Properties

Label 352.2.m.c
Level $352$
Weight $2$
Character orbit 352.m
Analytic conductor $2.811$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [352,2,Mod(97,352)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(352, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("352.97");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 352 = 2^{5} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 352.m (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.81073415115\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.484000000.9
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + x^{6} + 16x^{4} + 66x^{2} + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} + (\beta_{5} + \beta_{3} + \beta_{2}) q^{5} + (\beta_{7} + \beta_{4}) q^{7} + (\beta_{3} + \beta_{2} + 1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{3} + (\beta_{5} + \beta_{3} + \beta_{2}) q^{5} + (\beta_{7} + \beta_{4}) q^{7} + (\beta_{3} + \beta_{2} + 1) q^{9} + (\beta_{7} + 2 \beta_{4} + \beta_1) q^{11} + ( - \beta_{3} - 1) q^{13} + (2 \beta_{7} + \beta_{6} + \cdots - \beta_1) q^{15}+ \cdots + ( - \beta_{6} + 2 \beta_{4}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{5} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 2 q^{5} + 4 q^{9} - 6 q^{13} + 10 q^{17} - 28 q^{21} - 12 q^{25} + 22 q^{29} - 42 q^{33} + 18 q^{37} + 6 q^{41} - 16 q^{45} + 12 q^{49} + 42 q^{53} - 6 q^{57} + 50 q^{61} + 4 q^{65} - 28 q^{69} + 2 q^{73} - 18 q^{77} + 28 q^{81} + 50 q^{85} - 24 q^{89} - 10 q^{93} - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + x^{6} + 16x^{4} + 66x^{2} + 121 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 7\nu^{6} - 37\nu^{4} + 629\nu^{2} - 363 ) / 1991 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -28\nu^{6} + 148\nu^{4} - 525\nu^{2} - 539 ) / 1991 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -28\nu^{7} + 148\nu^{5} - 525\nu^{3} - 539\nu ) / 1991 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 40\nu^{6} + 73\nu^{4} + 750\nu^{2} + 2761 ) / 1991 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -61\nu^{7} + 38\nu^{5} - 646\nu^{3} - 1672\nu ) / 1991 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 68\nu^{7} - 75\nu^{5} + 1275\nu^{3} + 3300\nu ) / 1991 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 4\beta_{2} + 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 4\beta_{7} + 4\beta_{6} + \beta_{4} - 3\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 7\beta_{5} + 10\beta_{3} - 7 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 7\beta_{7} + 17\beta_{4} - 7\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 37\beta_{5} - 37\beta_{3} - 75\beta_{2} - 75 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -38\beta_{7} - 75\beta_{6} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/352\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(287\) \(321\)
\(\chi(n)\) \(1\) \(1\) \(\beta_{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
97.1
−1.73855 + 1.26313i
1.73855 1.26313i
−1.73855 1.26313i
1.73855 + 1.26313i
−0.476925 + 1.46782i
0.476925 1.46782i
−0.476925 1.46782i
0.476925 + 1.46782i
0 −1.73855 + 1.26313i 0 −0.809017 2.48990i 0 1.73855 + 1.26313i 0 0.500000 1.53884i 0
97.2 0 1.73855 1.26313i 0 −0.809017 2.48990i 0 −1.73855 1.26313i 0 0.500000 1.53884i 0
225.1 0 −1.73855 1.26313i 0 −0.809017 + 2.48990i 0 1.73855 1.26313i 0 0.500000 + 1.53884i 0
225.2 0 1.73855 + 1.26313i 0 −0.809017 + 2.48990i 0 −1.73855 + 1.26313i 0 0.500000 + 1.53884i 0
257.1 0 −0.476925 + 1.46782i 0 0.309017 0.224514i 0 0.476925 + 1.46782i 0 0.500000 + 0.363271i 0
