Properties

Label 3520.2.a.bz.1.1
Level $3520$
Weight $2$
Character 3520.1
Self dual yes
Analytic conductor $28.107$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3520,2,Mod(1,3520)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3520.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3520, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3520 = 2^{6} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3520.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,0,0,-5,0,2,0,11,0,-5,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(28.1073415115\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.792644.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 7x^{3} + 4x^{2} + 4x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 1760)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(0.466307\) of defining polynomial
Character \(\chi\) \(=\) 3520.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.94897 q^{3} -1.00000 q^{5} +3.88159 q^{7} +5.69645 q^{9} -1.00000 q^{11} +3.81764 q^{13} +2.94897 q^{15} -3.62906 q^{17} -4.69645 q^{19} -11.4467 q^{21} -8.49773 q^{23} +1.00000 q^{25} -7.95176 q^{27} -4.05381 q^{29} +7.44670 q^{31} +2.94897 q^{33} -3.88159 q^{35} +8.59440 q^{37} -11.2581 q^{39} +0.134771 q^{41} -6.71281 q^{43} -5.69645 q^{45} -5.00278 q^{47} +8.06673 q^{49} +10.7020 q^{51} +8.59440 q^{53} +1.00000 q^{55} +13.8497 q^{57} +3.76318 q^{59} +0.0538074 q^{61} +22.1113 q^{63} -3.81764 q^{65} +12.5304 q^{67} +25.0596 q^{69} -15.6073 q^{71} -5.68287 q^{73} -2.94897 q^{75} -3.88159 q^{77} -5.89795 q^{79} +6.36018 q^{81} -10.8204 q^{83} +3.62906 q^{85} +11.9546 q^{87} +13.0994 q^{89} +14.8185 q^{91} -21.9601 q^{93} +4.69645 q^{95} +13.2581 q^{97} -5.69645 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 5 q^{5} + 2 q^{7} + 11 q^{9} - 5 q^{11} - 6 q^{13} + 2 q^{17} - 6 q^{19} - 12 q^{21} - 12 q^{23} + 5 q^{25} - 10 q^{29} - 8 q^{31} - 2 q^{35} - 4 q^{37} - 16 q^{39} + 6 q^{41} - 4 q^{43} - 11 q^{45}+ \cdots - 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.94897 −1.70259 −0.851295 0.524687i \(-0.824183\pi\)
−0.851295 + 0.524687i \(0.824183\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 3.88159 1.46710 0.733551 0.679634i \(-0.237861\pi\)
0.733551 + 0.679634i \(0.237861\pi\)
\(8\) 0 0
\(9\) 5.69645 1.89882
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) 3.81764 1.05882 0.529412 0.848365i \(-0.322413\pi\)
0.529412 + 0.848365i \(0.322413\pi\)
\(14\) 0 0
\(15\) 2.94897 0.761422
\(16\) 0 0
\(17\) −3.62906 −0.880177 −0.440088 0.897954i \(-0.645053\pi\)
−0.440088 + 0.897954i \(0.645053\pi\)
\(18\) 0 0
\(19\) −4.69645 −1.07744 −0.538720 0.842485i \(-0.681092\pi\)
−0.538720 + 0.842485i \(0.681092\pi\)
\(20\) 0 0
\(21\) −11.4467 −2.49788
\(22\) 0 0
\(23\) −8.49773 −1.77190 −0.885950 0.463782i \(-0.846492\pi\)
−0.885950 + 0.463782i \(0.846492\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −7.95176 −1.53032
\(28\) 0 0
\(29\) −4.05381 −0.752773 −0.376387 0.926463i \(-0.622834\pi\)
−0.376387 + 0.926463i \(0.622834\pi\)
\(30\) 0 0
\(31\) 7.44670 1.33747 0.668734 0.743502i \(-0.266837\pi\)
0.668734 + 0.743502i \(0.266837\pi\)
\(32\) 0 0
\(33\) 2.94897 0.513350
\(34\) 0 0
\(35\) −3.88159 −0.656108
\(36\) 0 0
\(37\) 8.59440 1.41291 0.706455 0.707758i \(-0.250293\pi\)
0.706455 + 0.707758i \(0.250293\pi\)
\(38\) 0 0
\(39\) −11.2581 −1.80274
\(40\) 0 0
\(41\) 0.134771 0.0210477 0.0105239 0.999945i \(-0.496650\pi\)
0.0105239 + 0.999945i \(0.496650\pi\)
\(42\) 0 0
\(43\) −6.71281 −1.02369 −0.511847 0.859077i \(-0.671038\pi\)
−0.511847 + 0.859077i \(0.671038\pi\)
\(44\) 0 0
\(45\) −5.69645 −0.849176
\(46\) 0 0
\(47\) −5.00278 −0.729731 −0.364865 0.931060i \(-0.618885\pi\)
−0.364865 + 0.931060i \(0.618885\pi\)
\(48\) 0 0
\(49\) 8.06673 1.15239
\(50\) 0 0
\(51\) 10.7020 1.49858
\(52\) 0 0
\(53\) 8.59440 1.18053 0.590266 0.807209i \(-0.299023\pi\)
0.590266 + 0.807209i \(0.299023\pi\)
\(54\) 0 0
\(55\) 1.00000 0.134840
\(56\) 0 0
\(57\) 13.8497 1.83444
\(58\) 0 0
\(59\) 3.76318 0.489924 0.244962 0.969533i \(-0.421225\pi\)
0.244962 + 0.969533i \(0.421225\pi\)
\(60\) 0 0
\(61\) 0.0538074 0.00688934 0.00344467 0.999994i \(-0.498904\pi\)
0.00344467 + 0.999994i \(0.498904\pi\)
