Properties

Label 352.2.m
Level $352$
Weight $2$
Character orbit 352.m
Rep. character $\chi_{352}(97,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $48$
Newform subspaces $6$
Sturm bound $96$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 352 = 2^{5} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 352.m (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 11 \)
Character field: \(\Q(\zeta_{5})\)
Newform subspaces: \( 6 \)
Sturm bound: \(96\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(352, [\chi])\).

Total New Old
Modular forms 224 48 176
Cusp forms 160 48 112
Eisenstein series 64 0 64

Trace form

\( 48 q - 4 q^{9} + O(q^{10}) \) \( 48 q - 4 q^{9} + 8 q^{17} + 4 q^{25} - 20 q^{33} - 48 q^{41} + 96 q^{45} - 20 q^{49} - 8 q^{53} - 36 q^{57} + 16 q^{61} + 16 q^{65} + 8 q^{69} - 40 q^{77} - 72 q^{81} - 96 q^{85} - 8 q^{89} - 40 q^{93} - 76 q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(352, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
352.2.m.a 352.m 11.c $4$ $2.811$ \(\Q(\zeta_{10})\) None 352.2.m.a \(0\) \(-2\) \(-6\) \(-10\) $\mathrm{SU}(2)[C_{5}]$ \(q+(-\zeta_{10}-\zeta_{10}^{3})q^{3}+(-2-2\zeta_{10}^{2}+\cdots)q^{5}+\cdots\)
352.2.m.b 352.m 11.c $4$ $2.811$ \(\Q(\zeta_{10})\) None 352.2.m.a \(0\) \(2\) \(-6\) \(10\) $\mathrm{SU}(2)[C_{5}]$ \(q+(\zeta_{10}+\zeta_{10}^{3})q^{3}+(-2-2\zeta_{10}^{2}+\cdots)q^{5}+\cdots\)
352.2.m.c 352.m 11.c $8$ $2.811$ 8.0.484000000.9 None 352.2.m.c \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{5}]$ \(q+\beta _{1}q^{3}+(\beta _{2}+\beta _{3}+\beta _{5})q^{5}+(\beta _{4}+\beta _{7})q^{7}+\cdots\)
352.2.m.d 352.m 11.c $8$ $2.811$ 8.0.484000000.6 None 352.2.m.d \(0\) \(0\) \(14\) \(0\) $\mathrm{SU}(2)[C_{5}]$ \(q+(-2\beta _{1}+\beta _{6}-\beta _{7})q^{3}+(1+\beta _{2}+2\beta _{3}+\cdots)q^{5}+\cdots\)
352.2.m.e 352.m 11.c $12$ $2.811$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 352.2.m.e \(0\) \(0\) \(0\) \(-6\) $\mathrm{SU}(2)[C_{5}]$ \(q+(\beta _{5}-\beta _{8})q^{3}+\beta _{9}q^{5}+(-1+\beta _{4}+\cdots)q^{7}+\cdots\)
352.2.m.f 352.m 11.c $12$ $2.811$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 352.2.m.e \(0\) \(0\) \(0\) \(6\) $\mathrm{SU}(2)[C_{5}]$ \(q+(-\beta _{5}+\beta _{8})q^{3}+\beta _{9}q^{5}+(1-\beta _{4}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(352, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(352, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(22, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(44, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(88, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(176, [\chi])\)\(^{\oplus 2}\)