Properties

Label 351.2.t.c.64.8
Level $351$
Weight $2$
Character 351.64
Analytic conductor $2.803$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [351,2,Mod(64,351)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(351, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("351.64");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.80274911095\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 6x^{16} + 9x^{14} + 54x^{12} + 81x^{10} + 486x^{8} + 729x^{6} - 4374x^{4} + 59049 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{9} \)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 64.8
Root \(-0.651881 + 1.60470i\) of defining polynomial
Character \(\chi\) \(=\) 351.64
Dual form 351.2.t.c.181.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.41717 - 0.818205i) q^{2} +(0.338918 - 0.587023i) q^{4} +(0.950358 + 0.548689i) q^{5} +(2.77942 - 1.60470i) q^{7} +2.16360i q^{8} +1.79576 q^{10} +(-1.52289 + 0.879239i) q^{11} +(1.37514 - 3.33302i) q^{13} +(2.62594 - 4.54826i) q^{14} +(2.44810 + 4.24024i) q^{16} -1.47360 q^{17} +3.61452i q^{19} +(0.644186 - 0.371921i) q^{20} +(-1.43879 + 2.49207i) q^{22} +(2.34599 - 4.06337i) q^{23} +(-1.89788 - 3.28722i) q^{25} +(-0.778285 - 5.84860i) q^{26} -2.17544i q^{28} +(-0.959085 - 1.66118i) q^{29} +(-5.68224 - 3.28064i) q^{31} +(3.19130 + 1.84250i) q^{32} +(-2.08834 + 1.20570i) q^{34} +3.52192 q^{35} +11.6237i q^{37} +(2.95742 + 5.12239i) q^{38} +(-1.18715 + 2.05620i) q^{40} +(-4.68013 - 2.70208i) q^{41} +(0.889142 + 1.54004i) q^{43} +1.19196i q^{44} -7.67798i q^{46} +(-8.90053 + 5.13872i) q^{47} +(1.65010 - 2.85806i) q^{49} +(-5.37925 - 3.10571i) q^{50} +(-1.49050 - 1.93685i) q^{52} -11.7738 q^{53} -1.92972 q^{55} +(3.47193 + 6.01355i) q^{56} +(-2.71838 - 1.56946i) q^{58} +(4.78585 + 2.76311i) q^{59} +(-0.985148 - 1.70633i) q^{61} -10.7370 q^{62} -3.76225 q^{64} +(3.13566 - 2.41304i) q^{65} +(7.15434 + 4.13056i) q^{67} +(-0.499428 + 0.865034i) q^{68} +(4.99117 - 2.88165i) q^{70} -5.84860i q^{71} +1.24694i q^{73} +(9.51060 + 16.4728i) q^{74} +(2.12180 + 1.22502i) q^{76} +(-2.82182 + 4.88754i) q^{77} +(-0.242912 - 0.420735i) q^{79} +5.37300i q^{80} -8.84340 q^{82} +(13.4351 - 7.75677i) q^{83} +(-1.40044 - 0.808546i) q^{85} +(2.52014 + 1.45500i) q^{86} +(-1.90232 - 3.29492i) q^{88} +13.4245i q^{89} +(-1.52640 - 11.4705i) q^{91} +(-1.59019 - 2.75429i) q^{92} +(-8.40905 + 14.5649i) q^{94} +(-1.98325 + 3.43508i) q^{95} +(5.15756 - 2.97772i) q^{97} -5.40048i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 12 q^{4} - 16 q^{10} - 4 q^{13} + 18 q^{14} + 4 q^{16} + 12 q^{17} - 10 q^{22} - 24 q^{23} - 12 q^{25} + 12 q^{26} - 12 q^{29} + 12 q^{35} - 12 q^{38} - 8 q^{40} + 4 q^{43} - 10 q^{49} - 108 q^{53}+ \cdots - 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41717 0.818205i 1.00209 0.578558i 0.0932254 0.995645i \(-0.470282\pi\)
0.908867 + 0.417087i \(0.136949\pi\)
\(3\) 0 0
\(4\) 0.338918 0.587023i 0.169459 0.293511i
\(5\) 0.950358 + 0.548689i 0.425013 + 0.245381i 0.697220 0.716857i \(-0.254420\pi\)
−0.272207 + 0.962239i \(0.587754\pi\)
