Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [352,2,Mod(79,352)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(352, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([5, 5, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("352.79");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 352 = 2^{5} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 352.s (of order \(10\), degree \(4\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.81073415115\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{10})\) |
Twist minimal: | no (minimal twist has level 88) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
79.1 | 0 | −1.70387 | + | 1.23794i | 0 | −1.49538 | + | 0.485879i | 0 | −1.63043 | − | 1.18458i | 0 | 0.443645 | − | 1.36540i | 0 | ||||||||||
79.2 | 0 | −1.70387 | + | 1.23794i | 0 | 1.49538 | − | 0.485879i | 0 | 1.63043 | + | 1.18458i | 0 | 0.443645 | − | 1.36540i | 0 | ||||||||||
79.3 | 0 | −0.0248408 | + | 0.0180479i | 0 | −1.78547 | + | 0.580134i | 0 | −0.623146 | − | 0.452742i | 0 | −0.926760 | + | 2.85227i | 0 | ||||||||||
79.4 | 0 | −0.0248408 | + | 0.0180479i | 0 | 1.78547 | − | 0.580134i | 0 | 0.623146 | + | 0.452742i | 0 | −0.926760 | + | 2.85227i | 0 | ||||||||||
79.5 | 0 | 0.903665 | − | 0.656551i | 0 | −3.74056 | + | 1.21538i | 0 | −2.25832 | − | 1.64076i | 0 | −0.541500 | + | 1.66657i | 0 | ||||||||||
79.6 | 0 | 0.903665 | − | 0.656551i | 0 | 3.74056 | − | 1.21538i | 0 | 2.25832 | + | 1.64076i | 0 | −0.541500 | + | 1.66657i | 0 | ||||||||||
79.7 | 0 | 1.63407 | − | 1.18722i | 0 | −1.62415 | + | 0.527718i | 0 | 3.70164 | + | 2.68940i | 0 | 0.333632 | − | 1.02681i | 0 | ||||||||||
79.8 | 0 | 1.63407 | − | 1.18722i | 0 | 1.62415 | − | 0.527718i | 0 | −3.70164 | − | 2.68940i | 0 | 0.333632 | − | 1.02681i | 0 | ||||||||||
239.1 | 0 | −0.852681 | − | 2.62428i | 0 | −1.35292 | + | 1.86213i | 0 | −1.08979 | + | 3.35402i | 0 | −3.73274 | + | 2.71199i | 0 | ||||||||||
239.2 | 0 | −0.852681 | − | 2.62428i | 0 | 1.35292 | − | 1.86213i | 0 | 1.08979 | − | 3.35402i | 0 | −3.73274 | + | 2.71199i | 0 | ||||||||||
239.3 | 0 | −0.385688 | − | 1.18702i | 0 | −2.03454 | + | 2.80031i | 0 | 0.442181 | − | 1.36089i | 0 | 1.16678 | − | 0.847714i | 0 | ||||||||||
239.4 | 0 | −0.385688 | − | 1.18702i | 0 | 2.03454 | − | 2.80031i | 0 | −0.442181 | + | 1.36089i | 0 | 1.16678 | − | 0.847714i | 0 | ||||||||||
239.5 | 0 | 0.303809 | + | 0.935028i | 0 | −0.398383 | + | 0.548327i | 0 | −1.40393 | + | 4.32085i | 0 | 1.64507 | − | 1.19522i | 0 | ||||||||||
239.6 | 0 | 0.303809 | + | 0.935028i | 0 | 0.398383 | − | 0.548327i | 0 | 1.40393 | − | 4.32085i | 0 | 1.64507 | − | 1.19522i | 0 | ||||||||||
239.7 | 0 | 0.625543 | + | 1.92522i | 0 | −1.75152 | + | 2.41076i | 0 | −0.216882 | + | 0.667493i | 0 | −0.888128 | + | 0.645263i | 0 | ||||||||||
239.8 | 0 | 0.625543 | + | 1.92522i | 0 | 1.75152 | − | 2.41076i | 0 | 0.216882 | − | 0.667493i | 0 | −0.888128 | + | 0.645263i | 0 | ||||||||||
271.1 | 0 | −0.852681 | + | 2.62428i | 0 | −1.35292 | − | 1.86213i | 0 | −1.08979 | − | 3.35402i | 0 | −3.73274 | − | 2.71199i | 0 | ||||||||||
271.2 | 0 | −0.852681 | + | 2.62428i | 0 | 1.35292 | + | 1.86213i | 0 | 1.08979 | + | 3.35402i | 0 | −3.73274 | − | 2.71199i | 0 | ||||||||||
271.3 | 0 | −0.385688 | + | 1.18702i | 0 | −2.03454 | − | 2.80031i | 0 | 0.442181 | + | 1.36089i | 0 | 1.16678 | + | 0.847714i | 0 | ||||||||||
