# Properties

 Label 3528.2.a.e.1.1 Level $3528$ Weight $2$ Character 3528.1 Self dual yes Analytic conductor $28.171$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$3528 = 2^{3} \cdot 3^{2} \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3528.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$28.1712218331$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 504) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## Embedding invariants

 Embedding label 1.1 Character $$\chi$$ $$=$$ 3528.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q-2.00000 q^{5} +O(q^{10})$$ $$q-2.00000 q^{5} +2.00000 q^{11} -2.00000 q^{13} -6.00000 q^{17} +4.00000 q^{19} +6.00000 q^{23} -1.00000 q^{25} +4.00000 q^{31} +10.0000 q^{37} -2.00000 q^{41} -4.00000 q^{43} -4.00000 q^{47} -12.0000 q^{53} -4.00000 q^{55} -12.0000 q^{59} -6.00000 q^{61} +4.00000 q^{65} -4.00000 q^{67} -14.0000 q^{71} +2.00000 q^{73} -8.00000 q^{79} +16.0000 q^{83} +12.0000 q^{85} +6.00000 q^{89} -8.00000 q^{95} +18.0000 q^{97} +O(q^{100})$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 0 0
$$4$$ 0 0
$$5$$ −2.00000 −0.894427 −0.447214 0.894427i $$-0.647584\pi$$
−0.447214 + 0.894427i $$0.647584\pi$$
$$6$$ 0 0
$$7$$ 0 0
$$8$$ 0 0
$$9$$ 0 0
$$10$$ 0 0
$$11$$ 2.00000 0.603023 0.301511 0.953463i $$-0.402509\pi$$
0.301511 + 0.953463i $$0.402509\pi$$
$$12$$ 0 0
$$13$$ −2.00000 −0.554700 −0.277350 0.960769i $$-0.589456\pi$$
−0.277350 + 0.960769i $$0.589456\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ −6.00000 −1.45521 −0.727607 0.685994i $$-0.759367\pi$$
−0.727607 + 0.685994i $$0.759367\pi$$
$$18$$ 0 0
$$19$$ 4.00000 0.917663 0.458831 0.888523i $$-0.348268\pi$$
0.458831 + 0.888523i $$0.348268\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ 6.00000 1.25109 0.625543 0.780189i $$-0.284877\pi$$
0.625543 + 0.780189i $$0.284877\pi$$
$$24$$ 0 0
$$25$$ −1.00000 −0.200000
$$26$$ 0 0
$$27$$ 0 0
$$28$$ 0 0
$$29$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$30$$ 0 0
$$31$$ 4.00000 0.718421 0.359211 0.933257i $$-0.383046\pi$$
0.359211 + 0.933257i $$0.383046\pi$$
$$32$$ 0 0
$$33$$ 0 0
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ 10.0000 1.64399 0.821995 0.569495i $$-0.192861\pi$$
0.821995 + 0.569495i $$0.192861\pi$$
$$38$$ 0 0
$$39$$ 0 0
$$40$$ 0 0
$$41$$ −2.00000 −0.312348 −0.156174 0.987730i $$-0.549916\pi$$
−0.156174 + 0.987730i $$0.549916\pi$$
$$42$$ 0 0
$$43$$ −4.00000 −0.609994 −0.304997 0.952353i $$-0.598656\pi$$
−0.304997 + 0.952353i $$0.598656\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ −4.00000 −0.583460 −0.291730 0.956501i $$-0.594231\pi$$
−0.291730 + 0.956501i $$0.594231\pi$$
$$48$$ 0 0
$$49$$ 0 0
$$50$$ 0 0
$$51$$ 0 0
$$52$$ 0 0
$$53$$ −12.0000 −1.64833 −0.824163 0.566352i $$-0.808354\pi$$
−0.824163 + 0.566352i $$0.808354\pi$$
$$54$$ 0 0
$$55$$ −4.00000 −0.539360
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 0 0
$$59$$ −12.0000 −1.56227 −0.781133 0.624364i $$-0.785358\pi$$
−0.781133 + 0.624364i $$0.785358\pi$$
$$60$$ 0 0
$$61$$ −6.00000 −0.768221 −0.384111 0.923287i $$-0.625492\pi$$
−0.384111 + 0.923287i $$0.625492\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 0 0
$$65$$ 4.00000 0.496139
$$66$$ 0 0
$$67$$ −4.00000 −0.488678 −0.244339 0.969690i $$-0.578571\pi$$
−0.244339 + 0.969690i $$0.578571\pi$$
$$68$$ 0 0
$$69$$ 0 0
$$70$$ 0 0
$$71$$ −14.0000 −1.66149 −0.830747 0.556650i $$-0.812086\pi$$
−0.830747 + 0.556650i $$0.812086\pi$$
$$72$$ 0 0
$$73$$ 2.00000 0.234082 0.117041 0.993127i $$-0.462659\pi$$
0.117041 + 0.993127i $$0.462659\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ 0 0
$$78$$ 0 0
$$79$$ −8.00000 −0.900070 −0.450035 0.893011i $$-0.648589\pi$$
−0.450035 + 0.893011i $$0.648589\pi$$
$$80$$ 0 0
$$81$$ 0 0
$$82$$ 0 0
$$83$$ 16.0000 1.75623 0.878114 0.478451i $$-0.158802\pi$$
0.878114 + 0.478451i $$0.158802\pi$$
$$84$$ 0 0
$$85$$ 12.0000 1.30158
