Properties

Label 3528.2.s.a.3313.1
Level $3528$
Weight $2$
Character 3528.3313
Analytic conductor $28.171$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3528 = 2^{3} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3528.s (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(28.1712218331\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 3313.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 3528.3313
Dual form 3528.2.s.a.361.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-2.00000 + 3.46410i) q^{5} +O(q^{10})\) \(q+(-2.00000 + 3.46410i) q^{5} +(-1.00000 - 1.73205i) q^{17} +(1.00000 - 1.73205i) q^{19} +(4.00000 - 6.92820i) q^{23} +(-5.50000 - 9.52628i) q^{25} -2.00000 q^{29} +(-2.00000 - 3.46410i) q^{31} +(3.00000 - 5.19615i) q^{37} +2.00000 q^{41} +8.00000 q^{43} +(-2.00000 + 3.46410i) q^{47} +(-5.00000 - 8.66025i) q^{53} +(3.00000 + 5.19615i) q^{59} +(-2.00000 + 3.46410i) q^{61} +(6.00000 + 10.3923i) q^{67} +(7.00000 + 12.1244i) q^{73} +(4.00000 - 6.92820i) q^{79} -6.00000 q^{83} +8.00000 q^{85} +(5.00000 - 8.66025i) q^{89} +(4.00000 + 6.92820i) q^{95} -2.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 4q^{5} + O(q^{10}) \) \( 2q - 4q^{5} - 2q^{17} + 2q^{19} + 8q^{23} - 11q^{25} - 4q^{29} - 4q^{31} + 6q^{37} + 4q^{41} + 16q^{43} - 4q^{47} - 10q^{53} + 6q^{59} - 4q^{61} + 12q^{67} + 14q^{73} + 8q^{79} - 12q^{83} + 16q^{85} + 10q^{89} + 8q^{95} - 4q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3528\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(1765\) \(2647\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.00000 + 3.46410i −0.894427 + 1.54919i −0.0599153 + 0.998203i \(0.519083\pi\)
−0.834512 + 0.550990i \(0.814250\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.00000 1.73205i −0.242536 0.420084i 0.718900 0.695113i \(-0.244646\pi\)
−0.961436 + 0.275029i \(0.911312\pi\)
\(18\) 0 0
\(19\) 1.00000 1.73205i 0.229416 0.397360i −0.728219 0.685344i \(-0.759652\pi\)
0.957635 + 0.287984i \(0.0929851\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.00000 6.92820i 0.834058 1.44463i −0.0607377 0.998154i \(-0.519345\pi\)
0.894795 0.446476i \(-0.147321\pi\)
\(24\) 0 0
\(25\) −5.50000 9.52628i −1.10000 1.90526i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) −2.00000 3.46410i −0.359211 0.622171i 0.628619 0.777714i \(-0.283621\pi\)
−0.987829 + 0.155543i \(0.950287\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 3.00000 5.19615i 0.493197 0.854242i −0.506772 0.862080i \(-0.669162\pi\)
0.999969 + 0.00783774i \(0.00249486\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 0 0
\(43\) 8.00000 1.21999 0.609994 0.792406i \(-0.291172\pi\)
0.609994 + 0.792406i \(0.291172\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.00000 + 3.46410i −0.291730 + 0.505291i −0.974219 0.225605i \(-0.927564\pi\)
0.682489 + 0.730896i \(0.260898\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −5.00000 8.66025i −0.686803 1.18958i −0.972867 0.231367i \(-0.925680\pi\)
0.286064 0.958211i \(-0.407653\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.00000 + 5.19615i 0.390567 + 0.676481i 0.992524 0.122047i \(-0.0389457\pi\)
−0.601958 + 0.798528i \(0.705612\pi\)
\(60\) 0 0
\(61\) −2.00000 + 3.46410i −0.256074 + 0.443533i −0.965187 0.261562i \(-0.915762\pi\)
0.709113 + 0.705095i \(0.249096\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 6.00000 + 10.3923i 0.733017 + 1.26962i 0.955588 + 0.294706i \(0.0952216\pi\)
−0.222571 + 0.974916i \(0.571445\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 7.00000 + 12.1244i 0.819288 + 1.41905i 0.906208 + 0.422833i \(0.138964\pi\)
−0.0869195 + 0.996215i \(0.527702\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 4.00000 6.92820i 0.450035 0.779484i −0.548352 0.836247i \(-0.684745\pi\)
0.998388 + 0.0567635i \(0.0180781\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −6.00000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) 0 0
\(85\) 8.00000 0.867722