\(62\) 0 0
\(63\) 22.1113 2.78576
\(64\) 0 0
\(65\) −3.81764 −0.473520
\(66\) 0 0
\(67\) 12.5304 1.53084 0.765419 0.643532i \(-0.222532\pi\)
0.765419 + 0.643532i \(0.222532\pi\)
\(68\) 0 0
\(69\) 25.0596 3.01682
\(70\) 0 0
\(71\) −15.6073 −1.85225 −0.926124 0.377219i \(-0.876880\pi\)
−0.926124 + 0.377219i \(0.876880\pi\)
\(72\) 0 0
\(73\) −5.68287 −0.665130 −0.332565 0.943080i \(-0.607914\pi\)
−0.332565 + 0.943080i \(0.607914\pi\)
\(74\) 0 0
\(75\) −2.94897 −0.340518
\(76\) 0 0
\(77\) −3.88159 −0.442348
\(78\) 0 0
\(79\) −5.89795 −0.663571 −0.331786 0.943355i \(-0.607651\pi\)
−0.331786 + 0.943355i \(0.607651\pi\)
\(80\) 0 0
\(81\) 6.36018 0.706686
\(82\) 0 0
\(83\) −10.8204 −1.18770 −0.593848 0.804577i \(-0.702392\pi\)
−0.593848 + 0.804577i \(0.702392\pi\)
\(84\) 0 0
\(85\) 3.62906 0.393627
\(86\) 0 0
\(87\) 11.9546 1.28166
\(88\) 0 0
\(89\) 13.0994 1.38854 0.694269 0.719715i \(-0.255728\pi\)
0.694269 + 0.719715i \(0.255728\pi\)
\(90\) 0 0
\(91\) 14.8185 1.55340
\(92\) 0 0
\(93\) −21.9601 −2.27716
\(94\) 0 0
\(95\) 4.69645 0.481845
\(96\) 0 0
\(97\) 13.2581 1.34616 0.673079 0.739570i \(-0.264971\pi\)
0.673079 + 0.739570i \(0.264971\pi\)
\(98\) 0 0
\(99\) −5.69645 −0.572515
\(100\) 0 0
\(101\) −15.6611 −1.55834 −0.779170 0.626813i \(-0.784359\pi\)
−0.779170 + 0.626813i \(0.784359\pi\)
\(102\) 0 0
\(103\) 2.76040 0.271990 0.135995 0.990710i \(-0.456577\pi\)
0.135995 + 0.990710i \(0.456577\pi\)
\(104\) 0 0
\(105\) 11.4467 1.11708
\(106\) 0 0
\(107\) 12.3739 1.19623 0.598117 0.801409i \(-0.295916\pi\)
0.598117 + 0.801409i \(0.295916\pi\)
\(108\) 0 0
\(109\) −8.13477 −0.779170 −0.389585 0.920991i \(-0.627382\pi\)
−0.389585 + 0.920991i \(0.627382\pi\)
\(110\) 0 0
\(111\) −25.3447 −2.40561
\(112\) 0 0
\(113\) 3.23228 0.304068 0.152034 0.988375i \(-0.451418\pi\)
0.152034 + 0.988375i \(0.451418\pi\)
\(114\) 0 0
\(115\) 8.49773 0.792417
\(116\) 0 0
\(117\) 21.7470 2.01051
\(118\) 0 0
\(119\) −14.0865 −1.29131
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) −0.397437 −0.0358357
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −10.7128 −0.950608 −0.475304 0.879822i \(-0.657662\pi\)
−0.475304 + 0.879822i \(0.657662\pi\)
\(128\) 0 0
\(129\) 19.7959 1.74293
\(130\) 0 0
\(131\) −4.53583 −0.396298 −0.198149 0.980172i \(-0.563493\pi\)
−0.198149 + 0.980172i \(0.563493\pi\)
\(132\) 0 0
\(133\) −18.2297 −1.58071
\(134\) 0 0
\(135\) 7.95176 0.684378
\(136\) 0 0
\(137\) −0.242386 −0.0207084 −0.0103542 0.999946i \(-0.503296\pi\)
−0.0103542 + 0.999946i \(0.503296\pi\)
\(138\) 0 0
\(139\) −19.3657 −1.64258 −0.821290 0.570511i \(-0.806745\pi\)
−0.821290 + 0.570511i \(0.806745\pi\)
\(140\) 0 0
\(141\) 14.7531 1.24243
\(142\) 0 0
\(143\) −3.81764 −0.319247
\(144\) 0 0
\(145\) 4.05381 0.336650
\(146\) 0 0
\(147\) −23.7886 −1.96205
\(148\) 0 0
\(149\) 0.214421 0.0175661 0.00878304 0.999961i \(-0.497204\pi\)
0.00878304 + 0.999961i \(0.497204\pi\)
\(150\) 0 0
\(151\) −17.5332 −1.42683 −0.713417 0.700740i \(-0.752853\pi\)
−0.713417 + 0.700740i \(0.752853\pi\)
\(152\) 0 0
\(153\) −20.6728 −1.67129
\(154\) 0 0
\(155\) −7.44670 −0.598134
\(156\) 0 0
\(157\) −18.5672 −1.48183 −0.740914 0.671600i \(-0.765607\pi\)
−0.740914 + 0.671600i \(0.765607\pi\)
\(158\) 0 0
\(159\) −25.3447 −2.00996
\(160\) 0 0
\(161\) −32.9847 −2.59956
\(162\) 0 0
\(163\) 5.05103 0.395627 0.197813 0.980240i \(-0.436616\pi\)
0.197813 + 0.980240i \(0.436616\pi\)
\(164\) 0 0
\(165\) −2.94897 −0.229577
\(166\) 0 0
\(167\) 3.72097 0.287938 0.143969 0.989582i \(-0.454013\pi\)
0.143969 + 0.989582i \(0.454013\pi\)
\(168\) 0 0
\(169\) 1.57438 0.121106
\(170\) 0 0
\(171\) −26.7531 −2.04586
\(172\) 0 0
\(173\) 1.88697 0.143464 0.0717320 0.997424i \(-0.477147\pi\)
0.0717320 + 0.997424i \(0.477147\pi\)
\(174\) 0 0
\(175\) 3.88159 0.293421
\(176\) 0 0
\(177\) −11.0975 −0.834140
\(178\) 0 0
\(179\) −7.49495 −0.560199 −0.280099 0.959971i \(-0.590367\pi\)
−0.280099 + 0.959971i \(0.590367\pi\)
\(180\) 0 0
\(181\) 17.1302 1.27328 0.636640 0.771161i \(-0.280324\pi\)
0.636640 + 0.771161i \(0.280324\pi\)
\(182\) 0 0
\(183\) −0.158677 −0.0117297
\(184\) 0 0
\(185\) −8.59440 −0.631873
\(186\) 0 0
\(187\) 3.62906 0.265383
\(188\) 0 0
\(189\) −30.8654 −2.24513
\(190\) 0 0
