Properties

Label 352.2.w
Level $352$
Weight $2$
Character orbit 352.w
Rep. character $\chi_{352}(49,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $40$
Newform subspaces $1$
Sturm bound $96$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 352 = 2^{5} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 352.w (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 88 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 1 \)
Sturm bound: \(96\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(352, [\chi])\).

Total New Old
Modular forms 224 56 168
Cusp forms 160 40 120
Eisenstein series 64 16 48

Trace form

\( 40 q + 10 q^{7} + O(q^{10}) \) \( 40 q + 10 q^{7} + 18 q^{15} - 6 q^{17} + 8 q^{23} - 4 q^{25} + 6 q^{31} - 10 q^{33} + 34 q^{39} - 14 q^{41} + 6 q^{47} - 4 q^{49} + 2 q^{55} - 26 q^{57} - 60 q^{63} - 36 q^{65} - 22 q^{71} - 6 q^{73} - 74 q^{79} - 4 q^{81} - 68 q^{87} - 16 q^{89} - 66 q^{95} + 10 q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(352, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
352.2.w.a 352.w 88.o $40$ $2.811$ None 88.2.o.a \(0\) \(0\) \(0\) \(10\) $\mathrm{SU}(2)[C_{10}]$

Decomposition of \(S_{2}^{\mathrm{old}}(352, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(352, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(88, [\chi])\)\(^{\oplus 3}\)