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ 6.00000 0.635999 0.317999 0.948091i $$-0.396989\pi$$
0.317999 + 0.948091i $$0.396989\pi$$
$$90$$ 0 0
$$91$$ 0 0
$$92$$ 0 0
$$93$$ 0 0
$$94$$ 0 0
$$95$$ −8.00000 −0.820783
$$96$$ 0 0
$$97$$ 18.0000 1.82762 0.913812 0.406138i $$-0.133125\pi$$
0.913812 + 0.406138i $$0.133125\pi$$
$$98$$ 0 0
$$99$$ 0 0
$$100$$ 0 0
$$101$$ −14.0000 −1.39305 −0.696526 0.717532i $$-0.745272\pi$$
−0.696526 + 0.717532i $$0.745272\pi$$
$$102$$ 0 0
$$103$$ 4.00000 0.394132 0.197066 0.980390i $$-0.436859\pi$$
0.197066 + 0.980390i $$0.436859\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ −6.00000 −0.580042 −0.290021 0.957020i $$-0.593662\pi$$
−0.290021 + 0.957020i $$0.593662\pi$$
$$108$$ 0 0
$$109$$ 2.00000 0.191565 0.0957826 0.995402i $$-0.469465\pi$$
0.0957826 + 0.995402i $$0.469465\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ 0 0
$$113$$ −16.0000 −1.50515 −0.752577 0.658505i $$-0.771189\pi$$
−0.752577 + 0.658505i $$0.771189\pi$$
$$114$$ 0 0
$$115$$ −12.0000 −1.11901
$$116$$ 0 0
$$117$$ 0 0
$$118$$ 0 0
$$119$$ 0 0
$$120$$ 0 0
$$121$$ −7.00000 −0.636364
$$122$$ 0 0
$$123$$ 0 0
$$124$$ 0 0
$$125$$ 12.0000 1.07331
$$126$$ 0 0
$$127$$ −8.00000 −0.709885 −0.354943 0.934888i $$-0.615500\pi$$
−0.354943 + 0.934888i $$0.615500\pi$$
$$128$$ 0 0
$$129$$ 0 0
$$130$$ 0 0
$$131$$ −8.00000 −0.698963 −0.349482 0.936943i $$-0.613642\pi$$
−0.349482 + 0.936943i $$0.613642\pi$$
$$132$$ 0 0
$$133$$ 0 0
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ −12.0000 −1.02523 −0.512615 0.858619i $$-0.671323\pi$$
−0.512615 + 0.858619i $$0.671323\pi$$
$$138$$ 0 0
$$139$$ −16.0000 −1.35710 −0.678551 0.734553i $$-0.737392\pi$$
−0.678551 + 0.734553i $$0.737392\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ −4.00000 −0.334497
$$144$$ 0 0
$$145$$ 0 0
$$146$$ 0 0
$$147$$ 0 0
$$148$$ 0 0
$$149$$ 12.0000 0.983078 0.491539 0.870855i $$-0.336434\pi$$
0.491539 + 0.870855i $$0.336434\pi$$
$$150$$ 0 0
$$151$$ 24.0000 1.95309 0.976546 0.215308i $$-0.0690756\pi$$
0.976546 + 0.215308i $$0.0690756\pi$$
$$152$$ 0 0
$$153$$ 0 0
$$154$$ 0 0
$$155$$ −8.00000 −0.642575
$$156$$ 0 0
$$157$$ −6.00000 −0.478852 −0.239426 0.970915i $$-0.576959\pi$$
−0.239426 + 0.970915i $$0.576959\pi$$
$$158$$ 0 0
$$159$$ 0 0
$$160$$ 0 0
$$161$$ 0 0
$$162$$ 0 0
$$163$$ −12.0000 −0.939913 −0.469956 0.882690i $$-0.655730\pi$$
−0.469956 + 0.882690i $$0.655730\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ −4.00000 −0.309529 −0.154765 0.987951i $$-0.549462\pi$$
−0.154765 + 0.987951i $$0.549462\pi$$
$$168$$ 0 0
$$169$$ −9.00000 −0.692308
$$170$$ 0 0
$$171$$ 0 0
$$172$$ 0 0
$$173$$ −6.00000 −0.456172 −0.228086 0.973641i $$-0.573247\pi$$
−0.228086 + 0.973641i $$0.573247\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ 0 0
$$178$$ 0 0
$$179$$ −10.0000 −0.747435 −0.373718 0.927543i $$-0.621917\pi$$
−0.373718 + 0.927543i $$0.621917\pi$$
$$180$$ 0 0
$$181$$ 14.0000 1.04061 0.520306 0.853980i $$-0.325818\pi$$
0.520306 + 0.853980i $$0.325818\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ 0 0
$$185$$ −20.0000 −1.47043
$$186$$ 0 0
$$187$$ −12.0000 −0.877527
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ 26.0000 1.88129 0.940647 0.339387i $$-0.110219\pi$$
0.940647 + 0.339387i $$0.110219\pi$$
$$192$$ 0 0
$$193$$ −26.0000 −1.87152 −0.935760 0.352636i $$-0.885285\pi$$
−0.935760 + 0.352636i $$0.885285\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ −12.0000 −0.854965 −0.427482 0.904024i $$-0.640599\pi$$
−0.427482 + 0.904024i $$0.640599\pi$$
$$198$$ 0 0
$$199$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$200$$ 0 0
$$201$$ 0 0
$$202$$ 0 0
$$203$$ 0 0
$$204$$ 0 0
$$205$$ 4.00000 0.279372
$$206$$ 0 0
$$207$$ 0 0
$$208$$ 0 0
$$209$$ 8.00000 0.553372
$$210$$ 0 0
$$211$$ −12.0000 −0.826114 −0.413057 0.910705i $$-0.635539\pi$$
−0.413057 + 0.910705i $$0.635539\pi$$
$$212$$ 0 0
$$213$$ 0 0
