Properties

Label 3528.2.s.l
Level $3528$
Weight $2$
Character orbit 3528.s
Analytic conductor $28.171$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3528 = 2^{3} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3528.s (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(28.1712218331\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\zeta_{6} q^{5} +O(q^{10})\) \( q -\zeta_{6} q^{5} + ( -5 + 5 \zeta_{6} ) q^{11} -2 q^{13} + ( 6 - 6 \zeta_{6} ) q^{17} + 2 \zeta_{6} q^{19} + 6 \zeta_{6} q^{23} + ( 4 - 4 \zeta_{6} ) q^{25} -3 q^{29} + ( 5 - 5 \zeta_{6} ) q^{31} + 2 \zeta_{6} q^{37} -8 q^{41} -4 q^{43} + 4 \zeta_{6} q^{47} + ( -9 + 9 \zeta_{6} ) q^{53} + 5 q^{55} + ( -3 + 3 \zeta_{6} ) q^{59} -12 \zeta_{6} q^{61} + 2 \zeta_{6} q^{65} + ( -2 + 2 \zeta_{6} ) q^{67} -8 q^{71} + ( -14 + 14 \zeta_{6} ) q^{73} -\zeta_{6} q^{79} -17 q^{83} -6 q^{85} + 18 \zeta_{6} q^{89} + ( 2 - 2 \zeta_{6} ) q^{95} -3 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - q^{5} + O(q^{10}) \) \( 2q - q^{5} - 5q^{11} - 4q^{13} + 6q^{17} + 2q^{19} + 6q^{23} + 4q^{25} - 6q^{29} + 5q^{31} + 2q^{37} - 16q^{41} - 8q^{43} + 4q^{47} - 9q^{53} + 10q^{55} - 3q^{59} - 12q^{61} + 2q^{65} - 2q^{67} - 16q^{71} - 14q^{73} - q^{79} - 34q^{83} - 12q^{85} + 18q^{89} + 2q^{95} - 6q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3528\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(1765\) \(2647\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0 0 −0.500000 0.866025i 0 0 0 0 0
3313.1 0 0 0 −0.500000 + 0.866025i 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3528.2.s.l 2
3.b odd 2 1 3528.2.s.r 2
7.b odd 2 1 504.2.s.f yes 2
7.c even 3 1 3528.2.a.s 1
7.c even 3 1 inner 3528.2.s.l 2
7.d odd 6 1 504.2.s.f yes 2
7.d odd 6 1 3528.2.a.l 1
21.c even 2 1 504.2.s.b 2
21.g even 6 1 504.2.s.b 2
21.g even 6 1 3528.2.a.o 1
21.h odd 6 1 3528.2.a.h 1
21.h odd 6 1 3528.2.s.r 2
28.d even 2 1 1008.2.s.l 2
28.f even 6 1 1008.2.s.l 2
28.f even 6 1 7056.2.a.r 1
28.g odd 6 1 7056.2.a.bh 1
84.h odd 2 1 1008.2.s.h 2
84.j odd 6 1 1008.2.s.h 2
84.j odd 6 1 7056.2.a.bm 1
84.n even 6 1 7056.2.a.v 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
504.2.s.b 2 21.c even 2 1
504.2.s.b 2 21.g even 6 1
504.2.s.f yes 2 7.b odd 2 1
504.2.s.f yes 2 7.d odd 6 1
1008.2.s.h 2 84.h odd 2 1
1008.2.s.h 2 84.j odd 6 1
1008.2.s.l 2 28.d even 2 1
1008.2.s.l 2 28.f even 6 1
3528.2.a.h 1 21.h odd 6 1
3528.2.a.l 1 7.d odd 6 1
3528.2.a.o 1 21.g even 6 1
3528.2.a.s 1 7.c even 3 1
3528.2.s.l 2 1.a even 1 1 trivial
3528.2.s.l 2 7.c even 3 1 inner
3528.2.s.r 2 3.b odd 2 1
3528.2.s.r 2 21.h odd 6 1
7056.2.a.r 1 28.f even 6 1
7056.2.a.v 1 84.n even 6 1
7056.2.a.bh 1 28.g odd 6 1
7056.2.a.bm 1 84.j odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3528, [\chi])\):

\( T_{5}^{2} + T_{5} + 1 \)
\( T_{11}^{2} + 5 T_{11} + 25 \)
\( T_{13} + 2 \)
\( T_{23}^{2} - 6 T_{23} + 36 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ \( 1 + T - 4 T^{2} + 5 T^{3} + 25 T^{4} \)
$7$ 1
$11$ \( 1 + 5 T + 14 T^{2} + 55 T^{3} + 121 T^{4} \)
$13$ \( ( 1 + 2 T + 13 T^{2} )^{2} \)
$17$ \( 1 - 6 T + 19 T^{2} - 102 T^{3} + 289 T^{4} \)
$19$ \( 1 - 2 T - 15 T^{2} - 38 T^{3} + 361 T^{4} \)
$23$ \( 1 - 6 T + 13 T^{2} - 138 T^{3} + 529 T^{4} \)
$29$ \( ( 1 + 3 T + 29 T^{2} )^{2} \)
$31$ \( 1 - 5 T - 6 T^{2} - 155 T^{3} + 961 T^{4} \)
$37$ \( 1 - 2 T - 33 T^{2} - 74 T^{3} + 1369 T^{4} \)
$41$ \( ( 1 + 8 T + 41 T^{2} )^{2} \)
$43$ \( ( 1 + 4 T + 43 T^{2} )^{2} \)
$47$ \( 1 - 4 T - 31 T^{2} - 188 T^{3} + 2209 T^{4} \)
$53$ \( 1 + 9 T + 28 T^{2} + 477 T^{3} + 2809 T^{4} \)
$59$ \( 1 + 3 T - 50 T^{2} + 177 T^{3} + 3481 T^{4} \)
$61$ \( 1 + 12 T + 83 T^{2} + 732 T^{3} + 3721 T^{4} \)
$67$ \( 1 + 2 T - 63 T^{2} + 134 T^{3} + 4489 T^{4} \)
$71$ \( ( 1 + 8 T + 71 T^{2} )^{2} \)
$73$ \( 1 + 14 T + 123 T^{2} + 1022 T^{3} + 5329 T^{4} \)
$79$ \( 1 + T - 78 T^{2} + 79 T^{3} + 6241 T^{4} \)
$83$ \( ( 1 + 17 T + 83 T^{2} )^{2} \)
$89$ \( 1 - 18 T + 235 T^{2} - 1602 T^{3} + 7921 T^{4} \)
$97$ \( ( 1 + 3 T + 97 T^{2} )^{2} \)
show more
show less