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 5.00000 8.66025i 0.529999 0.917985i −0.469389 0.882992i \(-0.655526\pi\)
0.999388 0.0349934i \(-0.0111410\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 4.00000 + 6.92820i 0.410391 + 0.710819i
\(96\) 0 0
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.00000 + 10.3923i 0.597022 + 1.03407i 0.993258 + 0.115924i \(0.0369830\pi\)
−0.396236 + 0.918149i \(0.629684\pi\)
\(102\) 0 0
\(103\) 6.00000 10.3923i 0.591198 1.02398i −0.402874 0.915255i \(-0.631989\pi\)
0.994071 0.108729i \(-0.0346780\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −6.00000 + 10.3923i −0.580042 + 1.00466i 0.415432 + 0.909624i \(0.363630\pi\)
−0.995474 + 0.0950377i \(0.969703\pi\)
\(108\) 0 0
\(109\) −5.00000 8.66025i −0.478913 0.829502i 0.520794 0.853682i \(-0.325636\pi\)
−0.999708 + 0.0241802i \(0.992302\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) 16.0000 + 27.7128i 1.49201 + 2.58423i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 5.50000 9.52628i 0.500000 0.866025i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 24.0000 2.14663
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.00000 12.1244i 0.611593 1.05931i −0.379379 0.925241i \(-0.623862\pi\)
0.990972 0.134069i \(-0.0428042\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.00000 + 1.73205i 0.0854358 + 0.147979i 0.905577 0.424182i \(-0.139438\pi\)
−0.820141 + 0.572161i \(0.806105\pi\)
\(138\) 0 0
\(139\) 18.0000 1.52674 0.763370 0.645961i \(-0.223543\pi\)
0.763370 + 0.645961i \(0.223543\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 4.00000 6.92820i 0.332182 0.575356i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1.00000 + 1.73205i −0.0819232 + 0.141895i −0.904076 0.427372i \(-0.859440\pi\)
0.822153 + 0.569267i \(0.192773\pi\)
\(150\) 0 0
\(151\) −8.00000 13.8564i −0.651031 1.12762i −0.982873 0.184284i \(-0.941004\pi\)
0.331842 0.943335i \(-0.392330\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 16.0000 1.28515
\(156\) 0 0
\(157\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −8.00000 + 13.8564i −0.626608 + 1.08532i 0.361619 + 0.932326i \(0.382224\pi\)
−0.988227 + 0.152992i \(0.951109\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −12.0000 −0.928588 −0.464294 0.885681i \(-0.653692\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4.00000 6.92820i 0.304114 0.526742i −0.672949 0.739689i \(-0.734973\pi\)
0.977064 + 0.212947i \(0.0683062\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −2.00000 3.46410i −0.149487 0.258919i 0.781551 0.623841i \(-0.214429\pi\)
−0.931038 + 0.364922i \(0.881096\pi\)
\(180\) 0 0
\(181\) 8.00000 0.594635 0.297318 0.954779i \(-0.403908\pi\)
0.297318 + 0.954779i \(0.403908\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 12.0000 + 20.7846i 0.882258 + 1.52811i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4.00000 + 6.92820i −0.289430 + 0.501307i −0.973674 0.227946i \(-0.926799\pi\)
0.684244 + 0.729253i \(0.260132\pi\)
\(192\) 0 0
\(193\) 9.00000 + 15.5885i 0.647834 + 1.12208i 0.983639 + 0.180150i \(0.0576584\pi\)
−0.335805 + 0.941932i \(0.609008\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 18.0000 1.28245 0.641223 0.767354i \(-0.278427\pi\)
0.641223 + 0.767354i \(0.278427\pi\)
\(198\) 0 0
\(199\) 2.00000 + 3.46410i 0.141776 + 0.245564i 0.928166 0.372168i \(-0.121385\pi\)
−0.786389 + 0.617731i \(0.788052\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −4.00000 + 6.92820i −0.279372 + 0.483887i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 20.0000 1.37686 0.688428 0.725304i \(-0.258301\pi\)
0.688428 + 0.725304i \(0.258301\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −16.0000 + 27.7128i −1.09119 + 1.89000i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −24.0000 −1.60716 −0.803579 0.595198i \(-0.797074\pi\)
−0.803579 + 0.595198i \(0.797074\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 7.00000 + 12.1244i 0.464606 + 0.804722i 0.999184 0.0403978i \(-0.0128625\pi\)
