(577\) −16.7941 −0.699146 −0.349573 0.936909i \(-0.613673\pi\)
−0.349573 + 0.936909i \(0.613673\pi\)
\(578\) −10.6027 −0.441013
\(579\) 0.289908 + 6.79502i 0.0120482 + 0.282391i
\(580\) −17.4798 −0.725811
\(581\) −30.9821 −1.28536
\(582\) −14.8516 + 0.633642i −0.615621 + 0.0262653i
\(583\) 37.5409i 1.55478i
\(584\) 13.4703i 0.557406i
\(585\) 16.8401 1.43958i 0.696252 0.0595192i
\(586\) 13.7092i 0.566323i
\(587\) −33.8463 −1.39699 −0.698493 0.715617i \(-0.746146\pi\)
−0.698493 + 0.715617i \(0.746146\pi\)
\(588\) 0.264175 + 6.19187i 0.0108944 + 0.255349i
\(589\) 2.37869i 0.0980120i
\(590\) −3.64560 17.3272i −0.150087 0.713351i
\(591\) 2.83740 0.121057i 0.116715 0.00497962i
\(592\) 2.83361i 0.116461i
\(593\) 13.8626i 0.569269i 0.958636 + 0.284635i \(0.0918723\pi\)
−0.958636 + 0.284635i \(0.908128\pi\)
\(594\) 3.02688 + 23.5336i 0.124194 + 0.965597i
\(595\) 18.9633 0.777418
\(596\) 17.0984 0.700378
\(597\) −1.51502 35.5099i −0.0620056 1.45332i
\(598\) 20.6722i 0.845347i
\(599\) 3.89307i 0.159066i −0.996832 0.0795332i \(-0.974657\pi\)
0.996832 0.0795332i \(-0.0253430\pi\)
\(600\) 0.0231795 + 0.543295i 0.000946301 + 0.0221799i
\(601\) 5.74105i 0.234182i −0.993121 0.117091i \(-0.962643\pi\)
0.993121 0.117091i \(-0.0373570\pi\)
\(602\) 37.5642i 1.53100i
\(603\) −0.851812 9.96445i −0.0346885 0.405784i
\(604\) 13.9649i 0.568222i
\(605\) 22.7100i 0.923295i
\(606\) −0.653521 15.3176i −0.0265475 0.622234i
\(607\) −18.3429 −0.744515 −0.372258 0.928129i \(-0.621416\pi\)
−0.372258 + 0.928129i \(0.621416\pi\)
\(608\) 1.31396 0.0532880
\(609\) −42.6775 + 1.82082i −1.72938 + 0.0737835i
\(610\) −0.308106 −0.0124748
\(611\) 1.64790i 0.0666668i
\(612\) 0.646294 + 7.56031i 0.0261249 + 0.305607i
\(613\) 43.0978i 1.74070i −0.492432 0.870351i \(-0.663892\pi\)
0.492432 0.870351i \(-0.336108\pi\)
\(614\) 4.75594 0.191934
\(615\) 0.983248 + 23.0459i 0.0396484 + 0.929300i
\(616\) −14.8516 −0.598390
\(617\) 15.0453i 0.605703i −0.953038 0.302851i \(-0.902061\pi\)
0.953038 0.302851i \(-0.0979386\pi\)
\(618\) 23.5414 1.00439i 0.946974 0.0404024i
\(619\) 31.6765 1.27319 0.636594 0.771199i \(-0.280343\pi\)
0.636594 + 0.771199i \(0.280343\pi\)
\(620\) 4.17316 0.167598
\(621\) 5.60680 + 43.5923i 0.224993 + 1.74930i
\(622\) 5.88211i 0.235851i
\(623\) 13.9375 0.558394
\(624\) −4.22922 + 0.180439i −0.169304 + 0.00722334i
\(625\) −26.4712 −1.05885
\(626\) 1.28702i 0.0514397i
\(627\) −0.442982 10.3829i −0.0176910 0.414651i
\(628\) 12.3655i 0.493436i
\(629\) −7.16704 −0.285768
\(630\) 1.91577 + 22.4106i 0.0763263 + 0.892860i
\(631\) 6.52370 0.259704 0.129852 0.991533i \(-0.458550\pi\)
0.129852 + 0.991533i \(0.458550\pi\)
\(632\) −11.0366 −0.439012
\(633\) 31.1346 1.32835i 1.23749 0.0527972i
\(634\) 26.3959i 1.04832i
\(635\) 7.24017i 0.287317i
\(636\) 14.2266 0.606973i 0.564120 0.0240680i
\(637\) 8.74483i 0.346483i
\(638\) 34.6257i 1.37084i
\(639\) 1.62447 + 19.0030i 0.0642631 + 0.751746i
\(640\) 2.30520i 0.0911211i
\(641\) 17.7734i 0.702009i −0.936374 0.351004i \(-0.885840\pi\)
0.936374 0.351004i \(-0.114160\pi\)
\(642\) −19.5523 + 0.834194i −0.771667 + 0.0329230i
\(643\) 4.15400 0.163818 0.0819088 0.996640i \(-0.473898\pi\)
