Defining parameters
Level: | \( N \) | \(=\) | \( 352 = 2^{5} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 352.m (of order \(5\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 11 \) |
Character field: | \(\Q(\zeta_{5})\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(352, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 224 | 48 | 176 |
Cusp forms | 160 | 48 | 112 |
Eisenstein series | 64 | 0 | 64 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(352, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(352, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(352, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(22, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(44, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(88, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(176, [\chi])\)\(^{\oplus 2}\)