−0.534577 + 0.845120i \(0.679529\pi\)
\(228\) 0 0
\(229\) 8.00000 13.8564i 0.528655 0.915657i −0.470787 0.882247i \(-0.656030\pi\)
0.999442 0.0334101i \(-0.0106368\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 13.0000 22.5167i 0.851658 1.47512i −0.0280525 0.999606i \(-0.508931\pi\)
0.879711 0.475509i \(-0.157736\pi\)
\(234\) 0 0
\(235\) −8.00000 13.8564i −0.521862 0.903892i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 16.0000 1.03495 0.517477 0.855697i \(-0.326871\pi\)
0.517477 + 0.855697i \(0.326871\pi\)
\(240\) 0 0
\(241\) 1.00000 + 1.73205i 0.0644157 + 0.111571i 0.896435 0.443176i \(-0.146148\pi\)
−0.832019 + 0.554747i \(0.812815\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 14.0000 0.883672 0.441836 0.897096i \(-0.354327\pi\)
0.441836 + 0.897096i \(0.354327\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 9.00000 15.5885i 0.561405 0.972381i −0.435970 0.899961i \(-0.643595\pi\)
0.997374 0.0724199i \(-0.0230722\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(264\) 0 0
\(265\) 40.0000 2.45718
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −12.0000 20.7846i −0.731653 1.26726i −0.956176 0.292791i \(-0.905416\pi\)
0.224523 0.974469i \(-0.427917\pi\)
\(270\) 0 0
\(271\) −16.0000 + 27.7128i −0.971931 + 1.68343i −0.282218 + 0.959350i \(0.591070\pi\)
−0.689713 + 0.724083i \(0.742263\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −11.0000 19.0526i −0.660926 1.14476i −0.980373 0.197153i \(-0.936830\pi\)
0.319447 0.947604i \(-0.396503\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) 5.00000 + 8.66025i 0.297219 + 0.514799i 0.975499 0.220005i \(-0.0706075\pi\)
−0.678280 + 0.734804i \(0.737274\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 6.50000 11.2583i 0.382353 0.662255i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 12.0000 0.701047 0.350524 0.936554i \(-0.386004\pi\)
0.350524 + 0.936554i \(0.386004\pi\)
\(294\) 0 0
\(295\) −24.0000 −1.39733
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −8.00000 13.8564i −0.458079 0.793416i
\(306\) 0 0
\(307\) −2.00000 −0.114146 −0.0570730 0.998370i \(-0.518177\pi\)
−0.0570730 + 0.998370i \(0.518177\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −12.0000 20.7846i −0.680458 1.17859i −0.974841 0.222900i \(-0.928448\pi\)
0.294384 0.955687i \(-0.404886\pi\)
\(312\) 0 0
\(313\) −7.00000 + 12.1244i −0.395663 + 0.685309i −0.993186 0.116543i \(-0.962819\pi\)
0.597522 + 0.801852i \(0.296152\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.00000 5.19615i 0.168497 0.291845i −0.769395 0.638774i \(-0.779442\pi\)
0.937892 + 0.346929i \(0.112775\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −4.00000 −0.222566
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −4.00000 + 6.92820i −0.219860 + 0.380808i −0.954765 0.297361i \(-0.903893\pi\)
0.734905 + 0.678170i \(0.237227\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −48.0000 −2.62252
\(336\) 0 0
\(337\) 14.0000 0.762629 0.381314 0.924445i \(-0.375472\pi\)
0.381314 + 0.924445i \(0.375472\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −12.0000 20.7846i −0.644194 1.11578i −0.984487 0.175457i \(-0.943860\pi\)
0.340293 0.940319i \(-0.389474\pi\)
\(348\) 0 0
\(349\) 8.00000 0.428230 0.214115 0.976808i \(-0.431313\pi\)
0.214115 + 0.976808i \(0.431313\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −15.0000 25.9808i −0.798369 1.38282i −0.920677 0.390324i \(-0.872363\pi\)
0.122308 0.992492i \(-0.460970\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(360\) 0 0
\(361\) 7.50000 + 12.9904i 0.394737 + 0.683704i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −56.0000 −2.93117
\(366\) 0 0
\(367\) −4.00000 6.92820i −0.208798 0.361649i 0.742538 0.669804i \(-0.233622\pi\)
−0.951336 + 0.308155i \(0.900289\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 17.0000 29.4449i 0.880227 1.52460i 0.0291379 0.999575i \(-0.490724\pi\)
0.851089 0.525022i \(-0.175943\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 6.00000 10.3923i 0.306586 0.531022i −0.671027 0.741433i \(-0.734147\pi\)
