Properties

Label 3528.2.s.bk
Level $3528$
Weight $2$
Character orbit 3528.s
Analytic conductor $28.171$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3528 = 2^{3} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3528.s (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(28.1712218331\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-19})\)
Defining polynomial: \(x^{4} - x^{3} - 4 x^{2} - 5 x + 25\)
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{5} +O(q^{10})\) \( q + \beta_{3} q^{5} + ( -\beta_{2} + \beta_{3} ) q^{11} + ( -3 + \beta_{2} ) q^{13} -4 \beta_{1} q^{17} + ( -3 - 3 \beta_{1} + \beta_{3} ) q^{19} + ( 4 + 4 \beta_{1} ) q^{23} + ( 9 \beta_{1} - \beta_{2} + \beta_{3} ) q^{25} + ( -2 + \beta_{2} ) q^{29} + \beta_{1} q^{31} + ( -1 - \beta_{1} - \beta_{3} ) q^{37} + ( 2 + 2 \beta_{2} ) q^{41} + ( -3 - \beta_{2} ) q^{43} + ( 6 + 6 \beta_{1} ) q^{47} + ( -6 \beta_{1} - \beta_{2} + \beta_{3} ) q^{53} + ( -14 - \beta_{2} ) q^{55} + ( 2 \beta_{1} - \beta_{2} + \beta_{3} ) q^{59} + ( 10 + 10 \beta_{1} ) q^{61} + ( 14 + 14 \beta_{1} - 2 \beta_{3} ) q^{65} + ( 3 \beta_{1} - \beta_{2} + \beta_{3} ) q^{67} -2 q^{71} + ( \beta_{1} + \beta_{2} - \beta_{3} ) q^{73} + ( -5 - 5 \beta_{1} + 2 \beta_{3} ) q^{79} + ( 4 - \beta_{2} ) q^{83} + 4 \beta_{2} q^{85} + ( 4 + 4 \beta_{1} - 2 \beta_{3} ) q^{89} + ( 14 \beta_{1} + 2 \beta_{2} - 2 \beta_{3} ) q^{95} + ( -12 - \beta_{2} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + q^{5} + O(q^{10}) \) \( 4q + q^{5} - q^{11} - 10q^{13} + 8q^{17} - 5q^{19} + 8q^{23} - 19q^{25} - 6q^{29} - 2q^{31} - 3q^{37} + 12q^{41} - 14q^{43} + 12q^{47} + 11q^{53} - 58q^{55} - 5q^{59} + 20q^{61} + 26q^{65} - 7q^{67} - 8q^{71} - q^{73} - 8q^{79} + 14q^{83} + 8q^{85} + 6q^{89} - 26q^{95} - 50q^{97} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} - x^{3} - 4 x^{2} - 5 x + 25\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( \nu^{3} + 4 \nu^{2} - 4 \nu - 25 \)\()/20\)
\(\beta_{2}\)\(=\)\((\)\( -\nu^{3} + \nu^{2} + 9 \nu + 5 \)\()/5\)
\(\beta_{3}\)\(=\)\((\)\( 3 \nu^{3} + 2 \nu^{2} + 8 \nu - 25 \)\()/10\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{3} + \beta_{2} - 2 \beta_{1} - 1\)\()/3\)
\(\nu^{2}\)\(=\)\((\)\(-\beta_{3} + 2 \beta_{2} + 14 \beta_{1} + 13\)\()/3\)
\(\nu^{3}\)\(=\)\((\)\(8 \beta_{3} - 4 \beta_{2} - 4 \beta_{1} + 19\)\()/3\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3528\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(1765\) \(2647\)
\(\chi(n)\) \(1\) \(-1 - \beta_{1}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
−1.63746 1.52274i
2.13746 + 0.656712i
−1.63746 + 1.52274i
2.13746 0.656712i
0 0 0 −1.63746 2.83616i 0 0 0 0 0
361.2 0 0 0 2.13746 + 3.70219i 0 0 0 0 0
3313.1 0 0 0 −1.63746 + 2.83616i 0 0 0 0 0
3313.2 0 0 0 2.13746 3.70219i 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3528.2.s.bk 4
3.b odd 2 1 1176.2.q.l 4
7.b odd 2 1 504.2.s.i 4
7.c even 3 1 3528.2.a.bd 2
7.c even 3 1 inner 3528.2.s.bk 4
7.d odd 6 1 504.2.s.i 4
7.d odd 6 1 3528.2.a.bk 2
12.b even 2 1 2352.2.q.bf 4
21.c even 2 1 168.2.q.c 4
21.g even 6 1 168.2.q.c 4
21.g even 6 1 1176.2.a.k 2
21.h odd 6 1 1176.2.a.n 2
21.h odd 6 1 1176.2.q.l 4
28.d even 2 1 1008.2.s.r 4
28.f even 6 1 1008.2.s.r 4
28.f even 6 1 7056.2.a.cu 2
28.g odd 6 1 7056.2.a.ch 2
84.h odd 2 1 336.2.q.g 4
84.j odd 6 1 336.2.q.g 4
84.j odd 6 1 2352.2.a.bf 2
84.n even 6 1 2352.2.a.ba 2
84.n even 6 1 2352.2.q.bf 4
168.e odd 2 1 1344.2.q.x 4
168.i even 2 1 1344.2.q.w 4
168.s odd 6 1 9408.2.a.dj 2
168.v even 6 1 9408.2.a.dw 2
168.ba even 6 1 1344.2.q.w 4
168.ba even 6 1 9408.2.a.ec 2
168.be odd 6 1 1344.2.q.x 4
168.be odd 6 1 9408.2.a.dp 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
168.2.q.c 4 21.c even 2 1
168.2.q.c 4 21.g even 6 1
336.2.q.g 4 84.h odd 2 1
336.2.q.g 4 84.j odd 6 1
504.2.s.i 4 7.b odd 2 1
504.2.s.i 4 7.d odd 6 1
1008.2.s.r 4 28.d even 2 1
1008.2.s.r 4 28.f even 6 1
1176.2.a.k 2 21.g even 6 1
1176.2.a.n 2 21.h odd 6 1
1176.2.q.l 4 3.b odd 2 1
1176.2.q.l 4 21.h odd 6 1
1344.2.q.w 4 168.i even 2 1
1344.2.q.w 4 168.ba even 6 1
1344.2.q.x 4 168.e odd 2 1
1344.2.q.x 4 168.be odd 6 1
2352.2.a.ba 2 84.n even 6 1
2352.2.a.bf 2 84.j odd 6 1
2352.2.q.bf 4 12.b even 2 1
2352.2.q.bf 4 84.n even 6 1
3528.2.a.bd 2 7.c even 3 1
3528.2.a.bk 2 7.d odd 6 1
3528.2.s.bk 4 1.a even 1 1 trivial
3528.2.s.bk 4 7.c even 3 1 inner
7056.2.a.ch 2 28.g odd 6 1
7056.2.a.cu 2 28.f even 6 1
9408.2.a.dj 2 168.s odd 6 1
9408.2.a.dp 2 168.be odd 6 1
9408.2.a.dw 2 168.v even 6 1
9408.2.a.ec 2 168.ba even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3528, [\chi])\):

\( T_{5}^{4} - T_{5}^{3} + 15 T_{5}^{2} + 14 T_{5} + 196 \)
\( T_{11}^{4} + T_{11}^{3} + 15 T_{11}^{2} - 14 T_{11} + 196 \)
\( T_{13}^{2} + 5 T_{13} - 8 \)
\( T_{23}^{2} - 4 T_{23} + 16 \)