Properties

Label 3528.2.s.s
Level 3528
Weight 2
Character orbit 3528.s
Analytic conductor 28.171
Analytic rank 0
Dimension 2
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3528 = 2^{3} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3528.s (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(28.1712218331\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 \zeta_{6} q^{5} +O(q^{10})\) \( q + 2 \zeta_{6} q^{5} + ( -6 + 6 \zeta_{6} ) q^{11} + 6 q^{13} + ( -2 + 2 \zeta_{6} ) q^{17} + 4 \zeta_{6} q^{19} -2 \zeta_{6} q^{23} + ( 1 - \zeta_{6} ) q^{25} + 8 q^{29} + ( 4 - 4 \zeta_{6} ) q^{31} + 6 \zeta_{6} q^{37} -10 q^{41} -4 q^{43} -4 \zeta_{6} q^{47} + ( 4 - 4 \zeta_{6} ) q^{53} -12 q^{55} + ( -12 + 12 \zeta_{6} ) q^{59} -2 \zeta_{6} q^{61} + 12 \zeta_{6} q^{65} + ( -12 + 12 \zeta_{6} ) q^{67} + 6 q^{71} + ( -2 + 2 \zeta_{6} ) q^{73} + 8 \zeta_{6} q^{79} -4 q^{85} -14 \zeta_{6} q^{89} + ( -8 + 8 \zeta_{6} ) q^{95} + 2 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 2q^{5} + O(q^{10}) \) \( 2q + 2q^{5} - 6q^{11} + 12q^{13} - 2q^{17} + 4q^{19} - 2q^{23} + q^{25} + 16q^{29} + 4q^{31} + 6q^{37} - 20q^{41} - 8q^{43} - 4q^{47} + 4q^{53} - 24q^{55} - 12q^{59} - 2q^{61} + 12q^{65} - 12q^{67} + 12q^{71} - 2q^{73} + 8q^{79} - 8q^{85} - 14q^{89} - 8q^{95} + 4q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3528\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(1765\) \(2647\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0 0 1.00000 + 1.73205i 0 0 0 0 0
3313.1 0 0 0 1.00000 1.73205i 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3528.2.s.s 2
3.b odd 2 1 3528.2.s.k 2
7.b odd 2 1 3528.2.s.c 2
7.c even 3 1 3528.2.a.g 1
7.c even 3 1 inner 3528.2.s.s 2
7.d odd 6 1 504.2.a.g yes 1
7.d odd 6 1 3528.2.s.c 2
21.c even 2 1 3528.2.s.z 2
21.g even 6 1 504.2.a.d 1
21.g even 6 1 3528.2.s.z 2
21.h odd 6 1 3528.2.a.t 1
21.h odd 6 1 3528.2.s.k 2
28.f even 6 1 1008.2.a.i 1
28.g odd 6 1 7056.2.a.j 1
56.j odd 6 1 4032.2.a.j 1
56.m even 6 1 4032.2.a.i 1
84.j odd 6 1 1008.2.a.c 1
84.n even 6 1 7056.2.a.bv 1
168.ba even 6 1 4032.2.a.bl 1
168.be odd 6 1 4032.2.a.ba 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
504.2.a.d 1 21.g even 6 1
504.2.a.g yes 1 7.d odd 6 1
1008.2.a.c 1 84.j odd 6 1
1008.2.a.i 1 28.f even 6 1
3528.2.a.g 1 7.c even 3 1
3528.2.a.t 1 21.h odd 6 1
3528.2.s.c 2 7.b odd 2 1
3528.2.s.c 2 7.d odd 6 1
3528.2.s.k 2 3.b odd 2 1
3528.2.s.k 2 21.h odd 6 1
3528.2.s.s 2 1.a even 1 1 trivial
3528.2.s.s 2 7.c even 3 1 inner
3528.2.s.z 2 21.c even 2 1
3528.2.s.z 2 21.g even 6 1
4032.2.a.i 1 56.m even 6 1
4032.2.a.j 1 56.j odd 6 1
4032.2.a.ba 1 168.be odd 6 1
4032.2.a.bl 1 168.ba even 6 1
7056.2.a.j 1 28.g odd 6 1
7056.2.a.bv 1 84.n even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3528, [\chi])\):

\( T_{5}^{2} - 2 T_{5} + 4 \)
\( T_{11}^{2} + 6 T_{11} + 36 \)
\( T_{13} - 6 \)
\( T_{23}^{2} + 2 T_{23} + 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ \( 1 - 2 T - T^{2} - 10 T^{3} + 25 T^{4} \)
$7$ 1
$11$ \( 1 + 6 T + 25 T^{2} + 66 T^{3} + 121 T^{4} \)
$13$ \( ( 1 - 6 T + 13 T^{2} )^{2} \)
$17$ \( 1 + 2 T - 13 T^{2} + 34 T^{3} + 289 T^{4} \)
$19$ \( 1 - 4 T - 3 T^{2} - 76 T^{3} + 361 T^{4} \)
$23$ \( 1 + 2 T - 19 T^{2} + 46 T^{3} + 529 T^{4} \)
$29$ \( ( 1 - 8 T + 29 T^{2} )^{2} \)
$31$ \( ( 1 - 11 T + 31 T^{2} )( 1 + 7 T + 31 T^{2} ) \)
$37$ \( 1 - 6 T - T^{2} - 222 T^{3} + 1369 T^{4} \)
$41$ \( ( 1 + 10 T + 41 T^{2} )^{2} \)
$43$ \( ( 1 + 4 T + 43 T^{2} )^{2} \)
$47$ \( 1 + 4 T - 31 T^{2} + 188 T^{3} + 2209 T^{4} \)
$53$ \( 1 - 4 T - 37 T^{2} - 212 T^{3} + 2809 T^{4} \)
$59$ \( 1 + 12 T + 85 T^{2} + 708 T^{3} + 3481 T^{4} \)
$61$ \( 1 + 2 T - 57 T^{2} + 122 T^{3} + 3721 T^{4} \)
$67$ \( 1 + 12 T + 77 T^{2} + 804 T^{3} + 4489 T^{4} \)
$71$ \( ( 1 - 6 T + 71 T^{2} )^{2} \)
$73$ \( 1 + 2 T - 69 T^{2} + 146 T^{3} + 5329 T^{4} \)
$79$ \( 1 - 8 T - 15 T^{2} - 632 T^{3} + 6241 T^{4} \)
$83$ \( ( 1 + 83 T^{2} )^{2} \)
$89$ \( 1 + 14 T + 107 T^{2} + 1246 T^{3} + 7921 T^{4} \)
$97$ \( ( 1 - 2 T + 97 T^{2} )^{2} \)
show more
show less