0.977613 + 0.210411i \(0.0674801\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 5.00000 + 8.66025i 0.253510 + 0.439092i 0.964490 0.264120i \(-0.0850816\pi\)
−0.710980 + 0.703213i \(0.751748\pi\)
\(390\) 0 0
\(391\) −16.0000 −0.809155
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 16.0000 + 27.7128i 0.805047 + 1.39438i
\(396\) 0 0
\(397\) 4.00000 6.92820i 0.200754 0.347717i −0.748017 0.663679i \(-0.768994\pi\)
0.948772 + 0.315963i \(0.102327\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 15.0000 25.9808i 0.749064 1.29742i −0.199207 0.979957i \(-0.563837\pi\)
0.948272 0.317460i \(-0.102830\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −3.00000 5.19615i −0.148340 0.256933i 0.782274 0.622935i \(-0.214060\pi\)
−0.930614 + 0.366002i \(0.880726\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 12.0000 20.7846i 0.589057 1.02028i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −26.0000 −1.27018 −0.635092 0.772437i \(-0.719038\pi\)
−0.635092 + 0.772437i \(0.719038\pi\)
\(420\) 0 0
\(421\) 22.0000 1.07221 0.536107 0.844150i \(-0.319894\pi\)
0.536107 + 0.844150i \(0.319894\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −11.0000 + 19.0526i −0.533578 + 0.924185i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(432\) 0 0
\(433\) −26.0000 −1.24948 −0.624740 0.780833i \(-0.714795\pi\)
−0.624740 + 0.780833i \(0.714795\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −8.00000 13.8564i −0.382692 0.662842i
\(438\) 0 0
\(439\) −12.0000 + 20.7846i −0.572729 + 0.991995i 0.423556 + 0.905870i \(0.360782\pi\)
−0.996284 + 0.0861252i \(0.972552\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2.00000 + 3.46410i −0.0950229 + 0.164584i −0.909618 0.415445i \(-0.863626\pi\)
0.814595 + 0.580030i \(0.196959\pi\)
\(444\) 0 0
\(445\) 20.0000 + 34.6410i 0.948091 + 1.64214i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 14.0000 0.660701 0.330350 0.943858i \(-0.392833\pi\)
0.330350 + 0.943858i \(0.392833\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −11.0000 + 19.0526i −0.514558 + 0.891241i 0.485299 + 0.874348i \(0.338711\pi\)
−0.999857 + 0.0168929i \(0.994623\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) −16.0000 −0.743583 −0.371792 0.928316i \(-0.621256\pi\)
−0.371792 + 0.928316i \(0.621256\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 3.00000 5.19615i 0.138823 0.240449i −0.788228 0.615383i \(-0.789001\pi\)
0.927052 + 0.374934i \(0.122335\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −22.0000 −1.00943
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 2.00000 + 3.46410i 0.0913823 + 0.158279i 0.908093 0.418769i \(-0.137538\pi\)
−0.816711 + 0.577047i \(0.804205\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4.00000 6.92820i 0.181631 0.314594i
\(486\) 0 0
\(487\) 4.00000 + 6.92820i 0.181257 + 0.313947i 0.942309 0.334744i \(-0.108650\pi\)
−0.761052 + 0.648691i \(0.775317\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 36.0000 1.62466 0.812329 0.583200i \(-0.198200\pi\)
0.812329 + 0.583200i \(0.198200\pi\)
\(492\) 0 0
\(493\) 2.00000 + 3.46410i 0.0900755 + 0.156015i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −2.00000 + 3.46410i −0.0895323 + 0.155074i −0.907314 0.420455i \(-0.861871\pi\)
0.817781 + 0.575529i \(0.195204\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 32.0000 1.42681 0.713405 0.700752i \(-0.247152\pi\)
0.713405 + 0.700752i \(0.247152\pi\)
\(504\) 0 0
\(505\) −48.0000 −2.13597
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −12.0000 + 20.7846i −0.531891 + 0.921262i 0.467416 + 0.884037i \(0.345185\pi\)
−0.999307 + 0.0372243i \(0.988148\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 24.0000 + 41.5692i 1.05757 + 1.83176i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −9.00000 15.5885i −0.394297 0.682943i 0.598714 0.800963i \(-0.295679\pi\)
−0.993011 + 0.118020i \(0.962345\pi\)
\(522\) 0 0
