Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [352,2,Mod(5,352)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(352, base_ring=CyclotomicField(40))
chi = DirichletCharacter(H, H._module([0, 5, 16]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("352.5");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 352 = 2^{5} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 352.bf (of order \(40\), degree \(16\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.81073415115\) |
Analytic rank: | \(0\) |
Dimension: | \(736\) |
Relative dimension: | \(46\) over \(\Q(\zeta_{40})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{40}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5.1 | −1.41182 | − | 0.0823192i | 0.738774 | − | 3.07722i | 1.98645 | + | 0.232439i | 0.695843 | − | 0.814727i | −1.29633 | + | 4.28365i | −2.15580 | − | 0.341445i | −2.78536 | − | 0.491684i | −6.25046 | − | 3.18477i | −1.04947 | + | 1.09296i |
5.2 | −1.41113 | − | 0.0932770i | −0.649566 | + | 2.70564i | 1.98260 | + | 0.263253i | −2.56267 | + | 3.00050i | 1.16900 | − | 3.75743i | −1.80767 | − | 0.286306i | −2.77316 | − | 0.556416i | −4.22552 | − | 2.15301i | 3.89614 | − | 3.99507i |
5.3 | −1.40637 | − | 0.148716i | 0.504695 | − | 2.10221i | 1.95577 | + | 0.418299i | −2.24806 | + | 2.63214i | −1.02242 | + | 2.88143i | 1.59514 | + | 0.252645i | −2.68833 | − | 0.879137i | −1.49153 | − | 0.759974i | 3.55305 | − | 3.36745i |
5.4 | −1.39808 | + | 0.212978i | 0.118797 | − | 0.494823i | 1.90928 | − | 0.595522i | 1.66537 | − | 1.94989i | −0.0607012 | + | 0.717106i | 1.41232 | + | 0.223690i | −2.54250 | + | 1.23922i | 2.44228 | + | 1.24440i | −1.91304 | + | 3.08080i |
5.5 | −1.35615 | + | 0.401056i | −0.427613 | + | 1.78114i | 1.67831 | − | 1.08779i | 0.798011 | − | 0.934351i | −0.134425 | − | 2.58699i | −1.05423 | − | 0.166974i | −1.83978 | + | 2.14830i | −0.316571 | − | 0.161301i | −0.707500 | + | 1.58717i |
5.6 | −1.34285 | − | 0.443581i | −0.229576 | + | 0.956251i | 1.60647 | + | 1.19132i | −0.0398970 | + | 0.0467134i | 0.732459 | − | 1.18226i | 3.01590 | + | 0.477672i | −1.62880 | − | 2.31236i | 1.81131 | + | 0.922908i | 0.0742968 | − | 0.0450314i |
5.7 | −1.32175 | + | 0.502961i | 0.0699635 | − | 0.291419i | 1.49406 | − | 1.32958i | −1.39403 | + | 1.63220i | 0.0540980 | + | 0.420372i | −2.54848 | − | 0.403640i | −1.30605 | + | 2.50883i | 2.59299 | + | 1.32119i | 1.02163 | − | 2.85850i |
5.8 | −1.23195 | − | 0.694480i | −0.575954 | + | 2.39902i | 1.03539 | + | 1.71113i | 2.29907 | − | 2.69186i | 2.37562 | − | 2.55548i | −4.37967 | − | 0.693671i | −0.0872092 | − | 2.82708i | −2.75055 | − | 1.40148i | −4.70178 | + | 1.71958i |
5.9 | −1.17766 | − | 0.783017i | 0.173703 | − | 0.723525i | 0.773769 | + | 1.84426i | −0.596836 | + | 0.698806i | −0.771096 | + | 0.716055i | −4.47404 | − | 0.708619i | 0.532846 | − | 2.77778i | 2.17970 | + | 1.11061i | 1.25005 | − | 0.355623i |
5.10 | −1.13292 | + | 0.846462i | 0.508744 | − | 2.11907i | 0.567005 | − | 1.91794i | 1.09532 | − | 1.28245i | 1.21735 | + | 2.83136i | 5.18941 | + | 0.821922i | 0.981095 | + | 2.65282i | −1.55862 | − | 0.794156i | −0.155358 | + | 2.38006i |