\(191\) −23.7959 −1.72181 −0.860905 0.508765i \(-0.830102\pi\)
−0.860905 + 0.508765i \(0.830102\pi\)
\(192\) 0 0
\(193\) −15.4250 −1.11031 −0.555156 0.831746i \(-0.687342\pi\)
−0.555156 + 0.831746i \(0.687342\pi\)
\(194\) 0 0
\(195\) 11.2581 0.806211
\(196\) 0 0
\(197\) −7.44048 −0.530113 −0.265056 0.964233i \(-0.585391\pi\)
−0.265056 + 0.964233i \(0.585391\pi\)
\(198\) 0 0
\(199\) 16.9799 1.20368 0.601838 0.798618i \(-0.294435\pi\)
0.601838 + 0.798618i \(0.294435\pi\)
\(200\) 0 0
\(201\) −36.9520 −2.60639
\(202\) 0 0
\(203\) −15.7352 −1.10440
\(204\) 0 0
\(205\) −0.134771 −0.00941284
\(206\) 0 0
\(207\) −48.4069 −3.36451
\(208\) 0 0
\(209\) 4.69645 0.324860
\(210\) 0 0
\(211\) −24.3317 −1.67507 −0.837533 0.546387i \(-0.816003\pi\)
−0.837533 + 0.546387i \(0.816003\pi\)
\(212\) 0 0
\(213\) 46.0256 3.15362
\(214\) 0 0
\(215\) 6.71281 0.457810
\(216\) 0 0
\(217\) 28.9050 1.96220
\(218\) 0 0
\(219\) 16.7586 1.13244
\(220\) 0 0
\(221\) −13.8545 −0.931952
\(222\) 0 0
\(223\) 9.27232 0.620921 0.310460 0.950586i \(-0.399517\pi\)
0.310460 + 0.950586i \(0.399517\pi\)
\(224\) 0 0
\(225\) 5.69645 0.379763
\(226\) 0 0
\(227\) 23.6321 1.56851 0.784257 0.620436i \(-0.213044\pi\)
0.784257 + 0.620436i \(0.213044\pi\)
\(228\) 0 0
\(229\) −7.70461 −0.509135 −0.254568 0.967055i \(-0.581933\pi\)
−0.254568 + 0.967055i \(0.581933\pi\)
\(230\) 0 0
\(231\) 11.4467 0.753138
\(232\) 0 0
\(233\) 14.5225 0.951399 0.475699 0.879608i \(-0.342195\pi\)
0.475699 + 0.879608i \(0.342195\pi\)
\(234\) 0 0
\(235\) 5.00278 0.326345
\(236\) 0 0
\(237\) 17.3929 1.12979
\(238\) 0 0
\(239\) 7.92379 0.512547 0.256274 0.966604i \(-0.417505\pi\)
0.256274 + 0.966604i \(0.417505\pi\)
\(240\) 0 0
\(241\) −15.9307 −1.02618 −0.513092 0.858333i \(-0.671500\pi\)
−0.513092 + 0.858333i \(0.671500\pi\)
\(242\) 0 0
\(243\) 5.09927 0.327118
\(244\) 0 0
\(245\) −8.06673 −0.515364
\(246\) 0 0
\(247\) −17.9294 −1.14082
\(248\) 0 0
\(249\) 31.9091 2.02216
\(250\) 0 0
\(251\) 13.7687 0.869075 0.434538 0.900654i \(-0.356912\pi\)
0.434538 + 0.900654i \(0.356912\pi\)
\(252\) 0 0
\(253\) 8.49773 0.534248
\(254\) 0 0
\(255\) −10.7020 −0.670186
\(256\) 0 0
\(257\) −8.02584 −0.500638 −0.250319 0.968163i \(-0.580536\pi\)
−0.250319 + 0.968163i \(0.580536\pi\)
\(258\) 0 0
\(259\) 33.3599 2.07288
\(260\) 0 0
\(261\) −23.0923 −1.42938
\(262\) 0 0
\(263\) 15.2800 0.942208 0.471104 0.882078i \(-0.343856\pi\)
0.471104 + 0.882078i \(0.343856\pi\)
\(264\) 0 0
\(265\) −8.59440 −0.527950
\(266\) 0 0
\(267\) −38.6299 −2.36411
\(268\) 0 0
\(269\) −10.0327 −0.611706 −0.305853 0.952079i \(-0.598942\pi\)
−0.305853 + 0.952079i \(0.598942\pi\)
\(270\) 0 0
\(271\) 9.15607 0.556192 0.278096 0.960553i \(-0.410297\pi\)
0.278096 + 0.960553i \(0.410297\pi\)
\(272\) 0 0
\(273\) −43.6994 −2.64481
\(274\) 0 0
\(275\) −1.00000 −0.0603023
\(276\) 0 0
\(277\) −15.3453 −0.922010 −0.461005 0.887397i \(-0.652511\pi\)
−0.461005 + 0.887397i \(0.652511\pi\)
\(278\) 0 0
\(279\) 42.4198 2.53960
\(280\) 0 0
\(281\) −19.6611 −1.17288 −0.586442 0.809991i \(-0.699472\pi\)
−0.586442 + 0.809991i \(0.699472\pi\)
\(282\) 0 0
\(283\) −9.81032 −0.583163 −0.291581 0.956546i \(-0.594181\pi\)
−0.291581 + 0.956546i \(0.594181\pi\)
\(284\) 0 0
\(285\) −13.8497 −0.820386
\(286\) 0 0
\(287\) 0.523127 0.0308792
\(288\) 0 0
\(289\) −3.82991 −0.225289
\(290\) 0 0
\(291\) −39.0979 −2.29196
\(292\) 0 0
\(293\) −21.0051 −1.22713 −0.613566 0.789643i \(-0.710266\pi\)
−0.613566 + 0.789643i \(0.710266\pi\)
\(294\) 0 0
\(295\) −3.76318 −0.219101
\(296\) 0 0
\(297\) 7.95176 0.461408
\(298\) 0 0
\(299\) −32.4413 −1.87613
\(300\) 0 0
\(301\) −26.0564 −1.50186
\(302\) 0 0
\(303\) 46.1843 2.65322
\(304\) 0 0
\(305\) −0.0538074 −0.00308100
\(306\) 0 0
\(307\) 20.6857 1.18059 0.590296 0.807187i \(-0.299011\pi\)
0.590296 + 0.807187i \(0.299011\pi\)
\(308\) 0 0
\(309\) −8.14033 −0.463087
\(310\) 0 0
\(311\) −6.90893 −0.391770 −0.195885 0.980627i \(-0.562758\pi\)
−0.195885 + 0.980627i \(0.562758\pi\)
\(312\) 0 0
\(313\) 17.5918 0.994347 0.497173 0.867651i \(-0.334371\pi\)
0.497173 + 0.867651i \(0.334371\pi\)
\(314\) 0 0
\(315\) −22.1113 −1.24583
\(316\) 0 0
\(317\) 18.8368 1.05798 0.528990 0.848628i \(-0.322571\pi\)
0.528990 + 0.848628i \(0.322571\pi\)
