Properties

Label 3520.1
Level 3520
Weight 1
Dimension 114
Nonzero newspaces 7
Newform subspaces 25
Sturm bound 737280
Trace bound 9

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 3520 = 2^{6} \cdot 5 \cdot 11 \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 7 \)
Newform subspaces: \( 25 \)
Sturm bound: \(737280\)
Trace bound: \(9\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(3520))\).

Total New Old
Modular forms 6212 1302 4910
Cusp forms 452 114 338
Eisenstein series 5760 1188 4572

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 114 0 0 0

Trace form

\( 114 q - 4 q^{5} + 6 q^{9} - 20 q^{41} + 10 q^{45} - 46 q^{49} + 12 q^{53} - 40 q^{59} - 4 q^{69} - 32 q^{71} - 34 q^{81} + 8 q^{89} + 8 q^{91} - 12 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(3520))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
3520.1.d \(\chi_{3520}(1121, \cdot)\) None 0 1
3520.1.e \(\chi_{3520}(2751, \cdot)\) None 0 1
3520.1.h \(\chi_{3520}(2399, \cdot)\) None 0 1
3520.1.i \(\chi_{3520}(769, \cdot)\) 3520.1.i.a 1 1
3520.1.i.b 1
3520.1.i.c 2
3520.1.i.d 2
3520.1.i.e 4
3520.1.j \(\chi_{3520}(2881, \cdot)\) None 0 1
3520.1.k \(\chi_{3520}(991, \cdot)\) None 0 1
3520.1.n \(\chi_{3520}(639, \cdot)\) None 0 1
3520.1.o \(\chi_{3520}(2529, \cdot)\) 3520.1.o.a 2 1
3520.1.o.b 2
3520.1.o.c 4
3520.1.o.d 4
3520.1.q \(\chi_{3520}(2287, \cdot)\) None 0 2
3520.1.r \(\chi_{3520}(177, \cdot)\) None 0 2
3520.1.u \(\chi_{3520}(1519, \cdot)\) None 0 2
3520.1.x \(\chi_{3520}(1649, \cdot)\) 3520.1.x.a 8 2
3520.1.y \(\chi_{3520}(703, \cdot)\) 3520.1.y.a 2 2
3520.1.y.b 2
3520.1.y.c 4
3520.1.y.d 4
3520.1.ba \(\chi_{3520}(2113, \cdot)\) None 0 2
3520.1.bc \(\chi_{3520}(353, \cdot)\) None 0 2
3520.1.be \(\chi_{3520}(2463, \cdot)\) 3520.1.be.a 2 2
3520.1.be.b 2
3520.1.be.c 2
3520.1.be.d 2
3520.1.be.e 4
3520.1.be.f 4
3520.1.be.g 4
3520.1.be.h 4
3520.1.bg \(\chi_{3520}(241, \cdot)\) None 0 2
3520.1.bj \(\chi_{3520}(111, \cdot)\) None 0 2
3520.1.bm \(\chi_{3520}(527, \cdot)\) None 0 2
3520.1.bn \(\chi_{3520}(1937, \cdot)\) None 0 2
3520.1.bq \(\chi_{3520}(1497, \cdot)\) None 0 4
3520.1.br \(\chi_{3520}(967, \cdot)\) None 0 4
3520.1.bu \(\chi_{3520}(551, \cdot)\) None 0 4
3520.1.bw \(\chi_{3520}(329, \cdot)\) None 0 4
3520.1.bx \(\chi_{3520}(199, \cdot)\) None 0 4
3520.1.bz \(\chi_{3520}(681, \cdot)\) None 0 4
3520.1.cb \(\chi_{3520}(87, \cdot)\) None 0 4
3520.1.ce \(\chi_{3520}(617, \cdot)\) None 0 4
3520.1.cg \(\chi_{3520}(1249, \cdot)\) 3520.1.cg.a 8 4
3520.1.cg.b 8
3520.1.ch \(\chi_{3520}(1279, \cdot)\) None 0 4
3520.1.ck \(\chi_{3520}(31, \cdot)\) None 0 4
3520.1.cl \(\chi_{3520}(321, \cdot)\) None 0 4
3520.1.cm \(\chi_{3520}(129, \cdot)\) None 0 4
3520.1.cn \(\chi_{3520}(159, \cdot)\) None 0 4
3520.1.cq \(\chi_{3520}(191, \cdot)\) None 0 4
3520.1.cr \(\chi_{3520}(161, \cdot)\) None 0 4
3520.1.cu \(\chi_{3520}(133, \cdot)\) None 0 8
3520.1.cw \(\chi_{3520}(483, \cdot)\) None 0 8
3520.1.cy \(\chi_{3520}(21, \cdot)\) None 0 8
3520.1.db \(\chi_{3520}(109, \cdot)\) 3520.1.db.a 32 8
3520.1.dc \(\chi_{3520}(331, \cdot)\) None 0 8