\(6\) 0 0
\(7\) 2.77942 1.60470i 1.05052 0.606518i 0.127725 0.991810i \(-0.459232\pi\)
0.922795 + 0.385291i \(0.125899\pi\)
\(8\) 2.16360i 0.764949i
\(9\) 0 0
\(10\) 1.79576 0.567869
\(11\) −1.52289 + 0.879239i −0.459168 + 0.265101i −0.711694 0.702489i \(-0.752072\pi\)
0.252527 + 0.967590i \(0.418738\pi\)
\(12\) 0 0
\(13\) 1.37514 3.33302i 0.381394 0.924412i
\(14\) 2.62594 4.54826i 0.701812 1.21557i
\(15\) 0 0
\(16\) 2.44810 + 4.24024i 0.612026 + 1.06006i
\(17\) −1.47360 −0.357399 −0.178700 0.983904i \(-0.557189\pi\)
−0.178700 + 0.983904i \(0.557189\pi\)
\(18\) 0 0
\(19\) 3.61452i 0.829227i 0.909998 + 0.414614i \(0.136083\pi\)
−0.909998 + 0.414614i \(0.863917\pi\)
\(20\) 0.644186 0.371921i 0.144044 0.0831641i
\(21\) 0 0
\(22\) −1.43879 + 2.49207i −0.306752 + 0.531310i
\(23\) 2.34599 4.06337i 0.489172 0.847270i −0.510751 0.859729i \(-0.670632\pi\)
0.999922 + 0.0124586i \(0.00396580\pi\)
\(24\) 0 0
\(25\) −1.89788 3.28722i −0.379576 0.657445i
\(26\) −0.778285 5.84860i −0.152634 1.14700i
\(27\) 0 0
\(28\) 2.17544i 0.411120i
\(29\) −0.959085 1.66118i −0.178098 0.308474i 0.763131 0.646244i \(-0.223661\pi\)
−0.941229 + 0.337769i \(0.890328\pi\)
\(30\) 0 0
\(31\) −5.68224 3.28064i −1.02056 0.589221i −0.106294 0.994335i \(-0.533899\pi\)
−0.914266 + 0.405114i \(0.867232\pi\)
\(32\) 3.19130 + 1.84250i 0.564148 + 0.325711i
\(33\) 0 0
\(34\) −2.08834 + 1.20570i −0.358147 + 0.206776i
\(35\) 3.52192 0.595313
\(36\) 0 0
\(37\) 11.6237i 1.91093i 0.295103 + 0.955465i \(0.404646\pi\)
−0.295103 + 0.955465i \(0.595354\pi\)
\(38\) 2.95742 + 5.12239i 0.479756 + 0.830962i
\(39\) 0 0
\(40\) −1.18715 + 2.05620i −0.187704 + 0.325113i
\(41\) −4.68013 2.70208i −0.730914 0.421993i 0.0878426 0.996134i \(-0.472003\pi\)
−0.818756 + 0.574141i \(0.805336\pi\)
\(42\) 0 0
\(43\) 0.889142 + 1.54004i 0.135593 + 0.234854i 0.925824 0.377955i \(-0.123373\pi\)
−0.790231 + 0.612809i \(0.790039\pi\)
\(44\) 1.19196i 0.179695i
\(45\) 0 0
\(46\) 7.67798i 1.13206i
\(47\) −8.90053 + 5.13872i −1.29828 + 0.749559i −0.980106 0.198475i \(-0.936401\pi\)
−0.318169 + 0.948034i \(0.603068\pi\)
\(48\) 0 0
\(49\) 1.65010 2.85806i 0.235729 0.408294i
\(50\) −5.37925 3.10571i −0.760740 0.439214i
\(51\) 0 0
\(52\) −1.49050 1.93685i −0.206695 0.268593i
\(53\) −11.7738 −1.61726 −0.808628 0.588320i \(-0.799789\pi\)
−0.808628 + 0.588320i \(0.799789\pi\)
\(54\) 0 0
\(55\) −1.92972 −0.260203
\(56\) 3.47193 + 6.01355i 0.463956 + 0.803595i
\(57\) 0 0
\(58\) −2.71838 1.56946i −0.356940 0.206080i
\(59\) 4.78585 + 2.76311i 0.623064 + 0.359726i 0.778061 0.628189i \(-0.216203\pi\)
−0.154997 + 0.987915i \(0.549537\pi\)
\(60\) 0 0
\(61\) −0.985148 1.70633i −0.126135 0.218473i 0.796041 0.605243i \(-0.206924\pi\)
−0.922176 + 0.386770i \(0.873591\pi\)
\(62\) −10.7370 −1.36359
\(63\) 0 0
\(64\) −3.76225 −0.470282
\(65\) 3.13566 2.41304i 0.388931 0.299300i
\(66\) 0 0
\(67\) 7.15434 + 4.13056i 0.874042 + 0.504628i 0.868689 0.495357i \(-0.164963\pi\)
0.00535270 + 0.999986i \(0.498296\pi\)
\(68\) −0.499428 + 0.865034i −0.0605645 + 0.104901i
\(69\) 0 0
\(70\) 4.99117 2.88165i 0.596558 0.344423i
