Properties

Label 3528.2.s.v
Level $3528$
Weight $2$
Character orbit 3528.s
Analytic conductor $28.171$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3528 = 2^{3} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3528.s (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(28.1712218331\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 \zeta_{6} q^{5} +O(q^{10})\) \( q + 2 \zeta_{6} q^{5} -2 q^{13} + ( 6 - 6 \zeta_{6} ) q^{17} + 4 \zeta_{6} q^{19} -4 \zeta_{6} q^{23} + ( 1 - \zeta_{6} ) q^{25} -6 q^{29} + ( 8 - 8 \zeta_{6} ) q^{31} + 10 \zeta_{6} q^{37} + 10 q^{41} + 12 q^{43} -8 \zeta_{6} q^{47} + ( 6 - 6 \zeta_{6} ) q^{53} + ( 4 - 4 \zeta_{6} ) q^{59} + 10 \zeta_{6} q^{61} -4 \zeta_{6} q^{65} + ( -12 + 12 \zeta_{6} ) q^{67} -4 q^{71} + ( -2 + 2 \zeta_{6} ) q^{73} -8 \zeta_{6} q^{79} -4 q^{83} + 12 q^{85} + 6 \zeta_{6} q^{89} + ( -8 + 8 \zeta_{6} ) q^{95} + 10 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 2q^{5} + O(q^{10}) \) \( 2q + 2q^{5} - 4q^{13} + 6q^{17} + 4q^{19} - 4q^{23} + q^{25} - 12q^{29} + 8q^{31} + 10q^{37} + 20q^{41} + 24q^{43} - 8q^{47} + 6q^{53} + 4q^{59} + 10q^{61} - 4q^{65} - 12q^{67} - 8q^{71} - 2q^{73} - 8q^{79} - 8q^{83} + 24q^{85} + 6q^{89} - 8q^{95} + 20q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3528\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(1765\) \(2647\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0 0 1.00000 + 1.73205i 0 0 0 0 0
3313.1 0 0 0 1.00000 1.73205i 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3528.2.s.v 2
3.b odd 2 1 1176.2.q.b 2
7.b odd 2 1 3528.2.s.h 2
7.c even 3 1 504.2.a.b 1
7.c even 3 1 inner 3528.2.s.v 2
7.d odd 6 1 3528.2.a.w 1
7.d odd 6 1 3528.2.s.h 2
12.b even 2 1 2352.2.q.o 2
21.c even 2 1 1176.2.q.j 2
21.g even 6 1 1176.2.a.a 1
21.g even 6 1 1176.2.q.j 2
21.h odd 6 1 168.2.a.b 1
21.h odd 6 1 1176.2.q.b 2
28.f even 6 1 7056.2.a.br 1
28.g odd 6 1 1008.2.a.e 1
56.k odd 6 1 4032.2.a.bj 1
56.p even 6 1 4032.2.a.be 1
84.h odd 2 1 2352.2.q.j 2
84.j odd 6 1 2352.2.a.q 1
84.j odd 6 1 2352.2.q.j 2
84.n even 6 1 336.2.a.c 1
84.n even 6 1 2352.2.q.o 2
105.o odd 6 1 4200.2.a.i 1
105.x even 12 2 4200.2.t.m 2
168.s odd 6 1 1344.2.a.c 1
168.v even 6 1 1344.2.a.n 1
168.ba even 6 1 9408.2.a.cy 1
168.be odd 6 1 9408.2.a.bc 1
336.bt odd 12 2 5376.2.c.bd 2
336.bu even 12 2 5376.2.c.f 2
420.ba even 6 1 8400.2.a.bx 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
168.2.a.b 1 21.h odd 6 1
336.2.a.c 1 84.n even 6 1
504.2.a.b 1 7.c even 3 1
1008.2.a.e 1 28.g odd 6 1
1176.2.a.a 1 21.g even 6 1
1176.2.q.b 2 3.b odd 2 1
1176.2.q.b 2 21.h odd 6 1
1176.2.q.j 2 21.c even 2 1
1176.2.q.j 2 21.g even 6 1
1344.2.a.c 1 168.s odd 6 1
1344.2.a.n 1 168.v even 6 1
2352.2.a.q 1 84.j odd 6 1
2352.2.q.j 2 84.h odd 2 1
2352.2.q.j 2 84.j odd 6 1
2352.2.q.o 2 12.b even 2 1
2352.2.q.o 2 84.n even 6 1
3528.2.a.w 1 7.d odd 6 1
3528.2.s.h 2 7.b odd 2 1
3528.2.s.h 2 7.d odd 6 1
3528.2.s.v 2 1.a even 1 1 trivial
3528.2.s.v 2 7.c even 3 1 inner
4032.2.a.be 1 56.p even 6 1
4032.2.a.bj 1 56.k odd 6 1
4200.2.a.i 1 105.o odd 6 1
4200.2.t.m 2 105.x even 12 2
5376.2.c.f 2 336.bu even 12 2
5376.2.c.bd 2 336.bt odd 12 2
7056.2.a.br 1 28.f even 6 1
8400.2.a.bx 1 420.ba even 6 1
9408.2.a.bc 1 168.be odd 6 1
9408.2.a.cy 1 168.ba even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3528, [\chi])\):

\( T_{5}^{2} - 2 T_{5} + 4 \)
\( T_{11} \)
\( T_{13} + 2 \)
\( T_{23}^{2} + 4 T_{23} + 16 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( T^{2} \)
$5$ \( 4 - 2 T + T^{2} \)
$7$ \( T^{2} \)
$11$ \( T^{2} \)
$13$ \( ( 2 + T )^{2} \)
$17$ \( 36 - 6 T + T^{2} \)
$19$ \( 16 - 4 T + T^{2} \)
$23$ \( 16 + 4 T + T^{2} \)
$29$ \( ( 6 + T )^{2} \)
$31$ \( 64 - 8 T + T^{2} \)
$37$ \( 100 - 10 T + T^{2} \)
$41$ \( ( -10 + T )^{2} \)
$43$ \( ( -12 + T )^{2} \)
$47$ \( 64 + 8 T + T^{2} \)
$53$ \( 36 - 6 T + T^{2} \)
$59$ \( 16 - 4 T + T^{2} \)
$61$ \( 100 - 10 T + T^{2} \)
$67$ \( 144 + 12 T + T^{2} \)
$71$ \( ( 4 + T )^{2} \)
$73$ \( 4 + 2 T + T^{2} \)
$79$ \( 64 + 8 T + T^{2} \)
$83$ \( ( 4 + T )^{2} \)
$89$ \( 36 - 6 T + T^{2} \)
$97$ \( ( -10 + T )^{2} \)
show more
show less