3520.1.df \(\chi_{3520}(419, \cdot)\) None 0 8
3520.1.dh \(\chi_{3520}(573, \cdot)\) None 0 8
3520.1.dj \(\chi_{3520}(43, \cdot)\) None 0 8
3520.1.dk \(\chi_{3520}(113, \cdot)\) None 0 8
3520.1.dl \(\chi_{3520}(303, \cdot)\) None 0 8
3520.1.dp \(\chi_{3520}(751, \cdot)\) None 0 8
3520.1.dq \(\chi_{3520}(721, \cdot)\) None 0 8
3520.1.dt \(\chi_{3520}(97, \cdot)\) None 0 8
3520.1.dv \(\chi_{3520}(607, \cdot)\) None 0 8
3520.1.dx \(\chi_{3520}(63, \cdot)\) None 0 8
3520.1.dz \(\chi_{3520}(257, \cdot)\) None 0 8
3520.1.eb \(\chi_{3520}(369, \cdot)\) None 0 8
3520.1.ec \(\chi_{3520}(399, \cdot)\) None 0 8
3520.1.eg \(\chi_{3520}(273, \cdot)\) None 0 8
3520.1.eh \(\chi_{3520}(783, \cdot)\) None 0 8
3520.1.ej \(\chi_{3520}(567, \cdot)\) None 0 16
3520.1.ek \(\chi_{3520}(137, \cdot)\) None 0 16
3520.1.en \(\chi_{3520}(41, \cdot)\) None 0 16
3520.1.ep \(\chi_{3520}(119, \cdot)\) None 0 16
3520.1.eq \(\chi_{3520}(249, \cdot)\) None 0 16
3520.1.es \(\chi_{3520}(71, \cdot)\) None 0 16
3520.1.eu \(\chi_{3520}(377, \cdot)\) None 0 16
3520.1.ex \(\chi_{3520}(7, \cdot)\) None 0 16
3520.1.ey \(\chi_{3520}(123, \cdot)\) None 0 32
3520.1.fa \(\chi_{3520}(37, \cdot)\) None 0 32
3520.1.fc \(\chi_{3520}(59, \cdot)\) None 0 32
3520.1.ff \(\chi_{3520}(91, \cdot)\) None 0 32
3520.1.fg \(\chi_{3520}(29, \cdot)\) None 0 32
3520.1.fj \(\chi_{3520}(61, \cdot)\) None 0 32
3520.1.fl \(\chi_{3520}(83, \cdot)\) None 0 32
3520.1.fn \(\chi_{3520}(53, \cdot)\) None 0 32

Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(3520))\) into lower level spaces

\( S_{1}^{\mathrm{old}}(\Gamma_1(3520)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 28}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 24}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 20}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 14}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 16}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 12}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 14}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 12}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 10}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 12}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(44))\)\(^{\oplus 10}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(55))\)\(^{\oplus 7}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(80))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(88))\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(110))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(160))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(176))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(220))\)\(^{\oplus 5}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(320))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(352))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(440))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(704))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(880))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(1760))\)\(^{\oplus 2}\)