Properties

Label 3528.2.r
Level $3528$
Weight $2$
Character orbit 3528.r
Rep. character $\chi_{3528}(1177,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $246$
Sturm bound $1344$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3528 = 2^{3} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3528.r (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Sturm bound: \(1344\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3528, [\chi])\).

Total New Old
Modular forms 1408 246 1162
Cusp forms 1280 246 1034
Eisenstein series 128 0 128

Trace form

\( 246 q + q^{3} - 2 q^{5} - 5 q^{9} - 7 q^{11} + 2 q^{15} + 2 q^{17} + 6 q^{19} + 4 q^{23} - 123 q^{25} + 4 q^{27} + 6 q^{31} + 5 q^{33} - 34 q^{39} - 3 q^{41} + 3 q^{43} - 38 q^{45} + 12 q^{47} - 7 q^{51}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3528, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3528, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3528, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(441, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(504, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(882, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1764, [\chi])\)\(^{\oplus 2}\)