\(318\) 0 0
\(319\) 4.05381 0.226970
\(320\) 0 0
\(321\) −36.4904 −2.03670
\(322\) 0 0
\(323\) 17.0437 0.948337
\(324\) 0 0
\(325\) 3.81764 0.211765
\(326\) 0 0
\(327\) 23.9892 1.32661
\(328\) 0 0
\(329\) −19.4187 −1.07059
\(330\) 0 0
\(331\) −4.00000 −0.219860 −0.109930 0.993939i \(-0.535063\pi\)
−0.109930 + 0.993939i \(0.535063\pi\)
\(332\) 0 0
\(333\) 48.9575 2.68286
\(334\) 0 0
\(335\) −12.5304 −0.684612
\(336\) 0 0
\(337\) −34.8437 −1.89806 −0.949029 0.315190i \(-0.897932\pi\)
−0.949029 + 0.315190i \(0.897932\pi\)
\(338\) 0 0
\(339\) −9.53192 −0.517703
\(340\) 0 0
\(341\) −7.44670 −0.403262
\(342\) 0 0
\(343\) 4.14060 0.223571
\(344\) 0 0
\(345\) −25.0596 −1.34916
\(346\) 0 0
\(347\) 19.7410 1.05975 0.529876 0.848075i \(-0.322239\pi\)
0.529876 + 0.848075i \(0.322239\pi\)
\(348\) 0 0
\(349\) −23.8217 −1.27515 −0.637574 0.770389i \(-0.720062\pi\)
−0.637574 + 0.770389i \(0.720062\pi\)
\(350\) 0 0
\(351\) −30.3569 −1.62033
\(352\) 0 0
\(353\) −15.7701 −0.839355 −0.419678 0.907673i \(-0.637857\pi\)
−0.419678 + 0.907673i \(0.637857\pi\)
\(354\) 0 0
\(355\) 15.6073 0.828350
\(356\) 0 0
\(357\) 41.5408 2.19857
\(358\) 0 0
\(359\) −0.235509 −0.0124297 −0.00621485 0.999981i \(-0.501978\pi\)
−0.00621485 + 0.999981i \(0.501978\pi\)
\(360\) 0 0
\(361\) 3.05662 0.160875
\(362\) 0 0
\(363\) −2.94897 −0.154781
\(364\) 0 0
\(365\) 5.68287 0.297455
\(366\) 0 0
\(367\) −8.89517 −0.464324 −0.232162 0.972677i \(-0.574580\pi\)
−0.232162 + 0.972677i \(0.574580\pi\)
\(368\) 0 0
\(369\) 0.767718 0.0399658
\(370\) 0 0
\(371\) 33.3599 1.73196
\(372\) 0 0
\(373\) −16.8988 −0.874988 −0.437494 0.899221i \(-0.644134\pi\)
−0.437494 + 0.899221i \(0.644134\pi\)
\(374\) 0 0
\(375\) 2.94897 0.152284
\(376\) 0 0
\(377\) −15.4760 −0.797054
\(378\) 0 0
\(379\) −26.3449 −1.35324 −0.676622 0.736330i \(-0.736557\pi\)
−0.676622 + 0.736330i \(0.736557\pi\)
\(380\) 0 0
\(381\) 31.5918 1.61850
\(382\) 0 0
\(383\) 19.6796 1.00558 0.502791 0.864408i \(-0.332306\pi\)
0.502791 + 0.864408i \(0.332306\pi\)
\(384\) 0 0
\(385\) 3.88159 0.197824
\(386\) 0 0
\(387\) −38.2392 −1.94381
\(388\) 0 0
\(389\) 14.4099 0.730610 0.365305 0.930888i \(-0.380965\pi\)
0.365305 + 0.930888i \(0.380965\pi\)
\(390\) 0 0
\(391\) 30.8388 1.55958
\(392\) 0 0
\(393\) 13.3761 0.674733
\(394\) 0 0
\(395\) 5.89795 0.296758
\(396\) 0 0
\(397\) −28.5817 −1.43447 −0.717237 0.696829i \(-0.754593\pi\)
−0.717237 + 0.696829i \(0.754593\pi\)
\(398\) 0 0
\(399\) 53.7588 2.69131
\(400\) 0 0
\(401\) −5.62478 −0.280888 −0.140444 0.990089i \(-0.544853\pi\)
−0.140444 + 0.990089i \(0.544853\pi\)
\(402\) 0 0
\(403\) 28.4288 1.41614
\(404\) 0 0
\(405\) −6.36018 −0.316040
\(406\) 0 0
\(407\) −8.59440 −0.426008
\(408\) 0 0
\(409\) −1.09751 −0.0542684 −0.0271342 0.999632i \(-0.508638\pi\)
−0.0271342 + 0.999632i \(0.508638\pi\)
\(410\) 0 0
\(411\) 0.714791 0.0352580
\(412\) 0 0
\(413\) 14.6071 0.718769
\(414\) 0 0
\(415\) 10.8204 0.531154
\(416\) 0 0
\(417\) 57.1091 2.79664
\(418\) 0 0
\(419\) 16.5051 0.806325 0.403162 0.915129i \(-0.367911\pi\)
0.403162 + 0.915129i \(0.367911\pi\)
\(420\) 0 0
\(421\) −1.89239 −0.0922292 −0.0461146 0.998936i \(-0.514684\pi\)
−0.0461146 + 0.998936i \(0.514684\pi\)
\(422\) 0 0
\(423\) −28.4981 −1.38562
\(424\) 0 0
\(425\) −3.62906 −0.176035
\(426\) 0 0
\(427\) 0.208858 0.0101074
\(428\) 0 0
\(429\) 11.2581 0.543547
\(430\) 0 0
\(431\) −15.6870 −0.755615 −0.377807 0.925884i \(-0.623322\pi\)
−0.377807 + 0.925884i \(0.623322\pi\)
\(432\) 0 0
\(433\) −29.1195 −1.39939 −0.699696 0.714441i \(-0.746681\pi\)
−0.699696 + 0.714441i \(0.746681\pi\)
\(434\) 0 0
\(435\) −11.9546 −0.573178
\(436\) 0 0
\(437\) 39.9091 1.90911
\(438\) 0 0
\(439\) −24.2863 −1.15912 −0.579561 0.814929i \(-0.696776\pi\)
−0.579561 + 0.814929i \(0.696776\pi\)
\(440\) 0 0
\(441\) 45.9517 2.18818
\(442\) 0 0
\(443\) −27.8307 −1.32228 −0.661139 0.750263i \(-0.729927\pi\)
−0.661139 + 0.750263i \(0.729927\pi\)
\(444\) 0 0
\(445\) −13.0994 −0.620973
\(446\) 0 0
\(447\) −0.632323 −0.0299079
\(448\) 0 0
\(449\) −36.0426 −1.70096 −0.850478 0.526011i \(-0.823687\pi\)
−0.850478 + 0.526011i \(0.823687\pi\)
\(450\) 0 0
\(451\) −0.134771 −0.00634613
\(452\) 0 0
\(453\) 51.7050 2.42931
\(454\) 0 0
\(455\) −14.8185 −0.694703
