Learn more

Refine search


Results (41 matches)

  Download to        
Label Dim. \(A\) Field CM RM Traces Fricke sign $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3525.1.l.a $4$ $1.759$ \(\Q(\zeta_{8})\) \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-47}) \) \(\Q(\sqrt{705}) \) \(0\) \(0\) \(0\) \(0\) $-$ \(q-\zeta_{8}q^{2}+\zeta_{8}^{3}q^{3}+3\zeta_{8}^{2}q^{4}+2q^{6}+\cdots\)
3525.1.l.b $8$ $1.759$ \(\Q(\zeta_{24})\) \(\Q(\sqrt{-47}) \) None \(0\) \(0\) \(0\) \(0\) $-$ \(q+\zeta_{24}^{9}q^{2}-\zeta_{24}^{7}q^{3}+\zeta_{24}^{4}q^{6}+\cdots\)
3525.1.l.c $16$ $1.759$ \(\Q(\zeta_{40})\) \(\Q(\sqrt{-47}) \) None \(0\) \(0\) \(0\) \(0\) $-$ \(q+(-\zeta_{40}^{13}+\zeta_{40}^{17})q^{2}-\zeta_{40}^{11}q^{3}+\cdots\)
3525.1.l.d $32$ $1.759$ \(\Q(\zeta_{120})\) \(\Q(\sqrt{-47}) \) None \(0\) \(0\) \(0\) \(0\) $-$ \(q+(-\zeta_{120}^{41}-\zeta_{120}^{49})q^{2}+\zeta_{120}^{43}q^{3}+\cdots\)
3525.1.bd.a $44$ $1.759$ \(\Q(\zeta_{92})\) \(\Q(\sqrt{-15}) \) None \(0\) \(0\) \(0\) \(0\) $-$ \(q+(\zeta_{92}^{3}-\zeta_{92}^{25})q^{2}+\zeta_{92}^{13}q^{3}+\cdots\)
3525.1.bg.a $88$ $1.759$ \(\Q(\zeta_{184})\) \(\Q(\sqrt{-15}) \) None \(0\) \(0\) \(0\) \(0\) $-$ \(q+(-\zeta_{184}^{33}+\zeta_{184}^{61})q^{2}+\zeta_{184}^{19}q^{3}+\cdots\)
3525.2.a.a $1$ $28.147$ \(\Q\) None None \(-2\) \(-1\) \(0\) \(-4\) $-$ \(q-2q^{2}-q^{3}+2q^{4}+2q^{6}-4q^{7}+\cdots\)
3525.2.a.b $1$ $28.147$ \(\Q\) None None \(-2\) \(-1\) \(0\) \(-1\) $+$ \(q-2q^{2}-q^{3}+2q^{4}+2q^{6}-q^{7}+q^{9}+\cdots\)
3525.2.a.c $1$ $28.147$ \(\Q\) None None \(-2\) \(-1\) \(0\) \(3\) $-$ \(q-2q^{2}-q^{3}+2q^{4}+2q^{6}+3q^{7}+\cdots\)
3525.2.a.d $1$ $28.147$ \(\Q\) None None \(-1\) \(-1\) \(0\) \(0\) $+$ \(q-q^{2}-q^{3}-q^{4}+q^{6}+3q^{8}+q^{9}+\cdots\)
3525.2.a.e $1$ $28.147$ \(\Q\) None None \(-1\) \(-1\) \(0\) \(3\) $+$ \(q-q^{2}-q^{3}-q^{4}+q^{6}+3q^{7}+3q^{8}+\cdots\)
3525.2.a.f $1$ $28.147$ \(\Q\) None None \(0\) \(-1\) \(0\) \(-2\) $-$ \(q-q^{3}-2q^{4}-2q^{7}+q^{9}-6q^{11}+\cdots\)
3525.2.a.g $1$ $28.147$ \(\Q\) None None \(0\) \(1\) \(0\) \(-2\) $+$ \(q+q^{3}-2q^{4}-2q^{7}+q^{9}+2q^{11}+\cdots\)
3525.2.a.h $1$ $28.147$ \(\Q\) None None \(0\) \(1\) \(0\) \(3\) $+$ \(q+q^{3}-2q^{4}+3q^{7}+q^{9}-3q^{11}+\cdots\)