\(71\) 5.84860i 0.694101i −0.937846 0.347051i \(-0.887183\pi\)
0.937846 0.347051i \(-0.112817\pi\)
\(72\) 0 0
\(73\) 1.24694i 0.145943i 0.997334 + 0.0729714i \(0.0232482\pi\)
−0.997334 + 0.0729714i \(0.976752\pi\)
\(74\) 9.51060 + 16.4728i 1.10558 + 1.91493i
\(75\) 0 0
\(76\) 2.12180 + 1.22502i 0.243388 + 0.140520i
\(77\) −2.82182 + 4.88754i −0.321577 + 0.556987i
\(78\) 0 0
\(79\) −0.242912 0.420735i −0.0273297 0.0473364i 0.852037 0.523481i \(-0.175367\pi\)
−0.879367 + 0.476145i \(0.842034\pi\)
\(80\) 5.37300i 0.600719i
\(81\) 0 0
\(82\) −8.84340 −0.976590
\(83\) 13.4351 7.75677i 1.47470 0.851417i 0.475103 0.879930i \(-0.342411\pi\)
0.999593 + 0.0285134i \(0.00907732\pi\)
\(84\) 0 0
\(85\) −1.40044 0.808546i −0.151899 0.0876991i
\(86\) 2.52014 + 1.45500i 0.271753 + 0.156897i
\(87\) 0 0
\(88\) −1.90232 3.29492i −0.202788 0.351240i
\(89\) 13.4245i 1.42300i 0.702688 + 0.711498i \(0.251983\pi\)
−0.702688 + 0.711498i \(0.748017\pi\)
\(90\) 0 0
\(91\) −1.52640 11.4705i −0.160011 1.20244i
\(92\) −1.59019 2.75429i −0.165789 0.287155i
\(93\) 0 0
\(94\) −8.40905 + 14.5649i −0.867327 + 1.50225i
\(95\) −1.98325 + 3.43508i −0.203477 + 0.352432i
\(96\) 0 0
\(97\) 5.15756 2.97772i 0.523671 0.302342i −0.214764 0.976666i \(-0.568898\pi\)
0.738435 + 0.674324i \(0.235565\pi\)
\(98\) 5.40048i 0.545531i
\(99\) 0 0
\(100\) −2.57290 −0.257290
\(101\) −7.94290 13.7575i −0.790348 1.36892i −0.925752 0.378132i \(-0.876567\pi\)
0.135404 0.990790i \(-0.456767\pi\)
\(102\) 0 0
\(103\) 3.12594 5.41429i 0.308008 0.533486i −0.669918 0.742435i \(-0.733671\pi\)
0.977927 + 0.208949i \(0.0670043\pi\)
\(104\) 7.21132 + 2.97525i 0.707128 + 0.291747i
\(105\) 0 0
\(106\) −16.6855 + 9.63338i −1.62064 + 0.935676i
\(107\) 10.6339 1.02802 0.514010 0.857784i \(-0.328160\pi\)
0.514010 + 0.857784i \(0.328160\pi\)
\(108\) 0 0
\(109\) 16.0203i 1.53447i −0.641368 0.767234i \(-0.721633\pi\)
0.641368 0.767234i \(-0.278367\pi\)
\(110\) −2.73474 + 1.57890i −0.260747 + 0.150542i
\(111\) 0 0
\(112\) 13.6086 + 7.85693i 1.28589 + 0.742410i
\(113\) −1.48868 + 2.57847i −0.140043 + 0.242562i −0.927513 0.373792i \(-0.878057\pi\)
0.787470 + 0.616354i \(0.211391\pi\)
\(114\) 0 0
\(115\) 4.45905 2.57443i 0.415809 0.240067i
\(116\) −1.30020 −0.120721
\(117\) 0 0
\(118\) 9.04316 0.832490
\(119\) −4.09574 + 2.36467i −0.375455 + 0.216769i
\(120\) 0 0
\(121\) −3.95388 + 6.84832i −0.359443 + 0.622574i
\(122\) −2.79225 1.61211i −0.252798 0.145953i
\(123\) 0 0
\(124\) −3.85162 + 2.22374i −0.345886 + 0.199697i
\(125\) 9.65228i 0.863326i
\(126\) 0 0
\(127\) 6.12947 0.543903 0.271951 0.962311i \(-0.412331\pi\)
0.271951 + 0.962311i \(0.412331\pi\)
\(128\) −11.7144 + 6.76329i −1.03541 + 0.597796i
\(129\) 0 0
\(130\) 2.46942 5.98530i 0.216582 0.524945i
\(131\) 4.21264 7.29650i 0.368060 0.637498i −0.621202 0.783650i \(-0.713356\pi\)
0.989262 + 0.146152i \(0.0466889\pi\)
\(132\) 0 0
\(133\) 5.80020 + 10.0462i 0.502941 + 0.871120i
\(134\) 13.5186 1.16783
\(135\) 0 0
\(136\) 3.18828i 0.273392i
\(137\) 6.70647 3.87198i 0.572973 0.330806i −0.185363 0.982670i \(-0.559346\pi\)
