Properties

Label 352.2.e
Level $352$
Weight $2$
Character orbit 352.e
Rep. character $\chi_{352}(351,\cdot)$
Character field $\Q$
Dimension $12$
Newform subspaces $1$
Sturm bound $96$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 352 = 2^{5} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 352.e (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 44 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(96\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(352, [\chi])\).

Total New Old
Modular forms 56 12 44
Cusp forms 40 12 28
Eisenstein series 16 0 16

Trace form

\( 12 q - 4 q^{9} + O(q^{10}) \) \( 12 q - 4 q^{9} - 4 q^{25} - 16 q^{33} - 24 q^{45} + 44 q^{49} + 8 q^{53} + 8 q^{69} + 32 q^{77} + 12 q^{81} - 88 q^{93} - 64 q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(352, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
352.2.e.a 352.e 44.c $12$ $2.811$ 12.0.\(\cdots\).1 None 352.2.e.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{3}-\beta _{5}q^{5}+\beta _{8}q^{7}+\beta _{3}q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(352, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(352, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(44, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(176, [\chi])\)\(^{\oplus 2}\)