Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [352,2,Mod(63,352)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(352, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([5, 0, 3]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("352.63");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 352 = 2^{5} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 352.u (of order \(10\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.81073415115\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
63.1 | 0 | −2.59733 | + | 0.843923i | 0 | −3.24636 | − | 2.35862i | 0 | −0.712525 | + | 2.19293i | 0 | 3.60686 | − | 2.62054i | 0 | ||||||||||
63.2 | 0 | −2.56359 | + | 0.832959i | 0 | 1.18682 | + | 0.862276i | 0 | 0.845653 | − | 2.60265i | 0 | 3.45110 | − | 2.50737i | 0 | ||||||||||
63.3 | 0 | −2.26076 | + | 0.734564i | 0 | 0.0210968 | + | 0.0153277i | 0 | −0.140366 | + | 0.432001i | 0 | 2.14438 | − | 1.55799i | 0 | ||||||||||
63.4 | 0 | −1.20227 | + | 0.390641i | 0 | 3.22527 | + | 2.34329i | 0 | −0.861490 | + | 2.65139i | 0 | −1.13420 | + | 0.824045i | 0 | ||||||||||
63.5 | 0 | −0.821048 | + | 0.266775i | 0 | 0.946699 | + | 0.687817i | 0 | 1.39243 | − | 4.28545i | 0 | −1.82410 | + | 1.32529i | 0 | ||||||||||
63.6 | 0 | −0.203695 | + | 0.0661845i | 0 | −2.13352 | − | 1.55009i | 0 | −0.527338 | + | 1.62298i | 0 | −2.38994 | + | 1.73639i | 0 | ||||||||||
63.7 | 0 | 0.203695 | − | 0.0661845i | 0 | −2.13352 | − | 1.55009i | 0 | 0.527338 | − | 1.62298i | 0 | −2.38994 | + | 1.73639i | 0 | ||||||||||
63.8 | 0 | 0.821048 | − | 0.266775i | 0 | 0.946699 | + | 0.687817i | 0 | −1.39243 | + | 4.28545i | 0 | −1.82410 | + | 1.32529i | 0 | ||||||||||
63.9 | 0 | 1.20227 | − | 0.390641i | 0 | 3.22527 | + | 2.34329i | 0 | 0.861490 | − | 2.65139i | 0 | −1.13420 | + | 0.824045i | 0 | ||||||||||
63.10 | 0 | 2.26076 | − | 0.734564i | 0 | 0.0210968 | + | 0.0153277i | 0 | 0.140366 | − | 0.432001i | 0 | 2.14438 | − | 1.55799i | 0 | ||||||||||
63.11 | 0 | 2.56359 | − | 0.832959i | 0 | 1.18682 | + | 0.862276i | 0 | −0.845653 | + | 2.60265i | 0 | 3.45110 | − | 2.50737i | 0 | ||||||||||
63.12 | 0 | 2.59733 | − | 0.843923i | 0 | −3.24636 | − | 2.35862i | 0 | 0.712525 | − | 2.19293i | 0 | 3.60686 | − | 2.62054i | 0 | ||||||||||
95.1 | 0 | −2.59733 | − | 0.843923i | 0 | −3.24636 | + | 2.35862i | 0 | −0.712525 | − | 2.19293i | 0 | 3.60686 | + | 2.62054i | 0 | ||||||||||
95.2 | 0 | −2.56359 | − | 0.832959i | 0 | 1.18682 | − | 0.862276i | 0 | 0.845653 | + | 2.60265i | 0 | 3.45110 | + | 2.50737i | 0 | ||||||||||
95.3 | 0 | −2.26076 | − | 0.734564i | 0 | 0.0210968 | − | 0.0153277i | 0 | −0.140366 | − | 0.432001i | 0 | 2.14438 | + | 1.55799i | 0 | ||||||||||
95.4 | 0 | −1.20227 | − | 0.390641i | 0 | 3.22527 | − | 2.34329i | 0 | −0.861490 | − | 2.65139i | 0 | −1.13420 | − | 0.824045i | 0 | ||||||||||
95.5 | 0 | −0.821048 | − | 0.266775i | 0 | 0.946699 | − | 0.687817i | 0 | 1.39243 | + | 4.28545i | 0 | −1.82410 | − | 1.32529i | 0 | ||||||||||
95.6 | 0 | −0.203695 | − | 0.0661845i | 0 | −2.13352 | + | 1.55009i | 0 | −0.527338 | − | 1.62298i | 0 | −2.38994 | − | 1.73639i | 0 | ||||||||||
95.7 | 0 | 0.203695 | + | 0.0661845i | 0 | −2.13352 | + | 1.55009i | 0 | 0.527338 | + | 1.62298i | 0 | −2.38994 | − | 1.73639i | 0 | ||||||||||
95.8 | 0 | 0.821048 | + | 0.266775i | 0 | 0.946699 | − | 0.687817i | 0 | −1.39243 | − | 4.28545i | 0 | −1.82410 | − | 1.32529i | 0 | ||||||||||
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
11.d | odd | 10 | 1 | inner |
44.g | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 352.2.u.a | ✓ | 48 |
4.b | odd | 2 | 1 | inner | 352.2.u.a | ✓ | 48 |
8.b | even | 2 | 1 | 704.2.u.d | 48 | ||
8.d | odd | 2 | 1 | 704.2.u.d | 48 | ||
11.d | odd | 10 | 1 | inner | 352.2.u.a | ✓ | 48 |
44.g | even | 10 | 1 | inner | 352.2.u.a | ✓ | 48 |
88.k | even | 10 | 1 | 704.2.u.d | 48 | ||
88.p | odd | 10 | 1 | 704.2.u.d | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
352.2.u.a | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
352.2.u.a | ✓ | 48 | 4.b | odd | 2 | 1 | inner |
352.2.u.a | ✓ | 48 | 11.d | odd | 10 | 1 | inner |
352.2.u.a | ✓ | 48 | 44.g | even | 10 | 1 | inner |
704.2.u.d | 48 | 8.b | even | 2 | 1 | ||
704.2.u.d | 48 | 8.d | odd | 2 | 1 | ||
704.2.u.d | 48 | 88.k | even | 10 | 1 | ||
704.2.u.d | 48 | 88.p | odd | 10 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(352, [\chi])\).