0.758336 + 0.651864i \(0.226013\pi\)
\(138\) 0 0
\(139\) −6.29796 + 10.9084i −0.534186 + 0.925237i 0.465016 + 0.885302i \(0.346049\pi\)
−0.999202 + 0.0399353i \(0.987285\pi\)
\(140\) 1.19364 2.06745i 0.100881 0.174731i
\(141\) 0 0
\(142\) −4.78535 8.28847i −0.401578 0.695553i
\(143\) 0.836341 + 6.28488i 0.0699384 + 0.525568i
\(144\) 0 0
\(145\) 2.10496i 0.174807i
\(146\) 1.02025 + 1.76712i 0.0844364 + 0.146248i
\(147\) 0 0
\(148\) 6.82340 + 3.93949i 0.560880 + 0.323824i
\(149\) −6.76751 3.90722i −0.554416 0.320092i 0.196485 0.980507i \(-0.437047\pi\)
−0.750901 + 0.660415i \(0.770381\pi\)
\(150\) 0 0
\(151\) −15.3081 + 8.83816i −1.24576 + 0.719239i −0.970261 0.242062i \(-0.922176\pi\)
−0.275498 + 0.961302i \(0.588843\pi\)
\(152\) −7.82038 −0.634317
\(153\) 0 0
\(154\) 9.23532i 0.744203i
\(155\) −3.60011 6.23557i −0.289168 0.500853i
\(156\) 0 0
\(157\) 8.89974 15.4148i 0.710277 1.23024i −0.254477 0.967079i \(-0.581903\pi\)
0.964753 0.263156i \(-0.0847635\pi\)
\(158\) −0.688495 0.397503i −0.0547737 0.0316236i
\(159\) 0 0
\(160\) 2.02192 + 3.50207i 0.159847 + 0.276863i
\(161\) 15.0584i 1.18677i
\(162\) 0 0
\(163\) 16.7251i 1.31001i 0.755624 + 0.655006i \(0.227334\pi\)
−0.755624 + 0.655006i \(0.772666\pi\)
\(164\) −3.17236 + 1.83156i −0.247720 + 0.143021i
\(165\) 0 0
\(166\) 12.6933 21.9854i 0.985188 1.70640i
\(167\) 4.62006 + 2.66739i 0.357511 + 0.206409i 0.667988 0.744172i \(-0.267156\pi\)
−0.310477 + 0.950581i \(0.600489\pi\)
\(168\) 0 0
\(169\) −9.21800 9.16670i −0.709077 0.705131i
\(170\) −2.64622 −0.202956
\(171\) 0 0
\(172\) 1.20538 0.0919097
\(173\) −6.15330 10.6578i −0.467827 0.810299i 0.531498 0.847060i \(-0.321629\pi\)
−0.999324 + 0.0367604i \(0.988296\pi\)
\(174\) 0 0
\(175\) −10.5500 6.09104i −0.797505 0.460440i
\(176\) −7.45637 4.30494i −0.562045 0.324497i
\(177\) 0 0
\(178\) 10.9840 + 19.0249i 0.823286 + 1.42597i
\(179\) 18.8439 1.40846 0.704228 0.709974i \(-0.251293\pi\)
0.704228 + 0.709974i \(0.251293\pi\)
\(180\) 0 0
\(181\) 10.8768 0.808469 0.404235 0.914655i \(-0.367538\pi\)
0.404235 + 0.914655i \(0.367538\pi\)
\(182\) −11.5484 15.0068i −0.856025 1.11238i
\(183\) 0 0
\(184\) 8.79151 + 5.07578i 0.648119 + 0.374191i
\(185\) −6.37782 + 11.0467i −0.468907 + 0.812170i
\(186\) 0 0
\(187\) 2.24412 1.29564i 0.164106 0.0947468i
\(188\) 6.96641i 0.508078i
\(189\) 0 0
\(190\) 6.49081i 0.470893i
\(191\) 9.29853 + 16.1055i 0.672818 + 1.16536i 0.977101 + 0.212774i \(0.0682498\pi\)
−0.304283 + 0.952582i \(0.598417\pi\)
\(192\) 0 0
\(193\) −11.2214 6.47868i −0.807735 0.466346i 0.0384339 0.999261i \(-0.487763\pi\)
−0.846169 + 0.532915i \(0.821096\pi\)
\(194\) 4.87277 8.43989i 0.349845 0.605949i
\(195\) 0 0
\(196\) −1.11850 1.93729i −0.0798927 0.138378i
\(197\) 14.0963i 1.00432i 0.864774 + 0.502162i \(0.167462\pi\)
−0.864774 + 0.502162i \(0.832538\pi\)
\(198\) 0 0
\(199\) 16.6913 1.18321 0.591607 0.806226i \(-0.298494\pi\)
0.591607 + 0.806226i \(0.298494\pi\)
\(200\) 7.11225 4.10626i 0.502912 0.290356i
\(201\) 0 0
\(202\) −22.5129 12.9978i −1.58400 0.914524i
\(203\) −5.33139 3.07808i −0.374191 0.216039i