0.0819088 + 0.996640i \(0.473898\pi\)
\(644\) −27.5103 −1.08406
\(645\) −1.96568 46.0728i −0.0773988 1.81411i
\(646\) 3.32338i 0.130757i
\(647\) 9.60059i 0.377438i 0.982031 + 0.188719i \(0.0604335\pi\)
−0.982031 + 0.188719i \(0.939566\pi\)
\(648\) −8.86942 + 1.52757i −0.348424 + 0.0600086i
\(649\) 34.3234 7.22156i 1.34731 0.283471i
\(650\) 0.767299i 0.0300959i
\(651\) 10.1889 0.434706i 0.399333 0.0170375i
\(652\) −2.07360 −0.0812083
\(653\) 0.316162i 0.0123724i 0.999981 + 0.00618618i \(0.00196914\pi\)
−0.999981 + 0.00618618i \(0.998031\pi\)
\(654\) −33.2986 + 1.42068i −1.30208 + 0.0555529i
\(655\) 25.2640i 0.987146i
\(656\) 5.77722i 0.225562i
\(657\) 3.44199 + 40.2642i 0.134285 + 1.57085i
\(658\) −2.19301 −0.0854923
\(659\) −14.2468 −0.554975 −0.277487 0.960729i \(-0.589502\pi\)
−0.277487 + 0.960729i \(0.589502\pi\)
\(660\) −18.2157 + 0.777167i −0.709044 + 0.0302512i
\(661\) −36.5390 −1.42120 −0.710600 0.703596i \(-0.751577\pi\)
−0.710600 + 0.703596i \(0.751577\pi\)
\(662\) −15.7151 −0.610784
\(663\) 0.456383 + 10.6970i 0.0177245 + 0.415435i
\(664\) 9.52592 0.369677
\(665\) 9.85132i 0.382018i
\(666\) −0.724054 8.46994i −0.0280565 0.328204i
\(667\) 64.1385i 2.48345i
\(668\) 17.7195i 0.685589i
\(669\) 0.950527 + 22.2790i 0.0367495 + 0.861354i
\(670\) 7.68461 0.296882
\(671\) 0.610325i 0.0235614i
\(672\) −0.240126 5.62821i −0.00926307 0.217113i
\(673\) 25.5961i 0.986658i 0.869843 + 0.493329i \(0.164220\pi\)
−0.869843 + 0.493329i \(0.835780\pi\)
\(674\) 14.1561i 0.545271i
\(675\) 0.208111 + 1.61804i 0.00801018 + 0.0622783i
\(676\) 7.02703 0.270271
\(677\) 11.7568i 0.451852i 0.974144 + 0.225926i \(0.0725408\pi\)
−0.974144 + 0.225926i \(0.927459\pi\)
\(678\) −0.716703 16.7985i −0.0275248 0.645142i
\(679\) 27.9134i 1.07122i
\(680\) −5.83054 −0.223591
\(681\) −0.506165 11.8638i −0.0193963 0.454621i
\(682\) 8.26659i 0.316544i
\(683\) 45.3837 1.73656 0.868279 0.496075i \(-0.165226\pi\)
0.868279 + 0.496075i \(0.165226\pi\)
\(684\) 3.92755 0.335747i 0.150173 0.0128376i
\(685\) −31.6302 −1.20853
\(686\) 11.1293 0.424919
\(687\) 34.6068 1.47649i 1.32033 0.0563317i
\(688\) 11.5497i 0.440327i
\(689\) 20.0923 0.765455
\(690\) −33.7416 + 1.43958i −1.28452 + 0.0548038i
\(691\) 22.1246i 0.841658i 0.907140 + 0.420829i \(0.138261\pi\)
−0.907140 + 0.420829i \(0.861739\pi\)
\(692\) 1.06747 0.0405792
\(693\) −44.3930 + 3.79495i −1.68635 + 0.144158i
\(694\) 17.5880 0.667632
\(695\) 47.3736i 1.79698i
\(696\) 13.1218 0.559839i 0.497381 0.0212207i
\(697\) −14.6123 −0.553480
\(698\) 7.43449i 0.281400i
\(699\) 0.273954 + 6.42107i 0.0103619 + 0.242867i
\(700\) −1.02111 −0.0385945
\(701\) −22.4779 −0.848978 −0.424489 0.905433i \(-0.639546\pi\)
−0.424489 + 0.905433i \(0.639546\pi\)
\(702\) −12.5955 + 1.62002i −0.475385 + 0.0611436i
\(703\) 3.72324i 0.140425i
\(704\) 4.56636 0.172101
\(705\) −2.68974 + 0.114757i −0.101301 + 0.00432200i
\(706\) 7.10990 0.267585
\(707\) 28.7891 1.08273
\(708\) 3.29165 + 12.8905i 0.123708 + 0.484455i
\(709\) 30.1704 1.13307 0.566536 0.824037i \(-0.308283\pi\)
0.566536 + 0.824037i \(0.308283\pi\)
\(710\) −14.6552 −0.549998
\(711\) −32.9894 + 2.82011i −1.23720 + 0.105762i
\(712\) −4.28529 −0.160598