\(456\) 0 0
\(457\) 19.3595 0.905600 0.452800 0.891612i \(-0.350425\pi\)
0.452800 + 0.891612i \(0.350425\pi\)
\(458\) 0 0
\(459\) 28.8574 1.34695
\(460\) 0 0
\(461\) 22.7307 1.05867 0.529336 0.848412i \(-0.322441\pi\)
0.529336 + 0.848412i \(0.322441\pi\)
\(462\) 0 0
\(463\) −27.8200 −1.29290 −0.646452 0.762955i \(-0.723748\pi\)
−0.646452 + 0.762955i \(0.723748\pi\)
\(464\) 0 0
\(465\) 21.9601 1.01838
\(466\) 0 0
\(467\) −35.1604 −1.62703 −0.813514 0.581545i \(-0.802448\pi\)
−0.813514 + 0.581545i \(0.802448\pi\)
\(468\) 0 0
\(469\) 48.6380 2.24590
\(470\) 0 0
\(471\) 54.7543 2.52295
\(472\) 0 0
\(473\) 6.71281 0.308655
\(474\) 0 0
\(475\) −4.69645 −0.215488
\(476\) 0 0
\(477\) 48.9575 2.24161
\(478\) 0 0
\(479\) −19.0213 −0.869105 −0.434553 0.900646i \(-0.643094\pi\)
−0.434553 + 0.900646i \(0.643094\pi\)
\(480\) 0 0
\(481\) 32.8103 1.49602
\(482\) 0 0
\(483\) 97.2710 4.42598
\(484\) 0 0
\(485\) −13.2581 −0.602020
\(486\) 0 0
\(487\) 23.1048 1.04698 0.523490 0.852032i \(-0.324630\pi\)
0.523490 + 0.852032i \(0.324630\pi\)
\(488\) 0 0
\(489\) −14.8953 −0.673591
\(490\) 0 0
\(491\) −30.8626 −1.39281 −0.696405 0.717649i \(-0.745218\pi\)
−0.696405 + 0.717649i \(0.745218\pi\)
\(492\) 0 0
\(493\) 14.7115 0.662574
\(494\) 0 0
\(495\) 5.69645 0.256036
\(496\) 0 0
\(497\) −60.5812 −2.71744
\(498\) 0 0
\(499\) 26.6566 1.19331 0.596656 0.802497i \(-0.296496\pi\)
0.596656 + 0.802497i \(0.296496\pi\)
\(500\) 0 0
\(501\) −10.9731 −0.490240
\(502\) 0 0
\(503\) −8.23360 −0.367118 −0.183559 0.983009i \(-0.558762\pi\)
−0.183559 + 0.983009i \(0.558762\pi\)
\(504\) 0 0
\(505\) 15.6611 0.696911
\(506\) 0 0
\(507\) −4.64282 −0.206195
\(508\) 0 0
\(509\) −17.3782 −0.770274 −0.385137 0.922859i \(-0.625846\pi\)
−0.385137 + 0.922859i \(0.625846\pi\)
\(510\) 0 0
\(511\) −22.0586 −0.975813
\(512\) 0 0
\(513\) 37.3450 1.64882
\(514\) 0 0
\(515\) −2.76040 −0.121638
\(516\) 0 0
\(517\) 5.00278 0.220022
\(518\) 0 0
\(519\) −5.56464 −0.244260
\(520\) 0 0
\(521\) −10.6307 −0.465741 −0.232871 0.972508i \(-0.574812\pi\)
−0.232871 + 0.972508i \(0.574812\pi\)
\(522\) 0 0
\(523\) 33.2605 1.45438 0.727189 0.686437i \(-0.240826\pi\)
0.727189 + 0.686437i \(0.240826\pi\)
\(524\) 0 0
\(525\) −11.4467 −0.499575
\(526\) 0 0
\(527\) −27.0246 −1.17721
\(528\) 0 0
\(529\) 49.2114 2.13963
\(530\) 0 0
\(531\) 21.4367 0.930275
\(532\) 0 0
\(533\) 0.514508 0.0222858
\(534\) 0 0
\(535\) −12.3739 −0.534972
\(536\) 0 0
\(537\) 22.1024 0.953789
\(538\) 0 0
\(539\) −8.06673 −0.347459
\(540\) 0 0
\(541\) −31.7545 −1.36523 −0.682617 0.730776i \(-0.739158\pi\)
−0.682617 + 0.730776i \(0.739158\pi\)
\(542\) 0 0
\(543\) −50.5166 −2.16788
\(544\) 0 0
\(545\) 8.13477 0.348455
\(546\) 0 0
\(547\) −25.5735 −1.09344 −0.546722 0.837314i \(-0.684124\pi\)
−0.546722 + 0.837314i \(0.684124\pi\)
\(548\) 0 0
\(549\) 0.306511 0.0130816
\(550\) 0 0
\(551\) 19.0385 0.811067
\(552\) 0 0
\(553\) −22.8934 −0.973527
\(554\) 0 0
\(555\) 25.3447 1.07582
\(556\) 0 0
\(557\) −6.80754 −0.288445 −0.144222 0.989545i \(-0.546068\pi\)
−0.144222 + 0.989545i \(0.546068\pi\)
\(558\) 0 0
\(559\) −25.6271 −1.08391
\(560\) 0 0
\(561\) −10.7020 −0.451839
\(562\) 0 0
\(563\) 3.59502 0.151512 0.0757560 0.997126i \(-0.475863\pi\)
0.0757560 + 0.997126i \(0.475863\pi\)
\(564\) 0 0
\(565\) −3.23228 −0.135983
\(566\) 0 0
\(567\) 24.6876 1.03678
\(568\) 0 0
\(569\) 25.4299 1.06608 0.533038 0.846091i \(-0.321050\pi\)
0.533038 + 0.846091i \(0.321050\pi\)
\(570\) 0 0
\(571\) 15.3363 0.641803 0.320901 0.947113i \(-0.396014\pi\)
0.320901 + 0.947113i \(0.396014\pi\)
\(572\) 0 0
\(573\) 70.1735 2.93154
\(574\) 0 0
\(575\) −8.49773 −0.354380
\(576\) 0 0
\(577\) −7.39158 −0.307716 −0.153858 0.988093i \(-0.549170\pi\)
−0.153858 + 0.988093i \(0.549170\pi\)
\(578\) 0 0
\(579\) 45.4878 1.89041
\(580\) 0 0
\(581\) −42.0004 −1.74247
\(582\) 0 0
\(583\) −8.59440 −0.355944
\(584\) 0 0
\(585\) −21.7470 −0.899128
\(586\) 0 0
\(587\) 22.1106 0.912603 0.456301 0.889825i \(-0.349174\pi\)
0.456301 + 0.889825i \(0.349174\pi\)
\(588\) 0 0
\(589\) −34.9731 −1.44104
\(590\) 0 0
\(591\) 21.9418 0.902565
\(592\) 0 0
\(593\) −10.4234 −0.428039 −0.214020 0.976829i \(-0.568656\pi\)
−0.214020 + 0.976829i \(0.568656\pi\)
\(594\) 0 0