5.11 | −0.956907 | − | 1.04131i | −0.684146 | + | 2.84967i | −0.168659 | + | 1.99288i | −0.167757 | + | 0.196418i | 3.62206 | − | 2.01446i | 3.70182 | + | 0.586310i | 2.23659 | − | 1.73137i | −4.97956 | − | 2.53721i | 0.365059 | − | 0.0132666i |
5.12 | −0.918365 | − | 1.07546i | 0.558117 | − | 2.32472i | −0.313211 | + | 1.97532i | 0.499422 | − | 0.584748i | −3.01269 | + | 1.53471i | −0.373062 | − | 0.0590872i | 2.41201 | − | 1.47722i | −2.41982 | − | 1.23296i | −1.08752 | 9.41241e-5i | |
5.13 | −0.911046 | + | 1.08166i | −0.361228 | + | 1.50462i | −0.339990 | − | 1.97089i | 1.40625 | − | 1.64651i | −1.29840 | − | 1.76151i | −1.17467 | − | 0.186049i | 2.44159 | + | 1.42782i | 0.539615 | + | 0.274948i | 0.499807 | + | 3.02113i |
5.14 | −0.886713 | + | 1.10170i | −0.228515 | + | 0.951834i | −0.427481 | − | 1.95378i | −2.05225 | + | 2.40288i | −0.846007 | − | 1.09576i | 3.51420 | + | 0.556595i | 2.53153 | + | 1.26149i | 1.81925 | + | 0.926955i | −0.827491 | − | 4.39163i |
5.15 | −0.853219 | + | 1.12784i | 0.535652 | − | 2.23115i | −0.544034 | − | 1.92458i | 2.05057 | − | 2.40091i | 2.05935 | + | 2.50779i | −4.64073 | − | 0.735020i | 2.63480 | + | 1.02851i | −2.01809 | − | 1.02827i | 0.958249 | + | 4.36121i |
5.16 | −0.750928 | − | 1.19838i | −0.000523823 | 0.00218188i | −0.872215 | + | 1.79979i | 2.82960 | − | 3.31303i | 0.00300807 | − | 0.00101070i | 1.32527 | + | 0.209902i | 2.81180 | − | 0.306269i | 2.67302 | + | 1.36197i | −6.09509 | − | 0.903076i | |
5.17 | −0.745829 | − | 1.20156i | 0.408333 | − | 1.70083i | −0.887477 | + | 1.79231i | −1.89197 | + | 2.21522i | −2.34819 | + | 0.777894i | 4.39034 | + | 0.695362i | 2.81547 | − | 0.270406i | −0.0530682 | − | 0.0270396i | 4.07280 | + | 0.621140i |
5.18 | −0.591259 | + | 1.28468i | 0.205717 | − | 0.856871i | −1.30082 | − | 1.51916i | −0.548568 | + | 0.642290i | 0.979176 | + | 0.770914i | 0.362741 | + | 0.0574525i | 2.72077 | − | 0.772928i | 1.98111 | + | 1.00943i | −0.500794 | − | 1.08450i |
5.19 | −0.397914 | + | 1.35708i | 0.756597 | − | 3.15145i | −1.68333 | − | 1.08000i | −2.26684 | + | 2.65413i | 3.97571 | + | 2.28077i | −0.688584 | − | 0.109061i | 2.13547 | − | 1.85466i | −6.68620 | − | 3.40679i | −2.69986 | − | 4.13241i |
5.20 | −0.358537 | − | 1.36801i | −0.130545 | + | 0.543760i | −1.74290 | + | 0.980964i | −0.262273 | + | 0.307082i | 0.790675 | − | 0.0163708i | −2.17329 | − | 0.344215i | 1.96686 | + | 2.03260i | 2.39439 | + | 1.22000i | 0.514126 | + | 0.248692i |
See next 80 embeddings (of 736 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.c | even | 5 | 1 | inner |
32.g | even | 8 | 1 | inner |
352.bf | even | 40 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 352.2.bf.a | ✓ | 736 |
11.c | even | 5 | 1 | inner | 352.2.bf.a | ✓ | 736 |
32.g | even | 8 | 1 | inner | 352.2.bf.a | ✓ | 736 |
352.bf | even | 40 | 1 | inner | 352.2.bf.a | ✓ | 736 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
352.2.bf.a | ✓ | 736 | 1.a | even | 1 | 1 | trivial |
352.2.bf.a | ✓ | 736 | 11.c | even | 5 | 1 | inner |
352.2.bf.a | ✓ | 736 | 32.g | even | 8 | 1 | inner |
352.2.bf.a | ✓ | 736 | 352.bf | even | 40 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(352, [\chi])\).