Properties

 Label 3528.2.a.v Level $3528$ Weight $2$ Character orbit 3528.a Self dual yes Analytic conductor $28.171$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$3528 = 2^{3} \cdot 3^{2} \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3528.a (trivial)

Newform invariants

 Self dual: yes Analytic conductor: $$28.1712218331$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 168) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

 $$f(q)$$ $$=$$ $$q + 2q^{5} + O(q^{10})$$ $$q + 2q^{5} - 6q^{13} - 2q^{17} - 4q^{19} + 4q^{23} - q^{25} + 10q^{29} + 8q^{31} + 6q^{37} - 2q^{41} - 4q^{43} + 8q^{47} + 10q^{53} + 12q^{59} + 2q^{61} - 12q^{65} + 12q^{67} + 12q^{71} + 14q^{73} - 8q^{79} + 12q^{83} - 4q^{85} - 2q^{89} - 8q^{95} - 10q^{97} + O(q^{100})$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 0 0 2.00000 0 0 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$7$$ $$-1$$

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3528.2.a.v 1
3.b odd 2 1 1176.2.a.f 1
4.b odd 2 1 7056.2.a.bq 1
7.b odd 2 1 504.2.a.e 1
7.c even 3 2 3528.2.s.g 2
7.d odd 6 2 3528.2.s.w 2
12.b even 2 1 2352.2.a.c 1
21.c even 2 1 168.2.a.a 1
21.g even 6 2 1176.2.q.f 2
21.h odd 6 2 1176.2.q.d 2
24.f even 2 1 9408.2.a.da 1
24.h odd 2 1 9408.2.a.be 1
28.d even 2 1 1008.2.a.b 1
56.e even 2 1 4032.2.a.bc 1
56.h odd 2 1 4032.2.a.bh 1
84.h odd 2 1 336.2.a.e 1
84.j odd 6 2 2352.2.q.d 2
84.n even 6 2 2352.2.q.w 2
105.g even 2 1 4200.2.a.t 1
105.k odd 4 2 4200.2.t.j 2
168.e odd 2 1 1344.2.a.b 1
168.i even 2 1 1344.2.a.m 1
336.v odd 4 2 5376.2.c.bb 2
336.y even 4 2 5376.2.c.d 2
420.o odd 2 1 8400.2.a.y 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
168.2.a.a 1 21.c even 2 1
336.2.a.e 1 84.h odd 2 1
504.2.a.e 1 7.b odd 2 1
1008.2.a.b 1 28.d even 2 1
1176.2.a.f 1 3.b odd 2 1
1176.2.q.d 2 21.h odd 6 2
1176.2.q.f 2 21.g even 6 2
1344.2.a.b 1 168.e odd 2 1
1344.2.a.m 1 168.i even 2 1
2352.2.a.c 1 12.b even 2 1
2352.2.q.d 2 84.j odd 6 2
2352.2.q.w 2 84.n even 6 2
3528.2.a.v 1 1.a even 1 1 trivial
3528.2.s.g 2 7.c even 3 2
3528.2.s.w 2 7.d odd 6 2
4032.2.a.bc 1 56.e even 2 1
4032.2.a.bh 1 56.h odd 2 1
4200.2.a.t 1 105.g even 2 1
4200.2.t.j 2 105.k odd 4 2
5376.2.c.d 2 336.y even 4 2
5376.2.c.bb 2 336.v odd 4 2
7056.2.a.bq 1 4.b odd 2 1
8400.2.a.y 1 420.o odd 2 1
9408.2.a.be 1 24.h odd 2 1
9408.2.a.da 1 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(3528))$$:

 $$T_{5} - 2$$ $$T_{11}$$ $$T_{13} + 6$$ $$T_{23} - 4$$

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ $$1 - 2 T + 5 T^{2}$$
$7$ 1
$11$ $$1 + 11 T^{2}$$
$13$ $$1 + 6 T + 13 T^{2}$$
$17$ $$1 + 2 T + 17 T^{2}$$
$19$ $$1 + 4 T + 19 T^{2}$$
$23$ $$1 - 4 T + 23 T^{2}$$
$29$ $$1 - 10 T + 29 T^{2}$$
$31$ $$1 - 8 T + 31 T^{2}$$
$37$ $$1 - 6 T + 37 T^{2}$$
$41$ $$1 + 2 T + 41 T^{2}$$
$43$ $$1 + 4 T + 43 T^{2}$$
$47$ $$1 - 8 T + 47 T^{2}$$
$53$ $$1 - 10 T + 53 T^{2}$$
$59$ $$1 - 12 T + 59 T^{2}$$
$61$ $$1 - 2 T + 61 T^{2}$$
$67$ $$1 - 12 T + 67 T^{2}$$
$71$ $$1 - 12 T + 71 T^{2}$$
$73$ $$1 - 14 T + 73 T^{2}$$
$79$ $$1 + 8 T + 79 T^{2}$$
$83$ $$1 - 12 T + 83 T^{2}$$
$89$ $$1 + 2 T + 89 T^{2}$$
$97$ $$1 + 10 T + 97 T^{2}$$