# Properties

 Label 3528.2.s.p Level $3528$ Weight $2$ Character orbit 3528.s Analytic conductor $28.171$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$3528 = 2^{3} \cdot 3^{2} \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3528.s (of order $$3$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$28.1712218331$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 168) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \zeta_{6} q^{5} +O(q^{10})$$ $$q + \zeta_{6} q^{5} + ( 3 - 3 \zeta_{6} ) q^{11} -4 q^{13} -4 \zeta_{6} q^{19} + 8 \zeta_{6} q^{23} + ( 4 - 4 \zeta_{6} ) q^{25} + 3 q^{29} + ( -5 + 5 \zeta_{6} ) q^{31} -8 \zeta_{6} q^{37} + 8 q^{41} + 6 q^{43} -10 \zeta_{6} q^{47} + ( 9 - 9 \zeta_{6} ) q^{53} + 3 q^{55} + ( 5 - 5 \zeta_{6} ) q^{59} -10 \zeta_{6} q^{61} -4 \zeta_{6} q^{65} + ( -6 + 6 \zeta_{6} ) q^{67} -10 q^{71} + ( 2 - 2 \zeta_{6} ) q^{73} -11 \zeta_{6} q^{79} + 7 q^{83} + 18 \zeta_{6} q^{89} + ( 4 - 4 \zeta_{6} ) q^{95} + 17 q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q + q^{5} + O(q^{10})$$ $$2q + q^{5} + 3q^{11} - 8q^{13} - 4q^{19} + 8q^{23} + 4q^{25} + 6q^{29} - 5q^{31} - 8q^{37} + 16q^{41} + 12q^{43} - 10q^{47} + 9q^{53} + 6q^{55} + 5q^{59} - 10q^{61} - 4q^{65} - 6q^{67} - 20q^{71} + 2q^{73} - 11q^{79} + 14q^{83} + 18q^{89} + 4q^{95} + 34q^{97} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/3528\mathbb{Z}\right)^\times$$.

 $$n$$ $$785$$ $$1081$$ $$1765$$ $$2647$$ $$\chi(n)$$ $$1$$ $$-\zeta_{6}$$ $$1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
361.1
 0.5 + 0.866025i 0.5 − 0.866025i
0 0 0 0.500000 + 0.866025i 0 0 0 0 0
3313.1 0 0 0 0.500000 0.866025i 0 0 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3528.2.s.p 2
3.b odd 2 1 1176.2.q.g 2
7.b odd 2 1 504.2.s.d 2
7.c even 3 1 3528.2.a.i 1
7.c even 3 1 inner 3528.2.s.p 2
7.d odd 6 1 504.2.s.d 2
7.d odd 6 1 3528.2.a.q 1
12.b even 2 1 2352.2.q.f 2
21.c even 2 1 168.2.q.a 2
21.g even 6 1 168.2.q.a 2
21.g even 6 1 1176.2.a.g 1
21.h odd 6 1 1176.2.a.c 1
21.h odd 6 1 1176.2.q.g 2
28.d even 2 1 1008.2.s.f 2
28.f even 6 1 1008.2.s.f 2
28.f even 6 1 7056.2.a.bk 1
28.g odd 6 1 7056.2.a.t 1
84.h odd 2 1 336.2.q.e 2
84.j odd 6 1 336.2.q.e 2
84.j odd 6 1 2352.2.a.g 1
84.n even 6 1 2352.2.a.u 1
84.n even 6 1 2352.2.q.f 2
168.e odd 2 1 1344.2.q.d 2
168.i even 2 1 1344.2.q.o 2
168.s odd 6 1 9408.2.a.cf 1
168.v even 6 1 9408.2.a.p 1
168.ba even 6 1 1344.2.q.o 2
168.ba even 6 1 9408.2.a.ba 1
168.be odd 6 1 1344.2.q.d 2
168.be odd 6 1 9408.2.a.cq 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
168.2.q.a 2 21.c even 2 1
168.2.q.a 2 21.g even 6 1
336.2.q.e 2 84.h odd 2 1
336.2.q.e 2 84.j odd 6 1
504.2.s.d 2 7.b odd 2 1
504.2.s.d 2 7.d odd 6 1
1008.2.s.f 2 28.d even 2 1
1008.2.s.f 2 28.f even 6 1
1176.2.a.c 1 21.h odd 6 1
1176.2.a.g 1 21.g even 6 1
1176.2.q.g 2 3.b odd 2 1
1176.2.q.g 2 21.h odd 6 1
1344.2.q.d 2 168.e odd 2 1
1344.2.q.d 2 168.be odd 6 1
1344.2.q.o 2 168.i even 2 1
1344.2.q.o 2 168.ba even 6 1
2352.2.a.g 1 84.j odd 6 1
2352.2.a.u 1 84.n even 6 1
2352.2.q.f 2 12.b even 2 1
2352.2.q.f 2 84.n even 6 1
3528.2.a.i 1 7.c even 3 1
3528.2.a.q 1 7.d odd 6 1
3528.2.s.p 2 1.a even 1 1 trivial
3528.2.s.p 2 7.c even 3 1 inner
7056.2.a.t 1 28.g odd 6 1
7056.2.a.bk 1 28.f even 6 1
9408.2.a.p 1 168.v even 6 1
9408.2.a.ba 1 168.ba even 6 1
9408.2.a.cf 1 168.s odd 6 1
9408.2.a.cq 1 168.be odd 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(3528, [\chi])$$:

 $$T_{5}^{2} - T_{5} + 1$$ $$T_{11}^{2} - 3 T_{11} + 9$$ $$T_{13} + 4$$ $$T_{23}^{2} - 8 T_{23} + 64$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$1 - T + T^{2}$$
$7$ $$T^{2}$$
$11$ $$9 - 3 T + T^{2}$$
$13$ $$( 4 + T )^{2}$$
$17$ $$T^{2}$$
$19$ $$16 + 4 T + T^{2}$$
$23$ $$64 - 8 T + T^{2}$$
$29$ $$( -3 + T )^{2}$$
$31$ $$25 + 5 T + T^{2}$$
$37$ $$64 + 8 T + T^{2}$$
$41$ $$( -8 + T )^{2}$$
$43$ $$( -6 + T )^{2}$$
$47$ $$100 + 10 T + T^{2}$$
$53$ $$81 - 9 T + T^{2}$$
$59$ $$25 - 5 T + T^{2}$$
$61$ $$100 + 10 T + T^{2}$$
$67$ $$36 + 6 T + T^{2}$$
$71$ $$( 10 + T )^{2}$$
$73$ $$4 - 2 T + T^{2}$$
$79$ $$121 + 11 T + T^{2}$$
$83$ $$( -7 + T )^{2}$$
$89$ $$324 - 18 T + T^{2}$$
$97$ $$( -17 + T )^{2}$$