\(204\) 0 0
\(205\) −2.96520 5.13588i −0.207098 0.358705i
\(206\) 10.2306i 0.712802i
\(207\) 0 0
\(208\) 17.4993 2.32866i 1.21336 0.161464i
\(209\) −3.17802 5.50450i −0.219829 0.380754i
\(210\) 0 0
\(211\) −2.74067 + 4.74698i −0.188675 + 0.326795i −0.944809 0.327622i \(-0.893753\pi\)
0.756133 + 0.654417i \(0.227086\pi\)
\(212\) −3.99035 + 6.91149i −0.274058 + 0.474683i
\(213\) 0 0
\(214\) 15.0701 8.70072i 1.03017 0.594769i
\(215\) 1.95145i 0.133088i
\(216\) 0 0
\(217\) −21.0578 −1.42949
\(218\) −13.1079 22.7035i −0.887778 1.53768i
\(219\) 0 0
\(220\) −0.654015 + 1.13279i −0.0440937 + 0.0763725i
\(221\) −2.02640 + 4.91152i −0.136310 + 0.330385i
\(222\) 0 0
\(223\) 7.94603 4.58764i 0.532105 0.307211i −0.209768 0.977751i \(-0.567271\pi\)
0.741873 + 0.670540i \(0.233938\pi\)
\(224\) 11.8266 0.790198
\(225\) 0 0
\(226\) 4.87217i 0.324092i
\(227\) 2.98340 1.72247i 0.198015 0.114324i −0.397714 0.917509i \(-0.630196\pi\)
0.595729 + 0.803185i \(0.296863\pi\)
\(228\) 0 0
\(229\) 10.8095 + 6.24088i 0.714313 + 0.412409i 0.812656 0.582744i \(-0.198021\pi\)
−0.0983427 + 0.995153i \(0.531354\pi\)
\(230\) 4.21283 7.29683i 0.277786 0.481139i
\(231\) 0 0
\(232\) 3.59414 2.07508i 0.235967 0.136236i
\(233\) 5.08821 0.333340 0.166670 0.986013i \(-0.446699\pi\)
0.166670 + 0.986013i \(0.446699\pi\)
\(234\) 0 0
\(235\) −11.2782 −0.735711
\(236\) 3.24402 1.87293i 0.211167 0.121918i
\(237\) 0 0
\(238\) −3.86957 + 6.70230i −0.250827 + 0.434446i
\(239\) 1.31463 + 0.759003i 0.0850365 + 0.0490958i 0.541915 0.840433i \(-0.317699\pi\)
−0.456879 + 0.889529i \(0.651033\pi\)
\(240\) 0 0
\(241\) 16.5435 9.55141i 1.06566 0.615260i 0.138669 0.990339i \(-0.455718\pi\)
0.926993 + 0.375079i \(0.122384\pi\)
\(242\) 12.9403i 0.831836i
\(243\) 0 0
\(244\) −1.33554 −0.0854990
\(245\) 3.13637 1.81079i 0.200376 0.115687i
\(246\) 0 0
\(247\) 12.0472 + 4.97045i 0.766548 + 0.316262i
\(248\) 7.09801 12.2941i 0.450724 0.780677i
\(249\) 0 0
\(250\) −7.89754 13.6789i −0.499484 0.865132i
\(251\) 7.96535 0.502768 0.251384 0.967887i \(-0.419114\pi\)
0.251384 + 0.967887i \(0.419114\pi\)
\(252\) 0 0
\(253\) 8.25073i 0.518719i
\(254\) 8.68651 5.01516i 0.545040 0.314679i
\(255\) 0 0
\(256\) −7.30526 + 12.6531i −0.456579 + 0.790818i
\(257\) −10.5328 + 18.2433i −0.657017 + 1.13799i 0.324367 + 0.945931i \(0.394849\pi\)
−0.981384 + 0.192056i \(0.938484\pi\)
\(258\) 0 0
\(259\) 18.6526 + 32.3072i 1.15901 + 2.00747i
\(260\) −0.353775 2.65852i −0.0219402 0.164875i
\(261\) 0 0
\(262\) 13.7872i 0.851776i
\(263\) 12.0525 + 20.8755i 0.743187 + 1.28724i 0.951037 + 0.309077i \(0.100020\pi\)
−0.207850 + 0.978161i \(0.566647\pi\)
\(264\) 0 0
\(265\) −11.1893 6.46016i −0.687355 0.396844i
\(266\) 16.4398 + 9.49151i 1.00799 + 0.581962i
\(267\) 0 0
\(268\) 4.84947 2.79984i 0.296228 0.171027i
\(269\) 21.7780 1.32783 0.663913 0.747809i \(-0.268894\pi\)
0.663913 + 0.747809i \(0.268894\pi\)
\(270\) 0 0
\(271\) 5.09950i 0.309773i 0.987932 + 0.154886i \(0.0495012\pi\)
−0.987932 + 0.154886i \(0.950499\pi\)
\(272\) −3.60752 6.24840i −0.218738 0.378865i