\(523\) 17.0000 29.4449i 0.743358 1.28753i −0.207600 0.978214i \(-0.566565\pi\)
0.950958 0.309320i \(-0.100101\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −4.00000 + 6.92820i −0.174243 + 0.301797i
\(528\) 0 0
\(529\) −20.5000 35.5070i −0.891304 1.54378i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −24.0000 41.5692i −1.03761 1.79719i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −11.0000 + 19.0526i −0.472927 + 0.819133i −0.999520 0.0309841i \(-0.990136\pi\)
0.526593 + 0.850118i \(0.323469\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 40.0000 1.71341
\(546\) 0 0
\(547\) −8.00000 −0.342055 −0.171028 0.985266i \(-0.554709\pi\)
−0.171028 + 0.985266i \(0.554709\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2.00000 + 3.46410i −0.0852029 + 0.147576i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −13.0000 22.5167i −0.550828 0.954062i −0.998215 0.0597213i \(-0.980979\pi\)
0.447387 0.894340i \(-0.352355\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 17.0000 + 29.4449i 0.716465 + 1.24095i 0.962392 + 0.271665i \(0.0875742\pi\)
−0.245927 + 0.969288i \(0.579092\pi\)
\(564\) 0 0
\(565\) 12.0000 20.7846i 0.504844 0.874415i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −21.0000 + 36.3731i −0.880366 + 1.52484i −0.0294311 + 0.999567i \(0.509370\pi\)
−0.850935 + 0.525271i \(0.823964\pi\)
\(570\) 0 0
\(571\) 8.00000 + 13.8564i 0.334790 + 0.579873i 0.983444 0.181210i \(-0.0580014\pi\)
−0.648655 + 0.761083i \(0.724668\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −88.0000 −3.66985
\(576\) 0 0
\(577\) −9.00000 15.5885i −0.374675 0.648956i 0.615603 0.788056i \(-0.288912\pi\)
−0.990278 + 0.139100i \(0.955579\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −10.0000 −0.412744 −0.206372 0.978474i \(-0.566166\pi\)
−0.206372 + 0.978474i \(0.566166\pi\)
\(588\) 0 0
\(589\) −8.00000 −0.329634
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 21.0000 36.3731i 0.862367 1.49366i −0.00727173 0.999974i \(-0.502315\pi\)
0.869638 0.493689i \(-0.164352\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 20.0000 + 34.6410i 0.817178 + 1.41539i 0.907754 + 0.419504i \(0.137796\pi\)
−0.0905757 + 0.995890i \(0.528871\pi\)
\(600\) 0 0
\(601\) 10.0000 0.407909 0.203954 0.978980i \(-0.434621\pi\)
0.203954 + 0.978980i \(0.434621\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 22.0000 + 38.1051i 0.894427 + 1.54919i
\(606\) 0 0
\(607\) 16.0000 27.7128i 0.649420 1.12483i −0.333842 0.942629i \(-0.608345\pi\)
0.983262 0.182199i \(-0.0583216\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −5.00000 8.66025i −0.201948 0.349784i 0.747208 0.664590i \(-0.231394\pi\)
−0.949156 + 0.314806i \(0.898061\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −6.00000 −0.241551 −0.120775 0.992680i \(-0.538538\pi\)
−0.120775 + 0.992680i \(0.538538\pi\)
\(618\) 0 0
\(619\) −3.00000 5.19615i −0.120580 0.208851i 0.799416 0.600777i \(-0.205142\pi\)
−0.919997 + 0.391926i \(0.871809\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −20.5000 + 35.5070i −0.820000 + 1.42028i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −12.0000 −0.478471
\(630\) 0 0
\(631\) 32.0000 1.27390 0.636950 0.770905i \(-0.280196\pi\)
0.636950 + 0.770905i \(0.280196\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −16.0000 + 27.7128i −0.634941 + 1.09975i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −1.00000 1.73205i −0.0394976 0.0684119i 0.845601 0.533816i \(-0.179242\pi\)
−0.885098 + 0.465404i \(0.845909\pi\)
\(642\) 0 0
\(643\) −14.0000 −0.552106 −0.276053 0.961142i \(-0.589027\pi\)
−0.276053 + 0.961142i \(0.589027\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −18.0000 31.1769i −0.707653 1.22569i −0.965726 0.259565i \(-0.916421\pi\)
0.258073 0.966126i \(-0.416913\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −11.0000 + 19.0526i −0.430463 + 0.745584i −0.996913 0.0785119i \(-0.974983\pi\)
0.566450 + 0.824096i \(0.308316\pi\)
\(654\) 0 0