3525.2.a.i $1$ $28.147$ \(\Q\) None None \(1\) \(-1\) \(0\) \(-1\) $+$ \(q+q^{2}-q^{3}-q^{4}-q^{6}-q^{7}-3q^{8}+\cdots\)
3525.2.a.j $1$ $28.147$ \(\Q\) None None \(1\) \(-1\) \(0\) \(0\) $-$ \(q+q^{2}-q^{3}-q^{4}-q^{6}-3q^{8}+q^{9}+\cdots\)
3525.2.a.k $1$ $28.147$ \(\Q\) None None \(1\) \(1\) \(0\) \(-4\) $-$ \(q+q^{2}+q^{3}-q^{4}+q^{6}-4q^{7}-3q^{8}+\cdots\)
3525.2.a.l $1$ $28.147$ \(\Q\) None None \(1\) \(1\) \(0\) \(5\) $-$ \(q+q^{2}+q^{3}-q^{4}+q^{6}+5q^{7}-3q^{8}+\cdots\)
3525.2.a.m $1$ $28.147$ \(\Q\) None None \(2\) \(-1\) \(0\) \(3\) $+$ \(q+2q^{2}-q^{3}+2q^{4}-2q^{6}+3q^{7}+\cdots\)
3525.2.a.n $1$ $28.147$ \(\Q\) None None \(2\) \(1\) \(0\) \(1\) $-$ \(q+2q^{2}+q^{3}+2q^{4}+2q^{6}+q^{7}+q^{9}+\cdots\)
3525.2.a.o $1$ $28.147$ \(\Q\) None None \(2\) \(1\) \(0\) \(4\) $-$ \(q+2q^{2}+q^{3}+2q^{4}+2q^{6}+4q^{7}+\cdots\)
3525.2.a.p $2$ $28.147$ \(\Q(\sqrt{3}) \) None None \(0\) \(2\) \(0\) \(2\) $+$ \(q+\beta q^{2}+q^{3}+q^{4}+\beta q^{6}+q^{7}-\beta q^{8}+\cdots\)
3525.2.a.q $2$ $28.147$ \(\Q(\sqrt{17}) \) None None \(1\) \(2\) \(0\) \(-1\) $-$ \(q+\beta q^{2}+q^{3}+(2+\beta )q^{4}+\beta q^{6}+(-1+\cdots)q^{7}+\cdots\)
3525.2.a.r $2$ $28.147$ \(\Q(\sqrt{17}) \) None None \(1\) \(2\) \(0\) \(3\) $-$ \(q+\beta q^{2}+q^{3}+(2+\beta )q^{4}+\beta q^{6}+(2+\cdots)q^{7}+\cdots\)
3525.2.a.s $2$ $28.147$ \(\Q(\sqrt{2}) \) None None \(2\) \(-2\) \(0\) \(6\) $-$ \(q+(1+\beta )q^{2}-q^{3}+(1+2\beta )q^{4}+(-1+\cdots)q^{6}+\cdots\)
3525.2.a.t $4$ $28.147$ 4.4.4352.1 None None \(-4\) \(4\) \(0\) \(-8\) $+$ \(q+(-1-\beta _{1}+\beta _{3})q^{2}+q^{3}+(2+\beta _{1}+\cdots)q^{4}+\cdots\)
3525.2.a.u $4$ $28.147$ 4.4.14656.1 None None \(-2\) \(4\) \(0\) \(0\) $-$ \(q+(-1+\beta _{1})q^{2}+q^{3}+(2-\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
3525.2.a.v $5$ $28.147$ 5.5.2379008.1 None None \(0\) \(-5\) \(0\) \(-10\) $+$ \(q+\beta _{1}q^{2}-q^{3}+(2+\beta _{2})q^{4}-\beta _{1}q^{6}+\cdots\)
3525.2.a.w $6$ $28.147$ 6.6.414764096.1 None None \(-2\) \(-6\) \(0\) \(-4\) $-$ \(q-\beta _{1}q^{2}-q^{3}+(2+\beta _{2})q^{4}+\beta _{1}q^{6}+\cdots\)
3525.2.a.x $7$ $28.147$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None None \(-3\) \(-7\) \(0\) \(-5\) $+$ \(q-\beta _{1}q^{2}-q^{3}+(\beta _{1}+\beta _{2})q^{4}+\beta _{1}q^{6}+\cdots\)