\(273\) 0 0
\(274\) 6.33615 10.9745i 0.382781 0.662996i
\(275\) 5.78051 + 3.33738i 0.348578 + 0.201252i
\(276\) 0 0
\(277\) −6.13878 10.6327i −0.368844 0.638856i 0.620541 0.784174i \(-0.286913\pi\)
−0.989385 + 0.145318i \(0.953580\pi\)
\(278\) 20.6121i 1.23623i
\(279\) 0 0
\(280\) 7.62003i 0.455384i
\(281\) 6.33254 3.65609i 0.377768 0.218104i −0.299079 0.954228i \(-0.596679\pi\)
0.676847 + 0.736124i \(0.263346\pi\)
\(282\) 0 0
\(283\) −6.39883 + 11.0831i −0.380371 + 0.658822i −0.991115 0.133006i \(-0.957537\pi\)
0.610744 + 0.791828i \(0.290870\pi\)
\(284\) −3.43326 1.98219i −0.203727 0.117622i
\(285\) 0 0
\(286\) 6.32756 + 8.22246i 0.374156 + 0.486204i
\(287\) −17.3440 −1.02379
\(288\) 0 0
\(289\) −14.8285 −0.872266
\(290\) −1.72229 2.98309i −0.101136 0.175173i
\(291\) 0 0
\(292\) 0.731980 + 0.422609i 0.0428359 + 0.0247313i
\(293\) 5.69346 + 3.28712i 0.332616 + 0.192036i 0.657002 0.753889i \(-0.271824\pi\)
−0.324386 + 0.945925i \(0.605158\pi\)
\(294\) 0 0
\(295\) 3.03218 + 5.25188i 0.176540 + 0.305777i
\(296\) −25.1492 −1.46176
\(297\) 0 0
\(298\) −12.7876 −0.740768
\(299\) −10.3172 13.4069i −0.596660 0.775340i
\(300\) 0 0
\(301\) 4.94259 + 2.85361i 0.284886 + 0.164479i
\(302\) −14.4628 + 25.0504i −0.832243 + 1.44149i
\(303\) 0 0
\(304\) −15.3264 + 8.84872i −0.879031 + 0.507509i
\(305\) 2.16216i 0.123805i
\(306\) 0 0
\(307\) 24.3307i 1.38863i −0.719672 0.694315i \(-0.755708\pi\)
0.719672 0.694315i \(-0.244292\pi\)
\(308\) 1.91273 + 3.31295i 0.108988 + 0.188773i
\(309\) 0 0
\(310\) −10.2039 5.89125i −0.579545 0.334601i
\(311\) 5.58336 9.67066i 0.316603 0.548373i −0.663174 0.748465i \(-0.730791\pi\)
0.979777 + 0.200093i \(0.0641244\pi\)
\(312\) 0 0
\(313\) −8.90138 15.4176i −0.503136 0.871456i −0.999993 0.00362437i \(-0.998846\pi\)
0.496858 0.867832i \(-0.334487\pi\)
\(314\) 29.1272i 1.64374i
\(315\) 0 0
\(316\) −0.329308 −0.0185250
\(317\) −26.7276 + 15.4312i −1.50117 + 0.866700i −0.501170 + 0.865349i \(0.667097\pi\)
−0.999999 + 0.00135144i \(0.999570\pi\)
\(318\) 0 0
\(319\) 2.92116 + 1.68653i 0.163553 + 0.0944276i
\(320\) −3.57549 2.06431i −0.199876 0.115398i
\(321\) 0 0
\(322\) −12.3208 21.3403i −0.686613 1.18925i
\(323\) 5.32634i 0.296365i
\(324\) 0 0
\(325\) −13.5662 + 1.80528i −0.752518 + 0.100139i
\(326\) 13.6846 + 23.7024i 0.757918 + 1.31275i
\(327\) 0 0
\(328\) 5.84622 10.1259i 0.322803 0.559112i
\(329\) −16.4922 + 28.5653i −0.909243 + 1.57486i
\(330\) 0 0
\(331\) −15.0730 + 8.70242i −0.828489 + 0.478328i −0.853335 0.521363i \(-0.825424\pi\)
0.0248461 + 0.999691i \(0.492090\pi\)
\(332\) 10.5156i 0.577120i
\(333\) 0 0
\(334\) 8.72989 0.477678
\(335\) 4.53279 + 7.85102i 0.247653 + 0.428947i
\(336\) 0 0
\(337\) −4.37915 + 7.58491i −0.238548 + 0.413176i −0.960298 0.278977i \(-0.910005\pi\)
0.721750 + 0.692154i \(0.243338\pi\)
\(338\) −20.5637 5.44859i −1.11852 0.296364i
\(339\) 0 0
\(340\) −0.949270 + 0.548061i −0.0514814 + 0.0297228i
\(341\) 11.5379 0.624811
\(342\) 0 0
\(343\) 11.8741i 0.641141i
\(344\) −3.33203 + 1.92375i −0.179651 + 0.103722i
\(345\) 0 0
\(346\) −17.4406 10.0693i −0.937611 0.541330i
