Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [351,3,Mod(116,351)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(351, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([1, 3]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("351.116");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 351 = 3^{3} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 351.n (of order \(6\), degree \(2\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(9.56405727905\) |
Analytic rank: | \(0\) |
Dimension: | \(52\) |
Relative dimension: | \(26\) over \(\Q(\zeta_{6})\) |
Twist minimal: | no (minimal twist has level 117) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
116.1 | −1.92341 | + | 3.33144i | 0 | −5.39901 | − | 9.35136i | 0.506509 | + | 0.877299i | 0 | 3.89680 | + | 2.24982i | 26.1508 | 0 | −3.89690 | ||||||||||
116.2 | −1.77860 | + | 3.08062i | 0 | −4.32683 | − | 7.49428i | −4.26663 | − | 7.39002i | 0 | −7.99720 | − | 4.61719i | 16.5540 | 0 | 30.3545 | ||||||||||
116.3 | −1.68517 | + | 2.91881i | 0 | −3.67962 | − | 6.37330i | 3.61500 | + | 6.26136i | 0 | 2.20723 | + | 1.27434i | 11.3218 | 0 | −24.3676 | ||||||||||
116.4 | −1.55290 | + | 2.68970i | 0 | −2.82298 | − | 4.88955i | 0.611466 | + | 1.05909i | 0 | 8.52943 | + | 4.92447i | 5.11202 | 0 | −3.79817 | ||||||||||
116.5 | −1.38552 | + | 2.39980i | 0 | −1.83936 | − | 3.18586i | −2.12220 | − | 3.67577i | 0 | 4.71279 | + | 2.72093i | −0.890291 | 0 | 11.7615 | ||||||||||
116.6 | −1.33789 | + | 2.31729i | 0 | −1.57990 | − | 2.73646i | 0.194524 | + | 0.336926i | 0 | −8.30078 | − | 4.79246i | −2.24820 | 0 | −1.04101 | ||||||||||
116.7 | −1.11386 | + | 1.92926i | 0 | −0.481371 | − | 0.833760i | 4.12144 | + | 7.13855i | 0 | −8.40220 | − | 4.85102i | −6.76616 | 0 | −18.3629 | ||||||||||
116.8 | −1.04133 | + | 1.80365i | 0 | −0.168757 | − | 0.292296i | −2.59043 | − | 4.48676i | 0 | 1.68126 | + | 0.970675i | −7.62775 | 0 | 10.7900 | ||||||||||
116.9 | −0.647986 | + | 1.12234i | 0 | 1.16023 | + | 2.00957i | 2.25417 | + | 3.90433i | 0 | −0.162124 | − | 0.0936021i | −8.19114 | 0 | −5.84268 | ||||||||||
116.10 | −0.641309 | + | 1.11078i | 0 | 1.17745 | + | 2.03940i | −0.763734 | − | 1.32283i | 0 | −5.50560 | − | 3.17866i | −8.15090 | 0 | 1.95916 | ||||||||||
116.11 | −0.433498 | + | 0.750840i | 0 | 1.62416 | + | 2.81313i | −4.23652 | − | 7.33786i | 0 | 3.54375 | + | 2.04598i | −6.28426 | 0 | 7.34608 | ||||||||||
116.12 | −0.245962 | + | 0.426018i | 0 | 1.87901 | + | 3.25453i | 1.35391 | + | 2.34503i | 0 | 8.51494 | + | 4.91611i | −3.81635 | 0 | −1.33204 | ||||||||||
116.13 | −0.146647 | + | 0.254001i | 0 | 1.95699 | + | 3.38960i | 2.67644 | + | 4.63573i | 0 | 8.20362 | + | 4.73636i | −2.32113 | 0 | −1.56997 | ||||||||||
116.14 | 0.146647 | − | 0.254001i | 0 | 1.95699 | + | 3.38960i | −2.67644 | − | 4.63573i | 0 | −8.20362 | − | 4.73636i | 2.32113 | 0 | −1.56997 | ||||||||||
116.15 | 0.245962 | − | 0.426018i | 0 | 1.87901 | + | 3.25453i | −1.35391 | − | 2.34503i | 0 | −8.51494 | − | 4.91611i | 3.81635 | 0 | −1.33204 | ||||||||||
116.16 | 0.433498 | − | 0.750840i | 0 | 1.62416 | + | 2.81313i | 4.23652 | + | 7.33786i | 0 | −3.54375 | − | 2.04598i | 6.28426 | 0 | 7.34608 | ||||||||||
116.17 | 0.641309 | − | 1.11078i | 0 | 1.17745 | + | 2.03940i | 0.763734 | + | 1.32283i | 0 | 5.50560 | + | 3.17866i | 8.15090 | 0 | 1.95916 | ||||||||||
116.18 | 0.647986 | − | 1.12234i | 0 | 1.16023 | + | 2.00957i | −2.25417 | − | 3.90433i | 0 | 0.162124 | + | 0.0936021i | 8.19114 | 0 | −5.84268 | ||||||||||
116.19 | 1.04133 | − | 1.80365i | 0 | −0.168757 | − | 0.292296i | 2.59043 | + | 4.48676i | 0 | −1.68126 | − | 0.970675i | 7.62775 | 0 | 10.7900 | ||||||||||
116.20 | 1.11386 | − | 1.92926i | 0 | −0.481371 | − | 0.833760i | −4.12144 | − | 7.13855i | 0 | 8.40220 | + | 4.85102i | 6.76616 | 0 | −18.3629 | ||||||||||
See all 52 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.d | odd | 6 | 1 | inner |
13.b | even | 2 | 1 | inner |
117.n | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 351.3.n.a | 52 | |
3.b | odd | 2 | 1 | 117.3.n.a | ✓ | 52 | |
9.c | even | 3 | 1 | 117.3.n.a | ✓ | 52 | |
9.d | odd | 6 | 1 | inner | 351.3.n.a | 52 | |
13.b | even | 2 | 1 | inner | 351.3.n.a | 52 | |
39.d | odd | 2 | 1 | 117.3.n.a | ✓ | 52 | |
117.n | odd | 6 | 1 | inner | 351.3.n.a | 52 | |
117.t | even | 6 | 1 | 117.3.n.a | ✓ | 52 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
117.3.n.a | ✓ | 52 | 3.b | odd | 2 | 1 | |
117.3.n.a | ✓ | 52 | 9.c | even | 3 | 1 | |
117.3.n.a | ✓ | 52 | 39.d | odd | 2 | 1 | |
117.3.n.a | ✓ | 52 | 117.t | even | 6 | 1 | |
351.3.n.a | 52 | 1.a | even | 1 | 1 | trivial | |
351.3.n.a | 52 | 9.d | odd | 6 | 1 | inner | |
351.3.n.a | 52 | 13.b | even | 2 | 1 | inner | |
351.3.n.a | 52 | 117.n | odd | 6 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(351, [\chi])\).