\(595\) 14.0865 0.577491
\(596\) 0 0
\(597\) −50.0734 −2.04937
\(598\) 0 0
\(599\) 8.44216 0.344937 0.172469 0.985015i \(-0.444826\pi\)
0.172469 + 0.985015i \(0.444826\pi\)
\(600\) 0 0
\(601\) 2.85512 0.116463 0.0582315 0.998303i \(-0.481454\pi\)
0.0582315 + 0.998303i \(0.481454\pi\)
\(602\) 0 0
\(603\) 71.3791 2.90678
\(604\) 0 0
\(605\) −1.00000 −0.0406558
\(606\) 0 0
\(607\) 17.6392 0.715953 0.357977 0.933731i \(-0.383467\pi\)
0.357977 + 0.933731i \(0.383467\pi\)
\(608\) 0 0
\(609\) 46.4027 1.88033
\(610\) 0 0
\(611\) −19.0988 −0.772656
\(612\) 0 0
\(613\) −31.3440 −1.26597 −0.632986 0.774163i \(-0.718171\pi\)
−0.632986 + 0.774163i \(0.718171\pi\)
\(614\) 0 0
\(615\) 0.397437 0.0160262
\(616\) 0 0
\(617\) 40.7956 1.64237 0.821185 0.570663i \(-0.193314\pi\)
0.821185 + 0.570663i \(0.193314\pi\)
\(618\) 0 0
\(619\) 10.7518 0.432150 0.216075 0.976377i \(-0.430674\pi\)
0.216075 + 0.976377i \(0.430674\pi\)
\(620\) 0 0
\(621\) 67.5719 2.71157
\(622\) 0 0
\(623\) 50.8467 2.03713
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −13.8497 −0.553104
\(628\) 0 0
\(629\) −31.1896 −1.24361
\(630\) 0 0
\(631\) −22.5972 −0.899581 −0.449790 0.893134i \(-0.648501\pi\)
−0.449790 + 0.893134i \(0.648501\pi\)
\(632\) 0 0
\(633\) 71.7536 2.85195
\(634\) 0 0
\(635\) 10.7128 0.425125
\(636\) 0 0
\(637\) 30.7959 1.22018
\(638\) 0 0
\(639\) −88.9063 −3.51708
\(640\) 0 0
\(641\) 19.8525 0.784127 0.392064 0.919938i \(-0.371761\pi\)
0.392064 + 0.919938i \(0.371761\pi\)
\(642\) 0 0
\(643\) 1.25513 0.0494975 0.0247487 0.999694i \(-0.492121\pi\)
0.0247487 + 0.999694i \(0.492121\pi\)
\(644\) 0 0
\(645\) −19.7959 −0.779463
\(646\) 0 0
\(647\) −37.9888 −1.49349 −0.746747 0.665109i \(-0.768385\pi\)
−0.746747 + 0.665109i \(0.768385\pi\)
\(648\) 0 0
\(649\) −3.76318 −0.147718
\(650\) 0 0
\(651\) −85.2402 −3.34083
\(652\) 0 0
\(653\) 22.5126 0.880987 0.440494 0.897756i \(-0.354803\pi\)
0.440494 + 0.897756i \(0.354803\pi\)
\(654\) 0 0
\(655\) 4.53583 0.177230
\(656\) 0 0
\(657\) −32.3722 −1.26296
\(658\) 0 0
\(659\) −39.3655 −1.53346 −0.766731 0.641969i \(-0.778118\pi\)
−0.766731 + 0.641969i \(0.778118\pi\)
\(660\) 0 0
\(661\) 48.9429 1.90366 0.951829 0.306630i \(-0.0992014\pi\)
0.951829 + 0.306630i \(0.0992014\pi\)
\(662\) 0 0
\(663\) 40.8564 1.58673
\(664\) 0 0
\(665\) 18.2297 0.706917
\(666\) 0 0
\(667\) 34.4482 1.33384
\(668\) 0 0
\(669\) −27.3438 −1.05717
\(670\) 0 0
\(671\) −0.0538074 −0.00207721
\(672\) 0 0
\(673\) 10.8217 0.417148 0.208574 0.978007i \(-0.433118\pi\)
0.208574 + 0.978007i \(0.433118\pi\)
\(674\) 0 0
\(675\) −7.95176 −0.306063
\(676\) 0 0
\(677\) 39.2364 1.50798 0.753988 0.656888i \(-0.228128\pi\)
0.753988 + 0.656888i \(0.228128\pi\)
\(678\) 0 0
\(679\) 51.4626 1.97495
\(680\) 0 0
\(681\) −69.6903 −2.67054
\(682\) 0 0
\(683\) 21.1152 0.807949 0.403974 0.914770i \(-0.367628\pi\)
0.403974 + 0.914770i \(0.367628\pi\)
\(684\) 0 0
\(685\) 0.242386 0.00926110
\(686\) 0 0
\(687\) 22.7207 0.866849
\(688\) 0 0
\(689\) 32.8103 1.24997
\(690\) 0 0
\(691\) −34.6458 −1.31799 −0.658994 0.752148i \(-0.729018\pi\)
−0.658994 + 0.752148i \(0.729018\pi\)
\(692\) 0 0
\(693\) −22.1113 −0.839938
\(694\) 0 0
\(695\) 19.3657 0.734584
\(696\) 0 0
\(697\) −0.489093 −0.0185257
\(698\) 0 0
\(699\) −42.8264 −1.61984
\(700\) 0 0
\(701\) 0.0538074 0.00203228 0.00101614 0.999999i \(-0.499677\pi\)
0.00101614 + 0.999999i \(0.499677\pi\)
\(702\) 0 0
\(703\) −40.3631 −1.52232
\(704\) 0 0
\(705\) −14.7531 −0.555633
\(706\) 0 0
\(707\) −60.7900 −2.28624
\(708\) 0 0
\(709\) 4.16618 0.156464 0.0782320 0.996935i \(-0.475073\pi\)
0.0782320 + 0.996935i \(0.475073\pi\)
\(710\) 0 0
\(711\) −33.5974 −1.26000
\(712\) 0 0
\(713\) −63.2801 −2.36986
\(714\) 0 0
\(715\) 3.81764 0.142772
\(716\) 0 0
\(717\) −23.3671 −0.872659
\(718\) 0 0
\(719\) 26.2471 0.978853 0.489427 0.872045i \(-0.337206\pi\)
0.489427 + 0.872045i \(0.337206\pi\)
\(720\) 0 0
\(721\) 10.7147 0.399037
\(722\) 0 0
\(723\) 46.9791 1.74717
\(724\) 0 0
\(725\) −4.05381 −0.150555
\(726\) 0 0
\(727\) 1.38778 0.0514699 0.0257349 0.999669i \(-0.491807\pi\)
0.0257349 + 0.999669i \(0.491807\pi\)
\(728\) 0 0
\(729\) −34.1181 −1.26364
\(730\) 0 0
\(731\) 24.3612 0.901031
\(732\) 0 0