3525.2.a.y $7$ $28.147$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None None \(-1\) \(7\) \(0\) \(-11\) $+$ \(q-\beta _{1}q^{2}+q^{3}+(1+\beta _{1}+\beta _{2}-\beta _{3}+\cdots)q^{4}+\cdots\)
3525.2.a.z $7$ $28.147$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None None \(-1\) \(7\) \(0\) \(7\) $-$ \(q-\beta _{1}q^{2}+q^{3}+(1+\beta _{2}+\beta _{3})q^{4}-\beta _{1}q^{6}+\cdots\)
3525.2.a.ba $7$ $28.147$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None None \(1\) \(-7\) \(0\) \(-7\) $+$ \(q+\beta _{1}q^{2}-q^{3}+(1+\beta _{2}+\beta _{3})q^{4}-\beta _{1}q^{6}+\cdots\)
3525.2.a.bb $7$ $28.147$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None None \(1\) \(-7\) \(0\) \(11\) $-$ \(q+\beta _{1}q^{2}-q^{3}+(1+\beta _{1}+\beta _{2}-\beta _{3}+\cdots)q^{4}+\cdots\)
3525.2.a.bc $7$ $28.147$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None None \(3\) \(7\) \(0\) \(5\) $-$ \(q+\beta _{1}q^{2}+q^{3}+(\beta _{1}+\beta _{2})q^{4}+\beta _{1}q^{6}+\cdots\)
3525.2.a.bd $8$ $28.147$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None None \(-3\) \(8\) \(0\) \(-8\) $+$ \(q-\beta _{1}q^{2}+q^{3}+(1+\beta _{2})q^{4}-\beta _{1}q^{6}+\cdots\)
3525.2.a.be $8$ $28.147$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None None \(3\) \(-8\) \(0\) \(8\) $-$ \(q+\beta _{1}q^{2}-q^{3}+(1+\beta _{2})q^{4}-\beta _{1}q^{6}+\cdots\)
3525.2.a.bf $10$ $28.147$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None None \(-3\) \(10\) \(0\) \(0\) $+$ \(q-\beta _{1}q^{2}+q^{3}+(1+\beta _{2})q^{4}-\beta _{1}q^{6}+\cdots\)
3525.2.a.bg $10$ $28.147$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None None \(3\) \(-10\) \(0\) \(0\) $+$ \(q+\beta _{1}q^{2}-q^{3}+(1+\beta _{2})q^{4}-\beta _{1}q^{6}+\cdots\)
3525.2.a.bh $13$ $28.147$ \(\mathbb{Q}[x]/(x^{13} - \cdots)\) None None \(-3\) \(-13\) \(0\) \(4\) $-$ \(q-\beta _{1}q^{2}-q^{3}+(1+\beta _{2})q^{4}+\beta _{1}q^{6}+\cdots\)
3525.2.a.bi $13$ $28.147$ \(\mathbb{Q}[x]/(x^{13} - \cdots)\) None None \(3\) \(13\) \(0\) \(-4\) $-$ \(q+\beta _{1}q^{2}+q^{3}+(1+\beta _{2})q^{4}+\beta _{1}q^{6}+\cdots\)
  Download to