Defining parameters
Level: | \( N \) | \(=\) | \( 352 = 2^{5} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 352.g (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 88 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(352, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 56 | 14 | 42 |
Cusp forms | 40 | 10 | 30 |
Eisenstein series | 16 | 4 | 12 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(352, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
352.2.g.a | $2$ | $2.811$ | \(\Q(\sqrt{-2}) \) | \(\Q(\sqrt{-2}) \) | \(0\) | \(-4\) | \(0\) | \(0\) | \(q-2q^{3}+q^{9}+(3+\beta )q^{11}+4\beta q^{17}+\cdots\) |
352.2.g.b | $8$ | $2.811$ | 8.0.\(\cdots\).6 | None | \(0\) | \(8\) | \(0\) | \(0\) | \(q+(1+\beta _{1})q^{3}+\beta _{6}q^{5}-\beta _{7}q^{7}+2\beta _{1}q^{9}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(352, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(352, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(88, [\chi])\)\(^{\oplus 3}\)