Properties

Label 3528.2.s.n
Level $3528$
Weight $2$
Character orbit 3528.s
Analytic conductor $28.171$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3528 = 2^{3} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3528.s (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(28.1712218331\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1176)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q +O(q^{10})\) \( q + 4 q^{13} + ( 4 - 4 \zeta_{6} ) q^{17} + 4 \zeta_{6} q^{19} + 4 \zeta_{6} q^{23} + ( 5 - 5 \zeta_{6} ) q^{25} -2 q^{29} + ( -8 + 8 \zeta_{6} ) q^{31} + 6 \zeta_{6} q^{37} -12 q^{41} + 4 q^{43} -8 \zeta_{6} q^{47} + ( 6 - 6 \zeta_{6} ) q^{53} + ( 12 - 12 \zeta_{6} ) q^{59} -4 \zeta_{6} q^{61} + ( 4 - 4 \zeta_{6} ) q^{67} + 12 q^{71} + ( -8 + 8 \zeta_{6} ) q^{73} + 16 \zeta_{6} q^{79} + 4 q^{83} + 4 \zeta_{6} q^{89} + 16 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + O(q^{10}) \) \( 2q + 8q^{13} + 4q^{17} + 4q^{19} + 4q^{23} + 5q^{25} - 4q^{29} - 8q^{31} + 6q^{37} - 24q^{41} + 8q^{43} - 8q^{47} + 6q^{53} + 12q^{59} - 4q^{61} + 4q^{67} + 24q^{71} - 8q^{73} + 16q^{79} + 8q^{83} + 4q^{89} + 32q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3528\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(1765\) \(2647\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0 0 0 0 0 0 0 0
3313.1 0 0 0 0 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3528.2.s.n 2
3.b odd 2 1 1176.2.q.c 2
7.b odd 2 1 3528.2.s.m 2
7.c even 3 1 3528.2.a.n 1
7.c even 3 1 inner 3528.2.s.n 2
7.d odd 6 1 3528.2.a.m 1
7.d odd 6 1 3528.2.s.m 2
12.b even 2 1 2352.2.q.t 2
21.c even 2 1 1176.2.q.h 2
21.g even 6 1 1176.2.a.b 1
21.g even 6 1 1176.2.q.h 2
21.h odd 6 1 1176.2.a.h yes 1
21.h odd 6 1 1176.2.q.c 2
28.f even 6 1 7056.2.a.ba 1
28.g odd 6 1 7056.2.a.bc 1
84.h odd 2 1 2352.2.q.h 2
84.j odd 6 1 2352.2.a.r 1
84.j odd 6 1 2352.2.q.h 2
84.n even 6 1 2352.2.a.h 1
84.n even 6 1 2352.2.q.t 2
168.s odd 6 1 9408.2.a.u 1
168.v even 6 1 9408.2.a.ck 1
168.ba even 6 1 9408.2.a.cl 1
168.be odd 6 1 9408.2.a.v 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1176.2.a.b 1 21.g even 6 1
1176.2.a.h yes 1 21.h odd 6 1
1176.2.q.c 2 3.b odd 2 1
1176.2.q.c 2 21.h odd 6 1
1176.2.q.h 2 21.c even 2 1
1176.2.q.h 2 21.g even 6 1
2352.2.a.h 1 84.n even 6 1
2352.2.a.r 1 84.j odd 6 1
2352.2.q.h 2 84.h odd 2 1
2352.2.q.h 2 84.j odd 6 1
2352.2.q.t 2 12.b even 2 1
2352.2.q.t 2 84.n even 6 1
3528.2.a.m 1 7.d odd 6 1
3528.2.a.n 1 7.c even 3 1
3528.2.s.m 2 7.b odd 2 1
3528.2.s.m 2 7.d odd 6 1
3528.2.s.n 2 1.a even 1 1 trivial
3528.2.s.n 2 7.c even 3 1 inner
7056.2.a.ba 1 28.f even 6 1
7056.2.a.bc 1 28.g odd 6 1
9408.2.a.u 1 168.s odd 6 1
9408.2.a.v 1 168.be odd 6 1
9408.2.a.ck 1 168.v even 6 1
9408.2.a.cl 1 168.ba even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3528, [\chi])\):

\( T_{5} \)
\( T_{11} \)
\( T_{13} - 4 \)
\( T_{23}^{2} - 4 T_{23} + 16 \)