$$214$$ 0 0
$$215$$ 8.00000 0.545595
$$216$$ 0 0
$$217$$ 0 0
$$218$$ 0 0
$$219$$ 0 0
$$220$$ 0 0
$$221$$ 12.0000 0.807207
$$222$$ 0 0
$$223$$ −24.0000 −1.60716 −0.803579 0.595198i $$-0.797074\pi$$
−0.803579 + 0.595198i $$0.797074\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ −28.0000 −1.85843 −0.929213 0.369546i $$-0.879513\pi$$
−0.929213 + 0.369546i $$0.879513\pi$$
$$228$$ 0 0
$$229$$ −10.0000 −0.660819 −0.330409 0.943838i $$-0.607187\pi$$
−0.330409 + 0.943838i $$0.607187\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ −4.00000 −0.262049 −0.131024 0.991379i $$-0.541827\pi$$
−0.131024 + 0.991379i $$0.541827\pi$$
$$234$$ 0 0
$$235$$ 8.00000 0.521862
$$236$$ 0 0
$$237$$ 0 0
$$238$$ 0 0
$$239$$ 14.0000 0.905585 0.452792 0.891616i $$-0.350428\pi$$
0.452792 + 0.891616i $$0.350428\pi$$
$$240$$ 0 0
$$241$$ 26.0000 1.67481 0.837404 0.546585i $$-0.184072\pi$$
0.837404 + 0.546585i $$0.184072\pi$$
$$242$$ 0 0
$$243$$ 0 0
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0 0
$$247$$ −8.00000 −0.509028
$$248$$ 0 0
$$249$$ 0 0
$$250$$ 0 0
$$251$$ −12.0000 −0.757433 −0.378717 0.925513i $$-0.623635\pi$$
−0.378717 + 0.925513i $$0.623635\pi$$
$$252$$ 0 0
$$253$$ 12.0000 0.754434
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ −26.0000 −1.62184 −0.810918 0.585160i $$-0.801032\pi$$
−0.810918 + 0.585160i $$0.801032\pi$$
$$258$$ 0 0
$$259$$ 0 0
$$260$$ 0 0
$$261$$ 0 0
$$262$$ 0 0
$$263$$ −18.0000 −1.10993 −0.554964 0.831875i $$-0.687268\pi$$
−0.554964 + 0.831875i $$0.687268\pi$$
$$264$$ 0 0
$$265$$ 24.0000 1.47431
$$266$$ 0 0
$$267$$ 0 0
$$268$$ 0 0
$$269$$ −10.0000 −0.609711 −0.304855 0.952399i $$-0.598608\pi$$
−0.304855 + 0.952399i $$0.598608\pi$$
$$270$$ 0 0
$$271$$ 12.0000 0.728948 0.364474 0.931214i $$-0.381249\pi$$
0.364474 + 0.931214i $$0.381249\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ −2.00000 −0.120605
$$276$$ 0 0
$$277$$ −2.00000 −0.120168 −0.0600842 0.998193i $$-0.519137\pi$$
−0.0600842 + 0.998193i $$0.519137\pi$$
$$278$$ 0 0
$$279$$ 0 0
$$280$$ 0 0
$$281$$ 12.0000 0.715860 0.357930 0.933748i $$-0.383483\pi$$
0.357930 + 0.933748i $$0.383483\pi$$
$$282$$ 0 0
$$283$$ −28.0000 −1.66443 −0.832214 0.554455i $$-0.812927\pi$$
−0.832214 + 0.554455i $$0.812927\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 0 0
$$288$$ 0 0
$$289$$ 19.0000 1.11765
$$290$$ 0 0
$$291$$ 0 0
$$292$$ 0 0
$$293$$ −6.00000 −0.350524 −0.175262 0.984522i $$-0.556077\pi$$
−0.175262 + 0.984522i $$0.556077\pi$$
$$294$$ 0 0
$$295$$ 24.0000 1.39733
$$296$$ 0 0
$$297$$ 0 0
$$298$$ 0 0
$$299$$ −12.0000 −0.693978
$$300$$ 0 0
$$301$$ 0 0
$$302$$ 0 0
$$303$$ 0 0
$$304$$ 0 0
$$305$$ 12.0000 0.687118
$$306$$ 0 0
$$307$$ −4.00000 −0.228292 −0.114146 0.993464i $$-0.536413\pi$$
−0.114146 + 0.993464i $$0.536413\pi$$
$$308$$ 0 0
$$309$$ 0 0
$$310$$ 0 0
$$311$$ −20.0000 −1.13410 −0.567048 0.823685i $$-0.691915\pi$$
−0.567048 + 0.823685i $$0.691915\pi$$
$$312$$ 0 0
$$313$$ 14.0000 0.791327 0.395663 0.918396i $$-0.370515\pi$$
0.395663 + 0.918396i $$0.370515\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ 12.0000 0.673987 0.336994 0.941507i $$-0.390590\pi$$
0.336994 + 0.941507i $$0.390590\pi$$
$$318$$ 0 0
$$319$$ 0 0
$$320$$ 0 0
$$321$$ 0 0
$$322$$ 0 0
$$323$$ −24.0000 −1.33540
$$324$$ 0 0
$$325$$ 2.00000 0.110940
$$326$$ 0 0
$$327$$ 0 0
$$328$$ 0 0
$$329$$ 0 0
$$330$$ 0 0
$$331$$ 20.0000 1.09930 0.549650 0.835395i $$-0.314761\pi$$
0.549650 + 0.835395i $$0.314761\pi$$
$$332$$ 0 0
$$333$$ 0 0
$$334$$ 0 0
$$335$$ 8.00000 0.437087
$$336$$ 0 0
$$337$$ 14.0000 0.762629 0.381314 0.924445i $$-0.375472\pi$$
0.381314 + 0.924445i $$0.375472\pi$$
$$338$$ 0 0
$$339$$ 0 0
$$340$$ 0 0
$$341$$ 8.00000 0.433224
$$342$$ 0 0
$$343$$ 0 0
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ 6.00000 0.322097 0.161048 0.986947i $$-0.448512\pi$$
0.161048 + 0.986947i $$0.448512\pi$$
$$348$$ 0 0