\(733\) −44.3176 −1.63691 −0.818453 0.574573i \(-0.805168\pi\)
−0.818453 + 0.574573i \(0.805168\pi\)
\(734\) 0 0
\(735\) 23.7886 0.877455
\(736\) 0 0
\(737\) −12.5304 −0.461565
\(738\) 0 0
\(739\) −11.1505 −0.410178 −0.205089 0.978743i \(-0.565748\pi\)
−0.205089 + 0.978743i \(0.565748\pi\)
\(740\) 0 0
\(741\) 52.8732 1.94235
\(742\) 0 0
\(743\) 30.8973 1.13351 0.566755 0.823886i \(-0.308199\pi\)
0.566755 + 0.823886i \(0.308199\pi\)
\(744\) 0 0
\(745\) −0.214421 −0.00785579
\(746\) 0 0
\(747\) −61.6380 −2.25522
\(748\) 0 0
\(749\) 48.0305 1.75500
\(750\) 0 0
\(751\) 20.4133 0.744893 0.372446 0.928054i \(-0.378519\pi\)
0.372446 + 0.928054i \(0.378519\pi\)
\(752\) 0 0
\(753\) −40.6037 −1.47968
\(754\) 0 0
\(755\) 17.5332 0.638100
\(756\) 0 0
\(757\) −38.6019 −1.40301 −0.701505 0.712665i \(-0.747488\pi\)
−0.701505 + 0.712665i \(0.747488\pi\)
\(758\) 0 0
\(759\) −25.0596 −0.909605
\(760\) 0 0
\(761\) 49.8781 1.80808 0.904040 0.427448i \(-0.140587\pi\)
0.904040 + 0.427448i \(0.140587\pi\)
\(762\) 0 0
\(763\) −31.5758 −1.14312
\(764\) 0 0
\(765\) 20.6728 0.747425
\(766\) 0 0
\(767\) 14.3665 0.518743
\(768\) 0 0
\(769\) 15.1901 0.547769 0.273885 0.961763i \(-0.411691\pi\)
0.273885 + 0.961763i \(0.411691\pi\)
\(770\) 0 0
\(771\) 23.6680 0.852382
\(772\) 0 0
\(773\) −24.0075 −0.863490 −0.431745 0.901996i \(-0.642102\pi\)
−0.431745 + 0.901996i \(0.642102\pi\)
\(774\) 0 0
\(775\) 7.44670 0.267493
\(776\) 0 0
\(777\) −98.3775 −3.52927
\(778\) 0 0
\(779\) −0.632946 −0.0226777
\(780\) 0 0
\(781\) 15.6073 0.558474
\(782\) 0 0
\(783\) 32.2349 1.15198
\(784\) 0 0
\(785\) 18.5672 0.662693
\(786\) 0 0
\(787\) 23.8892 0.851557 0.425778 0.904828i \(-0.360000\pi\)
0.425778 + 0.904828i \(0.360000\pi\)
\(788\) 0 0
\(789\) −45.0605 −1.60420
\(790\) 0 0
\(791\) 12.5464 0.446098
\(792\) 0 0
\(793\) 0.205417 0.00729459
\(794\) 0 0
\(795\) 25.3447 0.898882
\(796\) 0 0
\(797\) −5.74421 −0.203470 −0.101735 0.994812i \(-0.532439\pi\)
−0.101735 + 0.994812i \(0.532439\pi\)
\(798\) 0 0
\(799\) 18.1554 0.642292
\(800\) 0 0
\(801\) 74.6203 2.63658
\(802\) 0 0
\(803\) 5.68287 0.200544
\(804\) 0 0
\(805\) 32.9847 1.16256
\(806\) 0 0
\(807\) 29.5862 1.04148
\(808\) 0 0
\(809\) −51.5392 −1.81202 −0.906011 0.423254i \(-0.860888\pi\)
−0.906011 + 0.423254i \(0.860888\pi\)
\(810\) 0 0
\(811\) 12.8424 0.450958 0.225479 0.974248i \(-0.427605\pi\)
0.225479 + 0.974248i \(0.427605\pi\)
\(812\) 0 0
\(813\) −27.0010 −0.946967
\(814\) 0 0
\(815\) −5.05103 −0.176930
\(816\) 0 0
\(817\) 31.5264 1.10297
\(818\) 0 0
\(819\) 84.4129 2.94962
\(820\) 0 0
\(821\) −3.63918 −0.127008 −0.0635041 0.997982i \(-0.520228\pi\)
−0.0635041 + 0.997982i \(0.520228\pi\)
\(822\) 0 0
\(823\) −3.60606 −0.125699 −0.0628497 0.998023i \(-0.520019\pi\)
−0.0628497 + 0.998023i \(0.520019\pi\)
\(824\) 0 0
\(825\) 2.94897 0.102670
\(826\) 0 0
\(827\) 18.8247 0.654600 0.327300 0.944920i \(-0.393861\pi\)
0.327300 + 0.944920i \(0.393861\pi\)
\(828\) 0 0
\(829\) −30.9192 −1.07387 −0.536935 0.843624i \(-0.680418\pi\)
−0.536935 + 0.843624i \(0.680418\pi\)
\(830\) 0 0
\(831\) 45.2529 1.56981
\(832\) 0 0
\(833\) −29.2747 −1.01431
\(834\) 0 0
\(835\) −3.72097 −0.128770
\(836\) 0 0
\(837\) −59.2144 −2.04675
\(838\) 0 0
\(839\) −9.10439 −0.314318 −0.157159 0.987573i \(-0.550234\pi\)
−0.157159 + 0.987573i \(0.550234\pi\)
\(840\) 0 0
\(841\) −12.5666 −0.433333
\(842\) 0 0
\(843\) 57.9801 1.99694
\(844\) 0 0
\(845\) −1.57438 −0.0541605
\(846\) 0 0
\(847\) 3.88159 0.133373
\(848\) 0 0
\(849\) 28.9304 0.992888
\(850\) 0 0
\(851\) −73.0329 −2.50353
\(852\) 0 0
\(853\) −11.6135 −0.397640 −0.198820 0.980036i \(-0.563711\pi\)
−0.198820 + 0.980036i \(0.563711\pi\)
\(854\) 0 0
\(855\) 26.7531 0.914936
\(856\) 0 0
\(857\) 18.1578 0.620257 0.310128 0.950695i \(-0.399628\pi\)
0.310128 + 0.950695i \(0.399628\pi\)
\(858\) 0 0
\(859\) 15.8067 0.539317 0.269658 0.962956i \(-0.413089\pi\)
0.269658 + 0.962956i \(0.413089\pi\)
\(860\) 0 0
\(861\) −1.54269 −0.0525746
\(862\) 0 0
\(863\) −24.9446 −0.849126 −0.424563 0.905398i \(-0.639572\pi\)
−0.424563 + 0.905398i \(0.639572\pi\)
\(864\) 0 0
\(865\) −1.88697 −0.0641590
\(866\) 0 0
\(867\) 11.2943 0.383574
\(868\) 0 0
\(869\) 5.89795 0.200074
\(870\) 0 0
\(871\) 47.8368 1.62089
\(872\) 0 0
