Properties

Label 352.2.s.a
Level $352$
Weight $2$
Character orbit 352.s
Analytic conductor $2.811$
Analytic rank $0$
Dimension $8$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [352,2,Mod(79,352)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(352, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 5, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("352.79");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 352 = 2^{5} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 352.s (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.81073415115\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: 8.0.64000000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{6} + 4x^{4} - 8x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{U}(1)[D_{10}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{4} + \beta_{3} - \beta_{2} + \cdots + 1) q^{3}+ \cdots + (2 \beta_{7} + \beta_{6} + \cdots + 2 \beta_1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_{4} + \beta_{3} - \beta_{2} + \cdots + 1) q^{3}+ \cdots + ( - 5 \beta_{7} - 8 \beta_{6} + \cdots - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{3} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 4 q^{3} - 2 q^{9} - 6 q^{11} + 10 q^{19} - 10 q^{25} - 38 q^{27} - 38 q^{33} + 14 q^{49} + 70 q^{51} + 70 q^{57} + 18 q^{59} + 28 q^{67} - 30 q^{75} - 8 q^{81} - 90 q^{83} - 36 q^{89} + 30 q^{97} - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 2x^{6} + 4x^{4} - 8x^{2} + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} ) / 4 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{5} ) / 4 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{6} ) / 8 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( \nu^{7} ) / 8 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 4\beta_{4} \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 4\beta_{5} \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 8\beta_{6} \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 8\beta_{7} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/352\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(287\) \(321\)
\(\chi(n)\) \(-1\) \(-1\) \(1 - \beta_{2} + \beta_{4} - \beta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
79.1
−1.34500 + 0.437016i
1.34500 0.437016i
0.831254 1.14412i
−0.831254 + 1.14412i
0.831254 + 1.14412i
−0.831254 1.14412i
−1.34500 0.437016i
1.34500 + 0.437016i
0 −1.67625 + 1.21787i 0 0 0 0 0 0.399565 1.22973i 0
79.2 0 2.67625 1.94441i 0 0 0 0 0 2.45454 7.55429i 0
239.1 0 −0.0137431 0.0422971i 0 0 0 0 0 2.42545 1.76219i 0
239.2 0 1.01374 + 3.11998i 0 0 0 0 0 −6.27955 + 4.56236i 0
271.1 0 −0.0137431 + 0.0422971i 0 0 0 0 0 2.42545 + 1.76219i 0
271.2 0 1.01374 3.11998i 0 0 0 0 0 −6.27955 4.56236i 0
303.1 0 −1.67625 1.21787i 0 0 0 0 0 0.399565 + 1.22973i 0
303.2 0 2.67625 + 1.94441i 0 0 0 0 0 2.45454 + 7.55429i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 79.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by \(\Q(\sqrt{-2}) \)
11.d odd 10 1 inner
88.k even 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 352.2.s.a 8
4.b odd 2 1 88.2.k.a 8
8.b even 2 1 88.2.k.a 8
8.d odd 2 1 CM 352.2.s.a 8
11.c even 5 1 3872.2.g.b 8
11.d odd 10 1 inner 352.2.s.a 8
11.d odd 10 1 3872.2.g.b 8
12.b even 2 1 792.2.bp.a 8
24.h odd 2 1 792.2.bp.a 8