$$349$$ 18.0000 0.963518 0.481759 0.876304i $$-0.339998\pi$$
0.481759 + 0.876304i $$0.339998\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ 26.0000 1.38384 0.691920 0.721974i $$-0.256765\pi$$
0.691920 + 0.721974i $$0.256765\pi$$
$$354$$ 0 0
$$355$$ 28.0000 1.48609
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ −6.00000 −0.316668 −0.158334 0.987386i $$-0.550612\pi$$
−0.158334 + 0.987386i $$0.550612\pi$$
$$360$$ 0 0
$$361$$ −3.00000 −0.157895
$$362$$ 0 0
$$363$$ 0 0
$$364$$ 0 0
$$365$$ −4.00000 −0.209370
$$366$$ 0 0
$$367$$ 32.0000 1.67039 0.835193 0.549957i $$-0.185356\pi$$
0.835193 + 0.549957i $$0.185356\pi$$
$$368$$ 0 0
$$369$$ 0 0
$$370$$ 0 0
$$371$$ 0 0
$$372$$ 0 0
$$373$$ 22.0000 1.13912 0.569558 0.821951i $$-0.307114\pi$$
0.569558 + 0.821951i $$0.307114\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ 0 0
$$378$$ 0 0
$$379$$ −28.0000 −1.43826 −0.719132 0.694874i $$-0.755460\pi$$
−0.719132 + 0.694874i $$0.755460\pi$$
$$380$$ 0 0
$$381$$ 0 0
$$382$$ 0 0
$$383$$ 24.0000 1.22634 0.613171 0.789950i $$-0.289894\pi$$
0.613171 + 0.789950i $$0.289894\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ 0 0
$$388$$ 0 0
$$389$$ −8.00000 −0.405616 −0.202808 0.979219i $$-0.565007\pi$$
−0.202808 + 0.979219i $$0.565007\pi$$
$$390$$ 0 0
$$391$$ −36.0000 −1.82060
$$392$$ 0 0
$$393$$ 0 0
$$394$$ 0 0
$$395$$ 16.0000 0.805047
$$396$$ 0 0
$$397$$ −22.0000 −1.10415 −0.552074 0.833795i $$-0.686163\pi$$
−0.552074 + 0.833795i $$0.686163\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ 12.0000 0.599251 0.299626 0.954057i $$-0.403138\pi$$
0.299626 + 0.954057i $$0.403138\pi$$
$$402$$ 0 0
$$403$$ −8.00000 −0.398508
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ 20.0000 0.991363
$$408$$ 0 0
$$409$$ 2.00000 0.0988936 0.0494468 0.998777i $$-0.484254\pi$$
0.0494468 + 0.998777i $$0.484254\pi$$
$$410$$ 0 0
$$411$$ 0 0
$$412$$ 0 0
$$413$$ 0 0
$$414$$ 0 0
$$415$$ −32.0000 −1.57082
$$416$$ 0 0
$$417$$ 0 0
$$418$$ 0 0
$$419$$ 4.00000 0.195413 0.0977064 0.995215i $$-0.468849\pi$$
0.0977064 + 0.995215i $$0.468849\pi$$
$$420$$ 0 0
$$421$$ −2.00000 −0.0974740 −0.0487370 0.998812i $$-0.515520\pi$$
−0.0487370 + 0.998812i $$0.515520\pi$$
$$422$$ 0 0
$$423$$ 0 0
$$424$$ 0 0
$$425$$ 6.00000 0.291043
$$426$$ 0 0
$$427$$ 0 0
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ 10.0000 0.481683 0.240842 0.970564i $$-0.422577\pi$$
0.240842 + 0.970564i $$0.422577\pi$$
$$432$$ 0 0
$$433$$ −10.0000 −0.480569 −0.240285 0.970702i $$-0.577241\pi$$
−0.240285 + 0.970702i $$0.577241\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ 24.0000 1.14808
$$438$$ 0 0
$$439$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ 0 0
$$443$$ −18.0000 −0.855206 −0.427603 0.903967i $$-0.640642\pi$$
−0.427603 + 0.903967i $$0.640642\pi$$
$$444$$ 0 0
$$445$$ −12.0000 −0.568855
$$446$$ 0 0
$$447$$ 0 0
$$448$$ 0 0
$$449$$ −8.00000 −0.377543 −0.188772 0.982021i $$-0.560451\pi$$
−0.188772 + 0.982021i $$0.560451\pi$$
$$450$$ 0 0
$$451$$ −4.00000 −0.188353
$$452$$ 0 0
$$453$$ 0 0
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ 22.0000 1.02912 0.514558 0.857455i $$-0.327956\pi$$
0.514558 + 0.857455i $$0.327956\pi$$
$$458$$ 0 0
$$459$$ 0 0
$$460$$ 0 0
$$461$$ 18.0000 0.838344 0.419172 0.907907i $$-0.362320\pi$$
0.419172 + 0.907907i $$0.362320\pi$$
$$462$$ 0 0
$$463$$ −16.0000 −0.743583 −0.371792 0.928316i $$-0.621256\pi$$
−0.371792 + 0.928316i $$0.621256\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ −4.00000 −0.185098 −0.0925490 0.995708i $$-0.529501\pi$$
−0.0925490 + 0.995708i $$0.529501\pi$$
$$468$$ 0 0
$$469$$ 0 0
$$470$$ 0 0
$$471$$ 0 0
$$472$$ 0 0
$$473$$ −8.00000 −0.367840
$$474$$ 0 0
$$475$$ −4.00000 −0.183533
$$476$$ 0 0
$$477$$ 0 0
$$478$$ 0 0
$$479$$ 36.0000 1.64488 0.822441 0.568850i $$-0.192612\pi$$
0.822441 + 0.568850i $$0.192612\pi$$
$$480$$ 0 0
$$481$$ −20.0000 −0.911922
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ −36.0000 −1.63468