257.2 0 0.476925 1.46782i 0 0.309017 0.224514i 0 −0.476925 1.46782i 0 0.500000 + 0.363271i 0
289.1 0 −0.476925 1.46782i 0 0.309017 + 0.224514i 0 0.476925 1.46782i 0 0.500000 0.363271i 0
289.2 0 0.476925 + 1.46782i 0 0.309017 + 0.224514i 0 −0.476925 + 1.46782i 0 0.500000 0.363271i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 97.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
11.c even 5 1 inner
44.h odd 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 352.2.m.c 8
4.b odd 2 1 inner 352.2.m.c 8
8.b even 2 1 704.2.m.k 8
8.d odd 2 1 704.2.m.k 8
11.c even 5 1 inner 352.2.m.c 8
11.c even 5 1 3872.2.a.bg 4
11.d odd 10 1 3872.2.a.bf 4
44.g even 10 1 3872.2.a.bf 4
44.h odd 10 1 inner 352.2.m.c 8
44.h odd 10 1 3872.2.a.bg 4
88.k even 10 1 7744.2.a.dq 4
88.l odd 10 1 704.2.m.k 8
88.l odd 10 1 7744.2.a.dp 4
88.o even 10 1 704.2.m.k 8
88.o even 10 1 7744.2.a.dp 4
88.p odd 10 1 7744.2.a.dq 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
352.2.m.c 8 1.a even 1 1 trivial
352.2.m.c 8 4.b odd 2 1 inner
352.2.m.c 8 11.c even 5 1 inner
352.2.m.c 8 44.h odd 10 1 inner
704.2.m.k 8 8.b even 2 1
704.2.m.k 8 8.d odd 2 1
704.2.m.k 8 88.l odd 10 1
704.2.m.k 8 88.o even 10 1
3872.2.a.bf 4 11.d odd 10 1
3872.2.a.bf 4 44.g even 10 1
3872.2.a.bg 4 11.c even 5 1
3872.2.a.bg 4 44.h odd 10 1
7744.2.a.dp 4 88.l odd 10 1
7744.2.a.dp 4 88.o even 10 1
7744.2.a.dq 4 88.k even 10 1
7744.2.a.dq 4 88.p odd 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{8} + T_{3}^{6} + 16T_{3}^{4} + 66T_{3}^{2} + 121 \) acting on \(S_{2}^{\mathrm{new}}(352, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} + T^{6} + \cdots + 121 \) Copy content Toggle raw display
$5$ \( (T^{4} + T^{3} + 6 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{8} + T^{6} + \cdots + 121 \) Copy content Toggle raw display
$11$ \( T^{8} + 16 T^{6} + \cdots + 14641 \) Copy content Toggle raw display
$13$ \( (T^{4} + 3 T^{3} + 4 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$17$ \( (T^{4} - 5 T^{3} + 40 T^{2} + \cdots + 25)^{2} \) Copy content Toggle raw display
$19$ \( T^{8} + 9 T^{6} + \cdots + 793881 \) Copy content Toggle raw display
$23$ \( (T^{4} - 32 T^{2} + 176)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} - 11 T^{3} + 46 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$31$ \( T^{8} + 95 T^{6} + \cdots + 75625 \) Copy content Toggle raw display
$37$ \( (T^{4} - 9 T^{3} + 36 T^{2} + \cdots + 81)^{2} \) Copy content Toggle raw display
$41$ \( (T^{4} - 3 T^{3} + 4 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} - 52 T^{2} + 176)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} + 141 T^{6} + \cdots + 1771561 \) Copy content Toggle raw display
$53$ \( (T^{4} - 21 T^{3} + \cdots + 9801)^{2} \) Copy content Toggle raw display
$59$ \( T^{8} + 45 T^{6} + \cdots + 496175625 \) Copy content Toggle raw display
$61$ \( (T^{4} - 25 T^{3} + \cdots + 9025)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} - 68 T^{2} + 176)^{2} \) Copy content Toggle raw display
$71$ \( T^{8} + 51 T^{6} + \cdots + 85581001 \) Copy content Toggle raw display
$73$ \( (T^{4} - T^{3} + 76 T^{2} + \cdots + 961)^{2} \) Copy content Toggle raw display
$79$ \( T^{8} + \cdots + 1107225625 \) Copy content Toggle raw display
$83$ \( T^{8} + 51 T^{6} + \cdots + 85581001 \) Copy content Toggle raw display
$89$ \( (T^{2} + 6 T - 116)^{4} \) Copy content Toggle raw display
$97$ \( (T^{4} + T^{3} + 76 T^{2} + \cdots + 961)^{2} \) Copy content Toggle raw display
show more
show less