Defining parameters
| Level: | \( N \) | \(=\) | \( 352 = 2^{5} \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 352.bb (of order \(20\) and degree \(8\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 176 \) |
| Character field: | \(\Q(\zeta_{20})\) | ||
| Newform subspaces: | \( 0 \) | ||
| Sturm bound: | \(96\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(352, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 416 | 0 | 416 |
| Cusp forms | 352 | 0 | 352 |
| Eisenstein series | 64 | 0 | 64 |
Decomposition of \(S_{2}^{\mathrm{old}}(352, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(352, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(176, [\chi])\)\(^{\oplus 2}\)