$$486$$ 0 0
$$487$$ 8.00000 0.362515 0.181257 0.983436i $$-0.441983\pi$$
0.181257 + 0.983436i $$0.441983\pi$$
$$488$$ 0 0
$$489$$ 0 0
$$490$$ 0 0
$$491$$ 6.00000 0.270776 0.135388 0.990793i $$-0.456772\pi$$
0.135388 + 0.990793i $$0.456772\pi$$
$$492$$ 0 0
$$493$$ 0 0
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 0 0
$$498$$ 0 0
$$499$$ −4.00000 −0.179065 −0.0895323 0.995984i $$-0.528537\pi$$
−0.0895323 + 0.995984i $$0.528537\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ 0 0
$$503$$ −16.0000 −0.713405 −0.356702 0.934218i $$-0.616099\pi$$
−0.356702 + 0.934218i $$0.616099\pi$$
$$504$$ 0 0
$$505$$ 28.0000 1.24598
$$506$$ 0 0
$$507$$ 0 0
$$508$$ 0 0
$$509$$ 14.0000 0.620539 0.310270 0.950649i $$-0.399581\pi$$
0.310270 + 0.950649i $$0.399581\pi$$
$$510$$ 0 0
$$511$$ 0 0
$$512$$ 0 0
$$513$$ 0 0
$$514$$ 0 0
$$515$$ −8.00000 −0.352522
$$516$$ 0 0
$$517$$ −8.00000 −0.351840
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ −6.00000 −0.262865 −0.131432 0.991325i $$-0.541958\pi$$
−0.131432 + 0.991325i $$0.541958\pi$$
$$522$$ 0 0
$$523$$ −16.0000 −0.699631 −0.349816 0.936819i $$-0.613756\pi$$
−0.349816 + 0.936819i $$0.613756\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ −24.0000 −1.04546
$$528$$ 0 0
$$529$$ 13.0000 0.565217
$$530$$ 0 0
$$531$$ 0 0
$$532$$ 0 0
$$533$$ 4.00000 0.173259
$$534$$ 0 0
$$535$$ 12.0000 0.518805
$$536$$ 0 0
$$537$$ 0 0
$$538$$ 0 0
$$539$$ 0 0
$$540$$ 0 0
$$541$$ −10.0000 −0.429934 −0.214967 0.976621i $$-0.568964\pi$$
−0.214967 + 0.976621i $$0.568964\pi$$
$$542$$ 0 0
$$543$$ 0 0
$$544$$ 0 0
$$545$$ −4.00000 −0.171341
$$546$$ 0 0
$$547$$ −36.0000 −1.53925 −0.769624 0.638497i $$-0.779557\pi$$
−0.769624 + 0.638497i $$0.779557\pi$$
$$548$$ 0 0
$$549$$ 0 0
$$550$$ 0 0
$$551$$ 0 0
$$552$$ 0 0
$$553$$ 0 0
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ 20.0000 0.847427 0.423714 0.905796i $$-0.360726\pi$$
0.423714 + 0.905796i $$0.360726\pi$$
$$558$$ 0 0
$$559$$ 8.00000 0.338364
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ 28.0000 1.18006 0.590030 0.807382i $$-0.299116\pi$$
0.590030 + 0.807382i $$0.299116\pi$$
$$564$$ 0 0
$$565$$ 32.0000 1.34625
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ −4.00000 −0.167689 −0.0838444 0.996479i $$-0.526720\pi$$
−0.0838444 + 0.996479i $$0.526720\pi$$
$$570$$ 0 0
$$571$$ 4.00000 0.167395 0.0836974 0.996491i $$-0.473327\pi$$
0.0836974 + 0.996491i $$0.473327\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ −6.00000 −0.250217
$$576$$ 0 0
$$577$$ −34.0000 −1.41544 −0.707719 0.706494i $$-0.750276\pi$$
−0.707719 + 0.706494i $$0.750276\pi$$
$$578$$ 0 0
$$579$$ 0 0
$$580$$ 0 0
$$581$$ 0 0
$$582$$ 0 0
$$583$$ −24.0000 −0.993978
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ 12.0000 0.495293 0.247647 0.968850i $$-0.420343\pi$$
0.247647 + 0.968850i $$0.420343\pi$$
$$588$$ 0 0
$$589$$ 16.0000 0.659269
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 0 0
$$593$$ 26.0000 1.06769 0.533846 0.845582i $$-0.320746\pi$$
0.533846 + 0.845582i $$0.320746\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ 0 0
$$598$$ 0 0
$$599$$ 18.0000 0.735460 0.367730 0.929933i $$-0.380135\pi$$
0.367730 + 0.929933i $$0.380135\pi$$
$$600$$ 0 0
$$601$$ 22.0000 0.897399 0.448699 0.893683i $$-0.351887\pi$$
0.448699 + 0.893683i $$0.351887\pi$$
$$602$$ 0 0
$$603$$ 0 0
$$604$$ 0 0
$$605$$ 14.0000 0.569181
$$606$$ 0 0
$$607$$ 40.0000 1.62355 0.811775 0.583970i $$-0.198502\pi$$
0.811775 + 0.583970i $$0.198502\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ 8.00000 0.323645
$$612$$ 0 0
$$613$$ 6.00000 0.242338 0.121169 0.992632i $$-0.461336\pi$$
0.121169 + 0.992632i $$0.461336\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ 28.0000 1.12724 0.563619 0.826035i $$-0.309409\pi$$
0.563619 + 0.826035i $$0.309409\pi$$
$$618$$ 0 0
$$619$$ −40.0000 −1.60774 −0.803868 0.594808i $$-0.797228\pi$$