44.c even 2 1 968.2.k.b 8
44.g even 10 1 88.2.k.a 8
44.g even 10 1 968.2.g.a 8
44.g even 10 1 968.2.k.c 8
44.g even 10 1 968.2.k.d 8
44.h odd 10 1 968.2.g.a 8
44.h odd 10 1 968.2.k.b 8
44.h odd 10 1 968.2.k.c 8
44.h odd 10 1 968.2.k.d 8
88.b odd 2 1 968.2.k.b 8
88.k even 10 1 inner 352.2.s.a 8
88.k even 10 1 3872.2.g.b 8
88.l odd 10 1 3872.2.g.b 8
88.o even 10 1 968.2.g.a 8
88.o even 10 1 968.2.k.b 8
88.o even 10 1 968.2.k.c 8
88.o even 10 1 968.2.k.d 8
88.p odd 10 1 88.2.k.a 8
88.p odd 10 1 968.2.g.a 8
88.p odd 10 1 968.2.k.c 8
88.p odd 10 1 968.2.k.d 8
132.n odd 10 1 792.2.bp.a 8
264.u even 10 1 792.2.bp.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
88.2.k.a 8 4.b odd 2 1
88.2.k.a 8 8.b even 2 1
88.2.k.a 8 44.g even 10 1
88.2.k.a 8 88.p odd 10 1
352.2.s.a 8 1.a even 1 1 trivial
352.2.s.a 8 8.d odd 2 1 CM
352.2.s.a 8 11.d odd 10 1 inner
352.2.s.a 8 88.k even 10 1 inner
792.2.bp.a 8 12.b even 2 1
792.2.bp.a 8 24.h odd 2 1
792.2.bp.a 8 132.n odd 10 1
792.2.bp.a 8 264.u even 10 1
968.2.g.a 8 44.g even 10 1
968.2.g.a 8 44.h odd 10 1
968.2.g.a 8 88.o even 10 1
968.2.g.a 8 88.p odd 10 1
968.2.k.b 8 44.c even 2 1
968.2.k.b 8 44.h odd 10 1
968.2.k.b 8 88.b odd 2 1
968.2.k.b 8 88.o even 10 1
968.2.k.c 8 44.g even 10 1
968.2.k.c 8 44.h odd 10 1
968.2.k.c 8 88.o even 10 1
968.2.k.c 8 88.p odd 10 1
968.2.k.d 8 44.g even 10 1
968.2.k.d 8 44.h odd 10 1
968.2.k.d 8 88.o even 10 1
968.2.k.d 8 88.p odd 10 1
3872.2.g.b 8 11.c even 5 1
3872.2.g.b 8 11.d odd 10 1
3872.2.g.b 8 88.k even 10 1
3872.2.g.b 8 88.l odd 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{8} - 4T_{3}^{7} + 12T_{3}^{6} - 2T_{3}^{5} - 10T_{3}^{4} + 52T_{3}^{3} + 507T_{3}^{2} + 14T_{3} + 1 \) acting on \(S_{2}^{\mathrm{new}}(352, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} - 4 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( T^{8} \) Copy content Toggle raw display
$11$ \( T^{8} + 6 T^{7} + \cdots + 14641 \) Copy content Toggle raw display
$13$ \( T^{8} \) Copy content Toggle raw display
$17$ \( T^{8} - 32 T^{6} + \cdots + 63001 \) Copy content Toggle raw display
$19$ \( T^{8} - 10 T^{7} + \cdots + 22201 \) Copy content Toggle raw display
$23$ \( T^{8} \) Copy content Toggle raw display
$29$ \( T^{8} \) Copy content Toggle raw display
$31$ \( T^{8} \) Copy content Toggle raw display
$37$ \( T^{8} \) Copy content Toggle raw display
$41$ \( T^{8} - 128 T^{6} + \cdots + 2105401 \) Copy content Toggle raw display
$43$ \( T^{8} + 358 T^{6} + \cdots + 1104601 \) Copy content Toggle raw display
$47$ \( T^{8} \) Copy content Toggle raw display
$53$ \( T^{8} \) Copy content Toggle raw display
$59$ \( T^{8} - 18 T^{7} + \cdots + 65302561 \) Copy content Toggle raw display
$61$ \( T^{8} \) Copy content Toggle raw display
$67$ \( (T^{4} - 14 T^{3} + \cdots - 4799)^{2} \) Copy content Toggle raw display
$71$ \( T^{8} \) Copy content Toggle raw display
$73$ \( T^{8} - 288 T^{6} + \cdots + 19971961 \) Copy content Toggle raw display
$79$ \( T^{8} \) Copy content Toggle raw display
$83$ \( T^{8} + 90 T^{7} + \cdots + 972753721 \) Copy content Toggle raw display
$89$ \( (T^{4} + 18 T^{3} + \cdots + 401)^{2} \) Copy content Toggle raw display
$97$ \( T^{8} - 30 T^{7} + \cdots + 73017025 \) Copy content Toggle raw display
show more
show less