\(347\) −3.63878 + 6.30255i −0.195340 + 0.338339i −0.947012 0.321198i \(-0.895914\pi\)
0.751672 + 0.659537i \(0.229248\pi\)
\(348\) 0 0
\(349\) 10.8475 6.26279i 0.580652 0.335240i −0.180740 0.983531i \(-0.557849\pi\)
0.761392 + 0.648291i \(0.224516\pi\)
\(350\) −19.9349 −1.06556
\(351\) 0 0
\(352\) −6.47999 −0.345385
\(353\) 1.42107 0.820458i 0.0756361 0.0436686i −0.461705 0.887034i \(-0.652762\pi\)
0.537341 + 0.843365i \(0.319429\pi\)
\(354\) 0 0
\(355\) 3.20906 5.55826i 0.170319 0.295002i
\(356\) 7.88050 + 4.54981i 0.417666 + 0.241139i
\(357\) 0 0
\(358\) 26.7050 15.4181i 1.41140 0.814874i
\(359\) 7.00788i 0.369862i 0.982752 + 0.184931i \(0.0592061\pi\)
−0.982752 + 0.184931i \(0.940794\pi\)
\(360\) 0 0
\(361\) 5.93526 0.312382
\(362\) 15.4144 8.89948i 0.810160 0.467746i
\(363\) 0 0
\(364\) −7.25078 2.99153i −0.380044 0.156799i
\(365\) −0.684180 + 1.18504i −0.0358116 + 0.0620276i
\(366\) 0 0
\(367\) 0.596340 + 1.03289i 0.0311287 + 0.0539165i 0.881170 0.472799i \(-0.156756\pi\)
−0.850041 + 0.526716i \(0.823423\pi\)
\(368\) 22.9729 1.19754
\(369\) 0 0
\(370\) 20.8735i 1.08516i
\(371\) −32.7243 + 18.8934i −1.69896 + 0.980895i
\(372\) 0 0
\(373\) −8.65200 + 14.9857i −0.447984 + 0.775931i −0.998255 0.0590555i \(-0.981191\pi\)
0.550271 + 0.834986i \(0.314524\pi\)
\(374\) 2.12020 3.67230i 0.109633 0.189890i
\(375\) 0 0
\(376\) −11.1181 19.2572i −0.573375 0.993114i
\(377\) −6.85563 + 0.912292i −0.353083 + 0.0469854i
\(378\) 0 0
\(379\) 1.54294i 0.0792554i 0.999215 + 0.0396277i \(0.0126172\pi\)
−0.999215 + 0.0396277i \(0.987383\pi\)
\(380\) 1.34431 + 2.32842i 0.0689619 + 0.119446i
\(381\) 0 0
\(382\) 26.3552 + 15.2162i 1.34845 + 0.778529i
\(383\) −20.4912 11.8306i −1.04705 0.604515i −0.125229 0.992128i \(-0.539967\pi\)
−0.921822 + 0.387612i \(0.873300\pi\)
\(384\) 0 0
\(385\) −5.36348 + 3.09661i −0.273348 + 0.157818i
\(386\) −21.2036 −1.07923
\(387\) 0 0
\(388\) 4.03681i 0.204938i
\(389\) −2.58336 4.47450i −0.130981 0.226866i 0.793074 0.609126i \(-0.208479\pi\)
−0.924055 + 0.382259i \(0.875146\pi\)
\(390\) 0 0
\(391\) −3.45703 + 5.98776i −0.174830 + 0.302814i
\(392\) 6.18371 + 3.57016i 0.312324 + 0.180321i
\(393\) 0 0
\(394\) 11.5337 + 19.9769i 0.581059 + 1.00642i
\(395\) 0.533132i 0.0268248i
\(396\) 0 0
\(397\) 14.0455i 0.704926i 0.935826 + 0.352463i \(0.114656\pi\)
−0.935826 + 0.352463i \(0.885344\pi\)
\(398\) 23.6544 13.6569i 1.18569 0.684558i
\(399\) 0 0
\(400\) 9.29242 16.0949i 0.464621 0.804747i
\(401\) −12.9801 7.49409i −0.648198 0.374237i 0.139568 0.990213i \(-0.455429\pi\)
−0.787765 + 0.615976i \(0.788762\pi\)
\(402\) 0 0
\(403\) −18.7483 + 14.4277i −0.933919 + 0.718694i
\(404\) −10.7680 −0.535726
\(405\) 0 0
\(406\) −10.0740 −0.499964
\(407\) −10.2200 17.7016i −0.506589 0.877438i
\(408\) 0 0
\(409\) 0.411886 + 0.237803i 0.0203665 + 0.0117586i 0.510149 0.860086i \(-0.329590\pi\)
−0.489782 + 0.871845i \(0.662924\pi\)
\(410\) −8.40439 4.85228i −0.415063 0.239637i
\(411\) 0 0
\(412\) −2.11887 3.67000i −0.104389 0.180808i
\(413\) 17.7358 0.872722
\(414\) 0 0
\(415\) 17.0242 0.835687