\(713\) 15.3125i 0.573459i
\(714\) −14.2354 + 0.607350i −0.532746 + 0.0227295i
\(715\) −25.7261 −0.962102
\(716\) 12.6586 0.473076
\(717\) 47.2939 2.01778i 1.76622 0.0753555i
\(718\) 23.3922i 0.872989i
\(719\) 26.3466 0.982564 0.491282 0.871001i \(-0.336528\pi\)
0.491282 + 0.871001i \(0.336528\pi\)
\(720\) −0.589033 6.89048i −0.0219520 0.256793i
\(721\) 44.2457i 1.64780i
\(722\) 17.2735 0.642854
\(723\) −1.52437 35.7289i −0.0566918 1.32877i
\(724\) 12.2036 0.453544
\(725\) 2.38066i 0.0884156i
\(726\) −0.727351 17.0480i −0.0269945 0.632712i
\(727\) 3.12553 0.115920 0.0579598 0.998319i \(-0.481540\pi\)
0.0579598 + 0.998319i \(0.481540\pi\)
\(728\) 7.94876i 0.294601i
\(729\) −26.1212 + 6.83240i −0.967453 + 0.253052i
\(730\) −31.0518 −1.14928
\(731\) 29.2125 1.08046
\(732\) 0.231290 0.00986794i 0.00854873 0.000364730i
\(733\) 19.7033 0.727758 0.363879 0.931446i \(-0.381452\pi\)
0.363879 + 0.931446i \(0.381452\pi\)
\(734\) 5.80088i 0.214114i
\(735\) −14.2735 + 0.608976i −0.526487 + 0.0224624i
\(736\) 8.45845 0.311783
\(737\) 15.2224i 0.560724i
\(738\) −1.47621 17.2687i −0.0543402 0.635668i
\(739\) 40.8815i 1.50385i 0.659248 + 0.751925i \(0.270875\pi\)
−0.659248 + 0.751925i \(0.729125\pi\)
\(740\) 6.53205 0.240123
\(741\) 5.55702 0.237089i 0.204142 0.00870968i
\(742\) 26.7386i 0.981605i
\(743\) 7.23882i 0.265567i 0.991145 + 0.132783i \(0.0423914\pi\)
−0.991145 + 0.132783i \(0.957609\pi\)
\(744\) −3.13272 + 0.133657i −0.114851 + 0.00490010i
\(745\) 39.4153i 1.44406i
\(746\) −10.9210 −0.399847
\(747\) 28.4739 2.43410i 1.04181 0.0890590i
\(748\) 11.5497i 0.422298i
\(749\) 36.7482i 1.34275i
\(750\) 18.6931 0.797536i 0.682575 0.0291219i
\(751\) 38.6007i 1.40856i 0.709923 + 0.704279i \(0.248730\pi\)
−0.709923 + 0.704279i \(0.751270\pi\)
\(752\) 0.674272 0.0245882
\(753\) 14.0451 0.599229i 0.511830 0.0218371i
\(754\) 18.5320 0.674897
\(755\) −32.1918 −1.17158
\(756\) −2.15590 16.7619i −0.0784094 0.609625i
\(757\) 14.8860 0.541041 0.270521 0.962714i \(-0.412804\pi\)
0.270521 + 0.962714i \(0.412804\pi\)
\(758\) −35.6952 −1.29651
\(759\) −2.85165 66.8385i −0.103508 2.42608i
\(760\) 3.02894i 0.109871i
\(761\) 38.9612i 1.41234i −0.708041 0.706171i \(-0.750421\pi\)
0.708041 0.706171i \(-0.249579\pi\)
\(762\) 0.231886 + 5.43507i 0.00840035 + 0.196892i
\(763\) 62.5842i 2.26570i
\(764\) −17.4916 −0.632824
\(765\) −17.4280 + 1.48984i −0.630112 + 0.0538652i
\(766\) 20.9229i 0.755974i
\(767\) 3.86505 + 18.3703i 0.139559 + 0.663312i
\(768\) 0.0738304 + 1.73048i 0.00266412 + 0.0624432i
\(769\) 9.07465i 0.327240i −0.986523 0.163620i \(-0.947683\pi\)
0.986523 0.163620i \(-0.0523171\pi\)
\(770\) 34.2361i 1.23378i
\(771\) 8.18621 0.349263i 0.294819 0.0125784i
\(772\) 3.92668 0.141324
\(773\) −6.98553 −0.251252 −0.125626 0.992078i \(-0.540094\pi\)
−0.125626 + 0.992078i \(0.540094\pi\)
\(774\) 2.95121 + 34.5231i 0.106079 + 1.24091i
\(775\) 0.568363i 0.0204162i
\(776\) 8.58240i 0.308090i
\(777\) 15.9482 0.680424i 0.572137 0.0244101i
\(778\) 1.93248i 0.0692827i
\(779\) 7.59101i 0.271976i
\(780\) −0.415948 9.74922i −0.0148933 0.349078i
\(781\) 29.0303i 1.03879i
\(782\) 21.3939i 0.765045i
\(783\) 39.0794 5.02635i 1.39658 0.179627i
\(784\)