271.4 | 0 | −0.385688 | + | 1.18702i | 0 | 2.03454 | + | 2.80031i | 0 | −0.442181 | − | 1.36089i | 0 | 1.16678 | + | 0.847714i | 0 | ||||||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.d | odd | 2 | 1 | inner |
11.d | odd | 10 | 1 | inner |
88.k | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 352.2.s.b | 32 | |
4.b | odd | 2 | 1 | 88.2.k.b | ✓ | 32 | |
8.b | even | 2 | 1 | 88.2.k.b | ✓ | 32 | |
8.d | odd | 2 | 1 | inner | 352.2.s.b | 32 | |
11.c | even | 5 | 1 | 3872.2.g.d | 32 | ||
11.d | odd | 10 | 1 | inner | 352.2.s.b | 32 | |
11.d | odd | 10 | 1 | 3872.2.g.d | 32 | ||
12.b | even | 2 | 1 | 792.2.bp.b | 32 | ||
24.h | odd | 2 | 1 | 792.2.bp.b | 32 | ||
44.c | even | 2 | 1 | 968.2.k.h | 32 | ||
44.g | even | 10 | 1 | 88.2.k.b | ✓ | 32 | |
44.g | even | 10 | 1 | 968.2.g.e | 32 | ||
44.g | even | 10 | 1 | 968.2.k.e | 32 | ||
44.g | even | 10 | 1 | 968.2.k.i | 32 | ||
44.h | odd | 10 | 1 | 968.2.g.e | 32 | ||
44.h | odd | 10 | 1 | 968.2.k.e | 32 | ||
44.h | odd | 10 | 1 | 968.2.k.h | 32 | ||
44.h | odd | 10 | 1 | 968.2.k.i | 32 | ||
88.b | odd | 2 | 1 | 968.2.k.h | 32 | ||
88.k | even | 10 | 1 | inner | 352.2.s.b | 32 | |
88.k | even | 10 | 1 | 3872.2.g.d | 32 | ||
88.l | odd | 10 | 1 | 3872.2.g.d | 32 | ||
88.o | even | 10 | 1 | 968.2.g.e | 32 | ||
88.o | even | 10 | 1 | 968.2.k.e | 32 | ||
88.o | even | 10 | 1 | 968.2.k.h | 32 | ||
88.o | even | 10 | 1 | 968.2.k.i | 32 | ||
88.p | odd | 10 | 1 | 88.2.k.b | ✓ | 32 | |
88.p | odd | 10 | 1 | 968.2.g.e | 32 | ||
88.p | odd | 10 | 1 | 968.2.k.e | 32 | ||
88.p | odd | 10 | 1 | 968.2.k.i | 32 | ||
132.n | odd | 10 | 1 | 792.2.bp.b | 32 | ||
264.u | even | 10 | 1 | 792.2.bp.b | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
88.2.k.b | ✓ | 32 | 4.b | odd | 2 | 1 | |
88.2.k.b | ✓ | 32 | 8.b | even | 2 | 1 | |
88.2.k.b | ✓ | 32 | 44.g | even | 10 | 1 | |
88.2.k.b | ✓ | 32 | 88.p | odd | 10 | 1 | |
352.2.s.b | 32 | 1.a | even | 1 | 1 | trivial | |
352.2.s.b | 32 | 8.d | odd | 2 | 1 | inner | |
352.2.s.b | 32 | 11.d | odd | 10 | 1 | inner | |
352.2.s.b | 32 | 88.k | even | 10 | 1 | inner | |
792.2.bp.b | 32 | 12.b | even | 2 | 1 | ||
792.2.bp.b | 32 | 24.h | odd | 2 | 1 | ||
792.2.bp.b | 32 | 132.n | odd | 10 | 1 | ||
792.2.bp.b | 32 | 264.u | even | 10 | 1 | ||
968.2.g.e | 32 | 44.g | even | 10 | 1 | ||
968.2.g.e | 32 | 44.h | odd | 10 | 1 | ||
968.2.g.e | 32 | 88.o | even | 10 | 1 | ||
968.2.g.e | 32 | 88.p | odd | 10 | 1 | ||
968.2.k.e | 32 | 44.g | even | 10 | 1 | ||
968.2.k.e | 32 | 44.h | odd | 10 | 1 | ||
968.2.k.e | 32 | 88.o | even | 10 | 1 | ||
968.2.k.e | 32 | 88.p | odd | 10 | 1 | ||
968.2.k.h | 32 | 44.c | even | 2 | 1 | ||
968.2.k.h | 32 | 44.h | odd | 10 | 1 | ||
968.2.k.h | 32 | 88.b | odd | 2 | 1 | ||
968.2.k.h | 32 | 88.o | even | 10 | 1 | ||
968.2.k.i | 32 | 44.g | even | 10 | 1 | ||
968.2.k.i | 32 | 44.h | odd | 10 | 1 | ||
968.2.k.i | 32 | 88.o | even | 10 | 1 | ||
968.2.k.i | 32 | 88.p | odd | 10 | 1 | ||
3872.2.g.d | 32 | 11.c | even | 5 | 1 | ||
3872.2.g.d | 32 | 11.d | odd | 10 | 1 | ||
3872.2.g.d | 32 | 88.k | even | 10 | 1 | ||
3872.2.g.d | 32 | 88.l | odd | 10 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{16} - T_{3}^{15} + 9 T_{3}^{14} - 16 T_{3}^{13} + 51 T_{3}^{12} - 58 T_{3}^{11} + 181 T_{3}^{10} + \cdots + 1 \) acting on \(S_{2}^{\mathrm{new}}(352, [\chi])\).