−0.803868 + 0.594808i $$0.797228\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ 0 0
$$624$$ 0 0
$$625$$ −19.0000 −0.760000
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 0 0
$$629$$ −60.0000 −2.39236
$$630$$ 0 0
$$631$$ 24.0000 0.955425 0.477712 0.878516i $$-0.341466\pi$$
0.477712 + 0.878516i $$0.341466\pi$$
$$632$$ 0 0
$$633$$ 0 0
$$634$$ 0 0
$$635$$ 16.0000 0.634941
$$636$$ 0 0
$$637$$ 0 0
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ 12.0000 0.473972 0.236986 0.971513i $$-0.423841\pi$$
0.236986 + 0.971513i $$0.423841\pi$$
$$642$$ 0 0
$$643$$ 44.0000 1.73519 0.867595 0.497271i $$-0.165665\pi$$
0.867595 + 0.497271i $$0.165665\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ 20.0000 0.786281 0.393141 0.919478i $$-0.371389\pi$$
0.393141 + 0.919478i $$0.371389\pi$$
$$648$$ 0 0
$$649$$ −24.0000 −0.942082
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ −32.0000 −1.25226 −0.626128 0.779720i $$-0.715361\pi$$
−0.626128 + 0.779720i $$0.715361\pi$$
$$654$$ 0 0
$$655$$ 16.0000 0.625172
$$656$$ 0 0
$$657$$ 0 0
$$658$$ 0 0
$$659$$ 42.0000 1.63609 0.818044 0.575156i $$-0.195059\pi$$
0.818044 + 0.575156i $$0.195059\pi$$
$$660$$ 0 0
$$661$$ 10.0000 0.388955 0.194477 0.980907i $$-0.437699\pi$$
0.194477 + 0.980907i $$0.437699\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ 0 0
$$668$$ 0 0
$$669$$ 0 0
$$670$$ 0 0
$$671$$ −12.0000 −0.463255
$$672$$ 0 0
$$673$$ −2.00000 −0.0770943 −0.0385472 0.999257i $$-0.512273\pi$$
−0.0385472 + 0.999257i $$0.512273\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ −30.0000 −1.15299 −0.576497 0.817099i $$-0.695581\pi$$
−0.576497 + 0.817099i $$0.695581\pi$$
$$678$$ 0 0
$$679$$ 0 0
$$680$$ 0 0
$$681$$ 0 0
$$682$$ 0 0
$$683$$ 30.0000 1.14792 0.573959 0.818884i $$-0.305407\pi$$
0.573959 + 0.818884i $$0.305407\pi$$
$$684$$ 0 0
$$685$$ 24.0000 0.916993
$$686$$ 0 0
$$687$$ 0 0
$$688$$ 0 0
$$689$$ 24.0000 0.914327
$$690$$ 0 0
$$691$$ −40.0000 −1.52167 −0.760836 0.648944i $$-0.775211\pi$$
−0.760836 + 0.648944i $$0.775211\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ 32.0000 1.21383
$$696$$ 0 0
$$697$$ 12.0000 0.454532
$$698$$ 0 0
$$699$$ 0 0
$$700$$ 0 0
$$701$$ 48.0000 1.81293 0.906467 0.422276i $$-0.138769\pi$$
0.906467 + 0.422276i $$0.138769\pi$$
$$702$$ 0 0
$$703$$ 40.0000 1.50863
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ 0 0
$$708$$ 0 0
$$709$$ −6.00000 −0.225335 −0.112667 0.993633i $$-0.535939\pi$$
−0.112667 + 0.993633i $$0.535939\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ 0 0
$$713$$ 24.0000 0.898807
$$714$$ 0 0
$$715$$ 8.00000 0.299183
$$716$$ 0 0
$$717$$ 0 0
$$718$$ 0 0
$$719$$ −32.0000 −1.19340 −0.596699 0.802465i $$-0.703521\pi$$
−0.596699 + 0.802465i $$0.703521\pi$$
$$720$$ 0 0
$$721$$ 0 0
$$722$$ 0 0
$$723$$ 0 0
$$724$$ 0 0
$$725$$ 0 0
$$726$$ 0 0
$$727$$ −28.0000 −1.03846 −0.519231 0.854634i $$-0.673782\pi$$
−0.519231 + 0.854634i $$0.673782\pi$$
$$728$$ 0 0
$$729$$ 0 0
$$730$$ 0 0
$$731$$ 24.0000 0.887672
$$732$$ 0 0
$$733$$ −26.0000 −0.960332 −0.480166 0.877178i $$-0.659424\pi$$
−0.480166 + 0.877178i $$0.659424\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ −8.00000 −0.294684
$$738$$ 0 0
$$739$$ −44.0000 −1.61857 −0.809283 0.587419i $$-0.800144\pi$$
−0.809283 + 0.587419i $$0.800144\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ 2.00000 0.0733729 0.0366864 0.999327i $$-0.488320\pi$$
0.0366864 + 0.999327i $$0.488320\pi$$
$$744$$ 0 0
$$745$$ −24.0000 −0.879292
$$746$$ 0 0
$$747$$ 0 0
$$748$$ 0 0
$$749$$ 0 0
$$750$$ 0 0
$$751$$ −8.00000 −0.291924 −0.145962 0.989290i $$-0.546628\pi$$
−0.145962 + 0.989290i $$0.546628\pi$$
$$752$$ 0 0
$$753$$ 0 0
$$754$$ 0 0
$$755$$ −48.0000 −1.74690
$$756$$ 0 0
$$757$$ −38.0000 −1.38113 −0.690567 0.723269i $$-0.742639\pi$$
−0.690567 + 0.723269i $$0.742639\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ 30.0000 1.08750 0.543750 0.839248i $$-0.317004\pi$$