\(873\) 75.5242 2.55611
\(874\) 0 0
\(875\) −3.88159 −0.131222
\(876\) 0 0
\(877\) −16.8334 −0.568423 −0.284211 0.958762i \(-0.591732\pi\)
−0.284211 + 0.958762i \(0.591732\pi\)
\(878\) 0 0
\(879\) 61.9436 2.08930
\(880\) 0 0
\(881\) 54.1571 1.82460 0.912299 0.409524i \(-0.134305\pi\)
0.912299 + 0.409524i \(0.134305\pi\)
\(882\) 0 0
\(883\) −3.64736 −0.122743 −0.0613717 0.998115i \(-0.519548\pi\)
−0.0613717 + 0.998115i \(0.519548\pi\)
\(884\) 0 0
\(885\) 11.0975 0.373039
\(886\) 0 0
\(887\) 13.4181 0.450535 0.225267 0.974297i \(-0.427674\pi\)
0.225267 + 0.974297i \(0.427674\pi\)
\(888\) 0 0
\(889\) −41.5827 −1.39464
\(890\) 0 0
\(891\) −6.36018 −0.213074
\(892\) 0 0
\(893\) 23.4953 0.786240
\(894\) 0 0
\(895\) 7.49495 0.250528
\(896\) 0 0
\(897\) 95.6685 3.19428
\(898\) 0 0
\(899\) −30.1875 −1.00681
\(900\) 0 0
\(901\) −31.1896 −1.03908
\(902\) 0 0
\(903\) 76.8395 2.55706
\(904\) 0 0
\(905\) −17.1302 −0.569428
\(906\) 0 0
\(907\) −24.1162 −0.800764 −0.400382 0.916348i \(-0.631123\pi\)
−0.400382 + 0.916348i \(0.631123\pi\)
\(908\) 0 0
\(909\) −89.2128 −2.95900
\(910\) 0 0
\(911\) −30.5864 −1.01337 −0.506686 0.862131i \(-0.669130\pi\)
−0.506686 + 0.862131i \(0.669130\pi\)
\(912\) 0 0
\(913\) 10.8204 0.358104
\(914\) 0 0
\(915\) 0.158677 0.00524569
\(916\) 0 0
\(917\) −17.6062 −0.581409
\(918\) 0 0
\(919\) 37.8523 1.24863 0.624315 0.781172i \(-0.285378\pi\)
0.624315 + 0.781172i \(0.285378\pi\)
\(920\) 0 0
\(921\) −61.0014 −2.01007
\(922\) 0 0
\(923\) −59.5831 −1.96120
\(924\) 0 0
\(925\) 8.59440 0.282582
\(926\) 0 0
\(927\) 15.7244 0.516459
\(928\) 0 0
\(929\) −16.7782 −0.550476 −0.275238 0.961376i \(-0.588757\pi\)
−0.275238 + 0.961376i \(0.588757\pi\)
\(930\) 0 0
\(931\) −37.8850 −1.24163
\(932\) 0 0
\(933\) 20.3743 0.667023
\(934\) 0 0
\(935\) −3.62906 −0.118683
\(936\) 0 0
\(937\) −10.6495 −0.347903 −0.173952 0.984754i \(-0.555654\pi\)
−0.173952 + 0.984754i \(0.555654\pi\)
\(938\) 0 0
\(939\) −51.8777 −1.69297
\(940\) 0 0
\(941\) 38.6996 1.26157 0.630786 0.775957i \(-0.282733\pi\)
0.630786 + 0.775957i \(0.282733\pi\)
\(942\) 0 0
\(943\) −1.14525 −0.0372945
\(944\) 0 0
\(945\) 30.8654 1.00405
\(946\) 0 0
\(947\) 33.6258 1.09269 0.546346 0.837559i \(-0.316018\pi\)
0.546346 + 0.837559i \(0.316018\pi\)
\(948\) 0 0
\(949\) −21.6952 −0.704255
\(950\) 0 0
\(951\) −55.5492 −1.80131
\(952\) 0 0
\(953\) 55.0684 1.78384 0.891921 0.452192i \(-0.149358\pi\)
0.891921 + 0.452192i \(0.149358\pi\)
\(954\) 0 0
\(955\) 23.7959 0.770017
\(956\) 0 0
\(957\) −11.9546 −0.386436
\(958\) 0 0
\(959\) −0.940843 −0.0303814
\(960\) 0 0
\(961\) 24.4534 0.788819
\(962\) 0 0
\(963\) 70.4875 2.27143
\(964\) 0 0
\(965\) 15.4250 0.496547
\(966\) 0 0
\(967\) −16.9287 −0.544391 −0.272196 0.962242i \(-0.587750\pi\)
−0.272196 + 0.962242i \(0.587750\pi\)
\(968\) 0 0
\(969\) −50.2614 −1.61463
\(970\) 0 0
\(971\) 0.877074 0.0281466 0.0140733 0.999901i \(-0.495520\pi\)
0.0140733 + 0.999901i \(0.495520\pi\)
\(972\) 0 0
\(973\) −75.1698 −2.40983
\(974\) 0 0
\(975\) −11.2581 −0.360549
\(976\) 0 0
\(977\) 24.2591 0.776119 0.388059 0.921634i \(-0.373146\pi\)
0.388059 + 0.921634i \(0.373146\pi\)
\(978\) 0 0
\(979\) −13.0994 −0.418660
\(980\) 0 0
\(981\) −46.3393 −1.47950
\(982\) 0 0
\(983\) 10.1929 0.325103 0.162551 0.986700i \(-0.448028\pi\)
0.162551 + 0.986700i \(0.448028\pi\)
\(984\) 0 0
\(985\) 7.44048 0.237074
\(986\) 0 0
\(987\) 57.2654 1.82278
\(988\) 0 0
\(989\) 57.0436 1.81388
\(990\) 0 0
\(991\) 18.5817 0.590267 0.295133 0.955456i \(-0.404636\pi\)
0.295133 + 0.955456i \(0.404636\pi\)
\(992\) 0 0
\(993\) 11.7959 0.374331
\(994\) 0 0
\(995\) −16.9799 −0.538300
\(996\) 0 0
\(997\) −41.6842 −1.32015 −0.660076 0.751199i \(-0.729476\pi\)
−0.660076 + 0.751199i \(0.729476\pi\)
\(998\) 0 0
\(999\) −68.3405 −2.16220
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3520.2.a.bz.1.1 5
4.3 odd 2 3520.2.a.by.1.5 5
8.3 odd 2 1760.2.a.u.1.1 5
8.5 even 2 1760.2.a.v.1.5 yes 5
40.19 odd 2 8800.2.a.bv.1.5 5
40.29 even 2 8800.2.a.bu.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1760.2.a.u.1.1 5 8.3 odd 2
1760.2.a.v.1.5 yes 5 8.5 even 2
3520.2.a.by.1.5 5 4.3 odd 2
3520.2.a.bz.1.1 5 1.1 even 1 trivial
8800.2.a.bu.1.1 5 40.29 even 2
8800.2.a.bv.1.5 5 40.19 odd 2