Properties

Label 352.2.g
Level $352$
Weight $2$
Character orbit 352.g
Rep. character $\chi_{352}(175,\cdot)$
Character field $\Q$
Dimension $10$
Newform subspaces $2$
Sturm bound $96$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 352 = 2^{5} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 352.g (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 88 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(96\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(352, [\chi])\).

Total New Old
Modular forms 56 14 42
Cusp forms 40 10 30
Eisenstein series 16 4 12

Trace form

\( 10 q + 4 q^{3} + 2 q^{9} + O(q^{10}) \) \( 10 q + 4 q^{3} + 2 q^{9} - 2 q^{11} - 6 q^{25} + 16 q^{27} - 4 q^{33} - 6 q^{49} + 20 q^{59} - 36 q^{67} - 36 q^{75} - 30 q^{81} - 4 q^{89} - 32 q^{91} + 12 q^{97} + 38 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(352, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
352.2.g.a 352.g 88.g $2$ $2.811$ \(\Q(\sqrt{-2}) \) \(\Q(\sqrt{-2}) \) 88.2.g.a \(0\) \(-4\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-2q^{3}+q^{9}+(3+\beta )q^{11}+4\beta q^{17}+\cdots\)
352.2.g.b 352.g 88.g $8$ $2.811$ 8.0.\(\cdots\).6 None 88.2.g.b \(0\) \(8\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(1+\beta _{1})q^{3}+\beta _{6}q^{5}-\beta _{7}q^{7}+2\beta _{1}q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(352, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(352, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(88, [\chi])\)\(^{\oplus 3}\)