0.543750 + 0.839248i $$0.317004\pi$$
$$762$$ 0 0
$$763$$ 0 0
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ 24.0000 0.866590
$$768$$ 0 0
$$769$$ −26.0000 −0.937584 −0.468792 0.883309i $$-0.655311\pi$$
−0.468792 + 0.883309i $$0.655311\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ 0 0
$$773$$ 10.0000 0.359675 0.179838 0.983696i $$-0.442443\pi$$
0.179838 + 0.983696i $$0.442443\pi$$
$$774$$ 0 0
$$775$$ −4.00000 −0.143684
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ −8.00000 −0.286630
$$780$$ 0 0
$$781$$ −28.0000 −1.00192
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0 0
$$785$$ 12.0000 0.428298
$$786$$ 0 0
$$787$$ −32.0000 −1.14068 −0.570338 0.821410i $$-0.693188\pi$$
−0.570338 + 0.821410i $$0.693188\pi$$
$$788$$ 0 0
$$789$$ 0 0
$$790$$ 0 0
$$791$$ 0 0
$$792$$ 0 0
$$793$$ 12.0000 0.426132
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ −30.0000 −1.06265 −0.531327 0.847167i $$-0.678307\pi$$
−0.531327 + 0.847167i $$0.678307\pi$$
$$798$$ 0 0
$$799$$ 24.0000 0.849059
$$800$$ 0 0
$$801$$ 0 0
$$802$$ 0 0
$$803$$ 4.00000 0.141157
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 0 0
$$807$$ 0 0
$$808$$ 0 0
$$809$$ 32.0000 1.12506 0.562530 0.826777i $$-0.309828\pi$$
0.562530 + 0.826777i $$0.309828\pi$$
$$810$$ 0 0
$$811$$ −16.0000 −0.561836 −0.280918 0.959732i $$-0.590639\pi$$
−0.280918 + 0.959732i $$0.590639\pi$$
$$812$$ 0 0
$$813$$ 0 0
$$814$$ 0 0
$$815$$ 24.0000 0.840683
$$816$$ 0 0
$$817$$ −16.0000 −0.559769
$$818$$ 0 0
$$819$$ 0 0
$$820$$ 0 0
$$821$$ 44.0000 1.53561 0.767805 0.640683i $$-0.221349\pi$$
0.767805 + 0.640683i $$0.221349\pi$$
$$822$$ 0 0
$$823$$ 48.0000 1.67317 0.836587 0.547833i $$-0.184547\pi$$
0.836587 + 0.547833i $$0.184547\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ 26.0000 0.904109 0.452054 0.891990i $$-0.350691\pi$$
0.452054 + 0.891990i $$0.350691\pi$$
$$828$$ 0 0
$$829$$ 46.0000 1.59765 0.798823 0.601566i $$-0.205456\pi$$
0.798823 + 0.601566i $$0.205456\pi$$
$$830$$ 0 0
$$831$$ 0 0
$$832$$ 0 0
$$833$$ 0 0
$$834$$ 0 0
$$835$$ 8.00000 0.276851
$$836$$ 0 0
$$837$$ 0 0
$$838$$ 0 0
$$839$$ 36.0000 1.24286 0.621429 0.783470i $$-0.286552\pi$$
0.621429 + 0.783470i $$0.286552\pi$$
$$840$$ 0 0
$$841$$ −29.0000 −1.00000
$$842$$ 0 0
$$843$$ 0 0
$$844$$ 0 0
$$845$$ 18.0000 0.619219
$$846$$ 0 0
$$847$$ 0 0
$$848$$ 0 0
$$849$$ 0 0
$$850$$ 0 0
$$851$$ 60.0000 2.05677
$$852$$ 0 0
$$853$$ 10.0000 0.342393 0.171197 0.985237i $$-0.445237\pi$$
0.171197 + 0.985237i $$0.445237\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 0 0
$$857$$ 30.0000 1.02478 0.512390 0.858753i $$-0.328760\pi$$
0.512390 + 0.858753i $$0.328760\pi$$
$$858$$ 0 0
$$859$$ 4.00000 0.136478 0.0682391 0.997669i $$-0.478262\pi$$
0.0682391 + 0.997669i $$0.478262\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ 0 0
$$863$$ −50.0000 −1.70202 −0.851010 0.525150i $$-0.824009\pi$$
−0.851010 + 0.525150i $$0.824009\pi$$
$$864$$ 0 0
$$865$$ 12.0000 0.408012
$$866$$ 0 0
$$867$$ 0 0
$$868$$ 0 0
$$869$$ −16.0000 −0.542763
$$870$$ 0 0
$$871$$ 8.00000 0.271070
$$872$$ 0 0
$$873$$ 0 0
$$874$$ 0 0
$$875$$ 0 0
$$876$$ 0 0
$$877$$ −18.0000 −0.607817 −0.303908 0.952701i $$-0.598292\pi$$
−0.303908 + 0.952701i $$0.598292\pi$$
$$878$$ 0 0
$$879$$ 0 0
$$880$$ 0 0
$$881$$ −54.0000 −1.81931 −0.909653 0.415369i $$-0.863653\pi$$
−0.909653 + 0.415369i $$0.863653\pi$$
$$882$$ 0 0
$$883$$ −20.0000 −0.673054 −0.336527 0.941674i $$-0.609252\pi$$
−0.336527 + 0.941674i $$0.609252\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ −20.0000 −0.671534 −0.335767 0.941945i $$-0.608996\pi$$
−0.335767 + 0.941945i $$0.608996\pi$$
$$888$$ 0 0
$$889$$ 0 0
$$890$$ 0 0
$$891$$ 0 0
$$892$$ 0 0
$$893$$ −16.0000 −0.535420
$$894$$ 0 0
$$895$$ 20.0000 0.668526
$$896$$ 0 0
$$897$$ 0 0
$$898$$ 0 0
$$899$$ 0 0
$$900$$ 0 0
$$901$$ 72.0000 2.39867
$$902$$ 0 0
$$903$$ 0 0
$$904$$ 0 0
