Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [351,3,Mod(152,351)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(351, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([5, 4]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("351.152");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 351 = 3^{3} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 351.k (of order \(6\), degree \(2\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(9.56405727905\) |
Analytic rank: | \(0\) |
Dimension: | \(52\) |
Relative dimension: | \(26\) over \(\Q(\zeta_{6})\) |
Twist minimal: | no (minimal twist has level 117) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
152.1 | − | 3.86461i | 0 | −10.9352 | −0.468040 | − | 0.270223i | 0 | −0.276958 | + | 0.479705i | 26.8020i | 0 | −1.04431 | + | 1.80879i | |||||||||||
152.2 | − | 3.53953i | 0 | −8.52830 | 6.00755 | + | 3.46846i | 0 | −2.39062 | + | 4.14067i | 16.0281i | 0 | 12.2767 | − | 21.2639i | |||||||||||
152.3 | − | 3.27217i | 0 | −6.70711 | 3.48512 | + | 2.01214i | 0 | 1.40029 | − | 2.42538i | 8.85812i | 0 | 6.58406 | − | 11.4039i | |||||||||||
152.4 | − | 3.09261i | 0 | −5.56427 | −6.70477 | − | 3.87100i | 0 | 6.32403 | − | 10.9535i | 4.83767i | 0 | −11.9715 | + | 20.7353i | |||||||||||
152.5 | − | 2.75995i | 0 | −3.61733 | −7.95372 | − | 4.59208i | 0 | −2.71987 | + | 4.71096i | − | 1.05616i | 0 | −12.6739 | + | 21.9519i | ||||||||||
152.6 | − | 2.57904i | 0 | −2.65146 | 0.817198 | + | 0.471810i | 0 | −2.52350 | + | 4.37084i | − | 3.47795i | 0 | 1.21682 | − | 2.10759i | ||||||||||
152.7 | − | 2.44466i | 0 | −1.97636 | −2.73246 | − | 1.57759i | 0 | −3.82542 | + | 6.62581i | − | 4.94710i | 0 | −3.85666 | + | 6.67994i | ||||||||||
152.8 | − | 1.86232i | 0 | 0.531747 | −0.895843 | − | 0.517215i | 0 | 2.55841 | − | 4.43129i | − | 8.43958i | 0 | −0.963222 | + | 1.66835i | ||||||||||
152.9 | − | 1.68712i | 0 | 1.15363 | 3.08450 | + | 1.78084i | 0 | 6.39840 | − | 11.0823i | − | 8.69479i | 0 | 3.00448 | − | 5.20392i | ||||||||||
152.10 | − | 1.67065i | 0 | 1.20892 | 8.08978 | + | 4.67064i | 0 | −4.17857 | + | 7.23749i | − | 8.70230i | 0 | 7.80302 | − | 13.5152i | ||||||||||
152.11 | − | 0.630376i | 0 | 3.60263 | −1.96357 | − | 1.13367i | 0 | −4.09731 | + | 7.09675i | − | 4.79251i | 0 | −0.714636 | + | 1.23779i | ||||||||||
152.12 | − | 0.487810i | 0 | 3.76204 | 6.04718 | + | 3.49134i | 0 | 3.63606 | − | 6.29784i | − | 3.78640i | 0 | 1.70311 | − | 2.94987i | ||||||||||
152.13 | − | 0.434891i | 0 | 3.81087 | −3.11857 | − | 1.80051i | 0 | 3.94503 | − | 6.83299i | − | 3.39687i | 0 | −0.783024 | + | 1.35624i | ||||||||||
152.14 | − | 0.376029i | 0 | 3.85860 | −0.994641 | − | 0.574256i | 0 | −2.57212 | + | 4.45503i | − | 2.95506i | 0 | −0.215937 | + | 0.374014i | ||||||||||
152.15 | 0.306140i | 0 | 3.90628 | −5.23834 | − | 3.02436i | 0 | 0.307870 | − | 0.533246i | 2.42043i | 0 | 0.925877 | − | 1.60367i | ||||||||||||
152.16 | 1.13140i | 0 | 2.71993 | 7.06649 | + | 4.07984i | 0 | −3.97102 | + | 6.87801i | 7.60294i | 0 | −4.61594 | + | 7.99504i | ||||||||||||
152.17 | 1.15571i | 0 | 2.66432 | 3.81803 | + | 2.20434i | 0 | 2.07846 | − | 3.60000i | 7.70206i | 0 | −2.54759 | + | 4.41256i | ||||||||||||
152.18 | 1.28020i | 0 | 2.36108 | −2.95232 | − | 1.70452i | 0 | −5.94919 | + | 10.3043i | 8.14347i | 0 | 2.18213 | − | 3.77956i | ||||||||||||
152.19 | 1.86111i | 0 | 0.536256 | 4.76252 | + | 2.74964i | 0 | 2.83533 | − | 4.91094i | 8.44249i | 0 | −5.11740 | + | 8.86359i | ||||||||||||
152.20 | 1.89941i | 0 | 0.392234 | −5.82785 | − | 3.36471i | 0 | 2.17329 | − | 3.76424i | 8.34266i | 0 | 6.39097 | − | 11.0695i | ||||||||||||
See all 52 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
117.k | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 351.3.k.a | 52 | |
3.b | odd | 2 | 1 | 117.3.k.a | ✓ | 52 | |
9.c | even | 3 | 1 | 117.3.u.a | yes | 52 | |
9.d | odd | 6 | 1 | 351.3.u.a | 52 | ||
13.c | even | 3 | 1 | 351.3.u.a | 52 | ||
39.i | odd | 6 | 1 | 117.3.u.a | yes | 52 | |
117.h | even | 3 | 1 | 117.3.k.a | ✓ | 52 | |
117.k | odd | 6 | 1 | inner | 351.3.k.a | 52 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
117.3.k.a | ✓ | 52 | 3.b | odd | 2 | 1 | |
117.3.k.a | ✓ | 52 | 117.h | even | 3 | 1 | |
117.3.u.a | yes | 52 | 9.c | even | 3 | 1 | |
117.3.u.a | yes | 52 | 39.i | odd | 6 | 1 | |
351.3.k.a | 52 | 1.a | even | 1 | 1 | trivial | |
351.3.k.a | 52 | 117.k | odd | 6 | 1 | inner | |
351.3.u.a | 52 | 9.d | odd | 6 | 1 | ||
351.3.u.a | 52 | 13.c | even | 3 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(351, [\chi])\).