Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [351,3,Mod(35,351)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(351, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([1, 4]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("351.35");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 351 = 3^{3} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 351.u (of order \(6\), degree \(2\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(9.56405727905\) |
Analytic rank: | \(0\) |
Dimension: | \(52\) |
Relative dimension: | \(26\) over \(\Q(\zeta_{6})\) |
Twist minimal: | no (minimal twist has level 117) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
35.1 | −3.21405 | + | 1.85563i | 0 | 4.88675 | − | 8.46411i | 6.34683 | − | 3.66434i | 0 | 5.81323 | 21.4270i | 0 | −13.5994 | + | 23.5548i | ||||||||||
35.2 | −3.13273 | + | 1.80868i | 0 | 4.54266 | − | 7.86812i | 1.92042 | − | 1.10875i | 0 | −9.66874 | 18.3955i | 0 | −4.01077 | + | 6.94686i | ||||||||||
35.3 | −2.95186 | + | 1.70426i | 0 | 3.80900 | − | 6.59737i | −6.08619 | + | 3.51386i | 0 | −9.14903 | 12.3320i | 0 | 11.9771 | − | 20.7449i | ||||||||||
35.4 | −2.92701 | + | 1.68991i | 0 | 3.71158 | − | 6.42864i | −0.0255066 | + | 0.0147263i | 0 | 11.8046 | 11.5696i | 0 | 0.0497721 | − | 0.0862077i | ||||||||||
35.5 | −2.32292 | + | 1.34114i | 0 | 1.59730 | − | 2.76660i | 1.20758 | − | 0.697196i | 0 | 0.0654956 | − | 2.16032i | 0 | −1.87007 | + | 3.23906i | |||||||||
35.6 | −2.19669 | + | 1.26826i | 0 | 1.21696 | − | 2.10784i | −4.69139 | + | 2.70857i | 0 | 0.439627 | − | 3.97239i | 0 | 6.87035 | − | 11.8998i | |||||||||
35.7 | −1.64494 | + | 0.949706i | 0 | −0.196117 | + | 0.339685i | −5.82785 | + | 3.36471i | 0 | −4.34657 | − | 8.34266i | 0 | 6.39097 | − | 11.0695i | |||||||||
35.8 | −1.61177 | + | 0.930557i | 0 | −0.268128 | + | 0.464411i | 4.76252 | − | 2.74964i | 0 | −5.67067 | − | 8.44249i | 0 | −5.11740 | + | 8.86359i | |||||||||
35.9 | −1.10869 | + | 0.640101i | 0 | −1.18054 | + | 2.04476i | −2.95232 | + | 1.70452i | 0 | 11.8984 | − | 8.14347i | 0 | 2.18213 | − | 3.77956i | |||||||||
35.10 | −1.00088 | + | 0.577857i | 0 | −1.33216 | + | 2.30737i | 3.81803 | − | 2.20434i | 0 | −4.15692 | − | 7.70206i | 0 | −2.54759 | + | 4.41256i | |||||||||
35.11 | −0.979822 | + | 0.565700i | 0 | −1.35997 | + | 2.35553i | 7.06649 | − | 4.07984i | 0 | 7.94204 | − | 7.60294i | 0 | −4.61594 | + | 7.99504i | |||||||||
35.12 | −0.265125 | + | 0.153070i | 0 | −1.95314 | + | 3.38294i | −5.23834 | + | 3.02436i | 0 | −0.615739 | − | 2.42043i | 0 | 0.925877 | − | 1.60367i | |||||||||
35.13 | 0.325651 | − | 0.188014i | 0 | −1.92930 | + | 3.34165i | −0.994641 | + | 0.574256i | 0 | 5.14423 | 2.95506i | 0 | −0.215937 | + | 0.374014i | ||||||||||
35.14 | 0.376626 | − | 0.217445i | 0 | −1.90544 | + | 3.30031i | −3.11857 | + | 1.80051i | 0 | −7.89006 | 3.39687i | 0 | −0.783024 | + | 1.35624i | ||||||||||
35.15 | 0.422456 | − | 0.243905i | 0 | −1.88102 | + | 3.25802i | 6.04718 | − | 3.49134i | 0 | −7.27212 | 3.78640i | 0 | 1.70311 | − | 2.94987i | ||||||||||
35.16 | 0.545922 | − | 0.315188i | 0 | −1.80131 | + | 3.11997i | −1.96357 | + | 1.13367i | 0 | 8.19462 | 4.79251i | 0 | −0.714636 | + | 1.23779i | ||||||||||
35.17 | 1.44683 | − | 0.835327i | 0 | −0.604458 | + | 1.04695i | 8.08978 | − | 4.67064i | 0 | 8.35713 | 8.70230i | 0 | 7.80302 | − | 13.5152i | ||||||||||
35.18 | 1.46109 | − | 0.843560i | 0 | −0.576814 | + | 0.999071i | 3.08450 | − | 1.78084i | 0 | −12.7968 | 8.69479i | 0 | 3.00448 | − | 5.20392i | ||||||||||
35.19 | 1.61282 | − | 0.931162i | 0 | −0.265873 | + | 0.460506i | −0.895843 | + | 0.517215i | 0 | −5.11682 | 8.43958i | 0 | −0.963222 | + | 1.66835i | ||||||||||
35.20 | 2.11714 | − | 1.22233i | 0 | 0.988182 | − | 1.71158i | −2.73246 | + | 1.57759i | 0 | 7.65083 | 4.94710i | 0 | −3.85666 | + | 6.67994i | ||||||||||
See all 52 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
117.u | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 351.3.u.a | 52 | |
3.b | odd | 2 | 1 | 117.3.u.a | yes | 52 | |
9.c | even | 3 | 1 | 117.3.k.a | ✓ | 52 | |
9.d | odd | 6 | 1 | 351.3.k.a | 52 | ||
13.c | even | 3 | 1 | 351.3.k.a | 52 | ||
39.i | odd | 6 | 1 | 117.3.k.a | ✓ | 52 | |
117.f | even | 3 | 1 | 117.3.u.a | yes | 52 | |
117.u | odd | 6 | 1 | inner | 351.3.u.a | 52 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
117.3.k.a | ✓ | 52 | 9.c | even | 3 | 1 | |
117.3.k.a | ✓ | 52 | 39.i | odd | 6 | 1 | |
117.3.u.a | yes | 52 | 3.b | odd | 2 | 1 | |
117.3.u.a | yes | 52 | 117.f | even | 3 | 1 | |
351.3.k.a | 52 | 9.d | odd | 6 | 1 | ||
351.3.k.a | 52 | 13.c | even | 3 | 1 | ||
351.3.u.a | 52 | 1.a | even | 1 | 1 | trivial | |
351.3.u.a | 52 | 117.u | odd | 6 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(351, [\chi])\).