\(655\) 28.0000 + 48.4974i 1.09405 + 1.89495i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 40.0000 1.55818 0.779089 0.626913i \(-0.215682\pi\)
0.779089 + 0.626913i \(0.215682\pi\)
\(660\) 0 0
\(661\) −10.0000 17.3205i −0.388955 0.673690i 0.603354 0.797473i \(-0.293830\pi\)
−0.992309 + 0.123784i \(0.960497\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −8.00000 + 13.8564i −0.309761 + 0.536522i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 10.0000 0.385472 0.192736 0.981251i \(-0.438264\pi\)
0.192736 + 0.981251i \(0.438264\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −12.0000 + 20.7846i −0.461197 + 0.798817i −0.999021 0.0442400i \(-0.985913\pi\)
0.537823 + 0.843057i \(0.319247\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 6.00000 + 10.3923i 0.229584 + 0.397650i 0.957685 0.287819i \(-0.0929302\pi\)
−0.728101 + 0.685470i \(0.759597\pi\)
\(684\) 0 0
\(685\) −8.00000 −0.305664
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −7.00000 + 12.1244i −0.266293 + 0.461232i −0.967901 0.251330i \(-0.919132\pi\)
0.701609 + 0.712562i \(0.252465\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −36.0000 + 62.3538i −1.36556 + 2.36522i
\(696\) 0 0
\(697\) −2.00000 3.46410i −0.0757554 0.131212i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −10.0000 −0.377695 −0.188847 0.982006i \(-0.560475\pi\)
−0.188847 + 0.982006i \(0.560475\pi\)
\(702\) 0 0
\(703\) −6.00000 10.3923i −0.226294 0.391953i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −5.00000 + 8.66025i −0.187779 + 0.325243i −0.944509 0.328484i \(-0.893462\pi\)
0.756730 + 0.653727i \(0.226796\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −32.0000 −1.19841
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 18.0000 31.1769i 0.671287 1.16270i −0.306253 0.951950i \(-0.599075\pi\)
0.977539 0.210752i \(-0.0675914\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 11.0000 + 19.0526i 0.408530 + 0.707594i
\(726\) 0 0
\(727\) 20.0000 0.741759 0.370879 0.928681i \(-0.379056\pi\)
0.370879 + 0.928681i \(0.379056\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −8.00000 13.8564i −0.295891 0.512498i
\(732\) 0 0
\(733\) −26.0000 + 45.0333i −0.960332 + 1.66334i −0.238667 + 0.971102i \(0.576710\pi\)
−0.721665 + 0.692242i \(0.756623\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −8.00000 13.8564i −0.294285 0.509716i 0.680534 0.732717i \(-0.261748\pi\)
−0.974818 + 0.223001i \(0.928415\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 16.0000 0.586983 0.293492 0.955962i \(-0.405183\pi\)
0.293492 + 0.955962i \(0.405183\pi\)
\(744\) 0 0
\(745\) −4.00000 6.92820i −0.146549 0.253830i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −16.0000 + 27.7128i −0.583848 + 1.01125i 0.411170 + 0.911559i \(0.365120\pi\)
−0.995018 + 0.0996961i \(0.968213\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 64.0000 2.32920
\(756\) 0 0
\(757\) 10.0000 0.363456 0.181728 0.983349i \(-0.441831\pi\)
0.181728 + 0.983349i \(0.441831\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −21.0000 + 36.3731i −0.761249 + 1.31852i 0.180957 + 0.983491i \(0.442080\pi\)
−0.942207 + 0.335032i \(0.891253\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −26.0000 −0.937584 −0.468792 0.883309i \(-0.655311\pi\)
−0.468792 + 0.883309i \(0.655311\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 2.00000 + 3.46410i 0.0719350 + 0.124595i 0.899749 0.436407i \(-0.143749\pi\)
−0.827814 + 0.561002i \(0.810416\pi\)
\(774\) 0 0
\(775\) −22.0000 + 38.1051i −0.790263 + 1.36878i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2.00000 3.46410i 0.0716574 0.124114i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −11.0000 19.0526i −0.392108 0.679150i 0.600620 0.799535i \(-0.294921\pi\)
−0.992727 + 0.120384i \(0.961587\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 24.0000 0.850124 0.425062 0.905164i \(-0.360252\pi\)
0.425062 + 0.905164i \(0.360252\pi\)
\(798\) 0 0
\(799\) 8.00000 0.283020
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0