$$905$$ −28.0000 −0.930751
$$906$$ 0 0
$$907$$ −28.0000 −0.929725 −0.464862 0.885383i $$-0.653896\pi$$
−0.464862 + 0.885383i $$0.653896\pi$$
$$908$$ 0 0
$$909$$ 0 0
$$910$$ 0 0
$$911$$ −6.00000 −0.198789 −0.0993944 0.995048i $$-0.531691\pi$$
−0.0993944 + 0.995048i $$0.531691\pi$$
$$912$$ 0 0
$$913$$ 32.0000 1.05905
$$914$$ 0 0
$$915$$ 0 0
$$916$$ 0 0
$$917$$ 0 0
$$918$$ 0 0
$$919$$ 32.0000 1.05558 0.527791 0.849374i $$-0.323020\pi$$
0.527791 + 0.849374i $$0.323020\pi$$
$$920$$ 0 0
$$921$$ 0 0
$$922$$ 0 0
$$923$$ 28.0000 0.921631
$$924$$ 0 0
$$925$$ −10.0000 −0.328798
$$926$$ 0 0
$$927$$ 0 0
$$928$$ 0 0
$$929$$ −34.0000 −1.11550 −0.557752 0.830008i $$-0.688336\pi$$
−0.557752 + 0.830008i $$0.688336\pi$$
$$930$$ 0 0
$$931$$ 0 0
$$932$$ 0 0
$$933$$ 0 0
$$934$$ 0 0
$$935$$ 24.0000 0.784884
$$936$$ 0 0
$$937$$ −34.0000 −1.11073 −0.555366 0.831606i $$-0.687422\pi$$
−0.555366 + 0.831606i $$0.687422\pi$$
$$938$$ 0 0
$$939$$ 0 0
$$940$$ 0 0
$$941$$ 6.00000 0.195594 0.0977972 0.995206i $$-0.468820\pi$$
0.0977972 + 0.995206i $$0.468820\pi$$
$$942$$ 0 0
$$943$$ −12.0000 −0.390774
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ −14.0000 −0.454939 −0.227469 0.973785i $$-0.573045\pi$$
−0.227469 + 0.973785i $$0.573045\pi$$
$$948$$ 0 0
$$949$$ −4.00000 −0.129845
$$950$$ 0 0
$$951$$ 0 0
$$952$$ 0 0
$$953$$ 24.0000 0.777436 0.388718 0.921357i $$-0.372918\pi$$
0.388718 + 0.921357i $$0.372918\pi$$
$$954$$ 0 0
$$955$$ −52.0000 −1.68268
$$956$$ 0 0
$$957$$ 0 0
$$958$$ 0 0
$$959$$ 0 0
$$960$$ 0 0
$$961$$ −15.0000 −0.483871
$$962$$ 0 0
$$963$$ 0 0
$$964$$ 0 0
$$965$$ 52.0000 1.67394
$$966$$ 0 0
$$967$$ 32.0000 1.02905 0.514525 0.857475i $$-0.327968\pi$$
0.514525 + 0.857475i $$0.327968\pi$$
$$968$$ 0 0
$$969$$ 0 0
$$970$$ 0 0
$$971$$ 48.0000 1.54039 0.770197 0.637806i $$-0.220158\pi$$
0.770197 + 0.637806i $$0.220158\pi$$
$$972$$ 0 0
$$973$$ 0 0
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ −52.0000 −1.66363 −0.831814 0.555055i $$-0.812697\pi$$
−0.831814 + 0.555055i $$0.812697\pi$$
$$978$$ 0 0
$$979$$ 12.0000 0.383522
$$980$$ 0 0
$$981$$ 0 0
$$982$$ 0 0
$$983$$ 24.0000 0.765481 0.382741 0.923856i $$-0.374980\pi$$
0.382741 + 0.923856i $$0.374980\pi$$
$$984$$ 0 0
$$985$$ 24.0000 0.764704
$$986$$ 0 0
$$987$$ 0 0
$$988$$ 0 0
$$989$$ −24.0000 −0.763156
$$990$$ 0 0
$$991$$ 8.00000 0.254128 0.127064 0.991894i $$-0.459445\pi$$
0.127064 + 0.991894i $$0.459445\pi$$
$$992$$ 0 0
$$993$$ 0 0
$$994$$ 0 0
$$995$$ 0 0
$$996$$ 0 0
$$997$$ −22.0000 −0.696747 −0.348373 0.937356i $$-0.613266\pi$$
−0.348373 + 0.937356i $$0.613266\pi$$
$$998$$ 0 0
$$999$$ 0 0
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3528.2.a.e.1.1 1
3.2 odd 2 3528.2.a.u.1.1 1
4.3 odd 2 7056.2.a.l.1.1 1
7.2 even 3 3528.2.s.u.361.1 2
7.3 odd 6 3528.2.s.f.3313.1 2
7.4 even 3 3528.2.s.u.3313.1 2
7.5 odd 6 3528.2.s.f.361.1 2
7.6 odd 2 504.2.a.f.1.1 yes 1
12.11 even 2 7056.2.a.bt.1.1 1
21.2 odd 6 3528.2.s.i.361.1 2
21.5 even 6 3528.2.s.x.361.1 2
21.11 odd 6 3528.2.s.i.3313.1 2
21.17 even 6 3528.2.s.x.3313.1 2
21.20 even 2 504.2.a.a.1.1 1
28.27 even 2 1008.2.a.k.1.1 1
56.13 odd 2 4032.2.a.g.1.1 1
56.27 even 2 4032.2.a.l.1.1 1
84.83 odd 2 1008.2.a.f.1.1 1
168.83 odd 2 4032.2.a.bg.1.1 1
168.125 even 2 4032.2.a.bf.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.a.a.1.1 1 21.20 even 2
504.2.a.f.1.1 yes 1 7.6 odd 2
1008.2.a.f.1.1 1 84.83 odd 2
1008.2.a.k.1.1 1 28.27 even 2
3528.2.a.e.1.1 1 1.1 even 1 trivial
3528.2.a.u.1.1 1 3.2 odd 2
3528.2.s.f.361.1 2 7.5 odd 6
3528.2.s.f.3313.1 2 7.3 odd 6
3528.2.s.i.361.1 2 21.2 odd 6
3528.2.s.i.3313.1 2 21.11 odd 6
3528.2.s.u.361.1 2 7.2 even 3
3528.2.s.u.3313.1 2 7.4 even 3
3528.2.s.x.361.1 2 21.5 even 6
3528.2.s.x.3313.1 2 21.17 even 6
4032.2.a.g.1.1 1 56.13 odd 2
4032.2.a.l.1.1 1 56.27 even 2
4032.2.a.bf.1.1 1 168.125 even 2
4032.2.a.bg.1.1 1 168.83 odd 2
7056.2.a.l.1.1 1 4.3 odd 2
7056.2.a.bt.1.1 1 12.11 even 2