\(416\) 10.5296 8.10298i 0.516254 0.397281i
\(417\) 0 0
\(418\) −9.00762 5.20055i −0.440577 0.254367i
\(419\) 6.45908 11.1875i 0.315547 0.546543i −0.664007 0.747726i \(-0.731145\pi\)
0.979554 + 0.201184i \(0.0644788\pi\)
\(420\) 0 0
\(421\) −27.3802 + 15.8080i −1.33443 + 0.770433i −0.985975 0.166893i \(-0.946626\pi\)
−0.348454 + 0.937326i \(0.613293\pi\)
\(422\) 8.96971i 0.436639i
\(423\) 0 0
\(424\) 25.4738i 1.23712i
\(425\) 2.79671 + 4.84404i 0.135660 + 0.234970i
\(426\) 0 0
\(427\) −5.47627 3.16173i −0.265016 0.153007i
\(428\) 3.60402 6.24235i 0.174207 0.301735i
\(429\) 0 0
\(430\) 1.59669 + 2.76554i 0.0769991 + 0.133366i
\(431\) 12.5560i 0.604799i −0.953181 0.302400i \(-0.902212\pi\)
0.953181 0.302400i \(-0.0977877\pi\)
\(432\) 0 0
\(433\) −27.9766 −1.34447 −0.672235 0.740338i \(-0.734665\pi\)
−0.672235 + 0.740338i \(0.734665\pi\)
\(434\) −29.8425 + 17.2296i −1.43248 + 0.827045i
\(435\) 0 0
\(436\) −9.40428 5.42957i −0.450384 0.260029i
\(437\) 14.6871 + 8.47960i 0.702580 + 0.405635i
\(438\) 0 0
\(439\) 5.76780 + 9.99012i 0.275282 + 0.476802i 0.970206 0.242281i \(-0.0778955\pi\)
−0.694924 + 0.719083i \(0.744562\pi\)
\(440\) 4.17514i 0.199042i
\(441\) 0 0
\(442\) 1.14688 + 8.61847i 0.0545514 + 0.409939i
\(443\) 13.1323 + 22.7457i 0.623932 + 1.08068i 0.988746 + 0.149602i \(0.0477992\pi\)
−0.364814 + 0.931080i \(0.618868\pi\)
\(444\) 0 0
\(445\) −7.36589 + 12.7581i −0.349177 + 0.604792i
\(446\) 7.50726 13.0030i 0.355479 0.615708i
\(447\) 0 0
\(448\) −10.4569 + 6.03728i −0.494041 + 0.285235i
\(449\) 29.9575i 1.41378i 0.707323 + 0.706891i \(0.249903\pi\)
−0.707323 + 0.706891i \(0.750097\pi\)
\(450\) 0 0
\(451\) 9.50308 0.447483
\(452\) 1.00908 + 1.74778i 0.0474631 + 0.0822085i
\(453\) 0 0
\(454\) 2.81866 4.88206i 0.132286 0.229127i
\(455\) 4.84312 11.7386i 0.227049 0.550315i
\(456\) 0 0
\(457\) −9.92475 + 5.73006i −0.464260 + 0.268041i −0.713834 0.700315i \(-0.753043\pi\)
0.249574 + 0.968356i \(0.419710\pi\)
\(458\) 20.4253 0.954410
\(459\) 0 0
\(460\) 3.49008i 0.162726i
\(461\) 24.6926 14.2563i 1.15005 0.663981i 0.201149 0.979561i \(-0.435532\pi\)
0.948899 + 0.315580i \(0.102199\pi\)
\(462\) 0 0
\(463\) −1.46868 0.847942i −0.0682553 0.0394072i 0.465484 0.885056i \(-0.345880\pi\)
−0.533739 + 0.845649i \(0.679214\pi\)
\(464\) 4.69588 8.13351i 0.218001 0.377589i
\(465\) 0 0
\(466\) 7.21086 4.16319i 0.334037 0.192856i
\(467\) −14.1217 −0.653476 −0.326738 0.945115i \(-0.605949\pi\)
−0.326738 + 0.945115i \(0.605949\pi\)
\(468\) 0 0
\(469\) 26.5132 1.22427
\(470\) −15.9832 + 9.22791i −0.737251 + 0.425652i
\(471\) 0 0
\(472\) −5.97827 + 10.3547i −0.275172 + 0.476612i
\(473\) −2.70813 1.56354i −0.124520 0.0718915i
\(474\) 0 0
\(475\) 11.8817 6.85992i 0.545171 0.314755i
\(476\) 3.20572i 0.146934i
\(477\) 0 0
\(478\) 2.48408 0.113619
\(479\) 24.0438 13.8817i 1.09859 0.634272i 0.162740 0.986669i \(-0.447967\pi\)
0.935850 + 0.352397i \(0.114633\pi\)
\(480\) 0 0
\(481\) 38.7421 + 15.9842i 1.76649 + 0.728818i
\(482\) 15.6300 27.0720i 0.711927 1.23309i
\(483\) 0 0
\(484\) 2.68008 + 4.64203i 0.121822 + 0.211001i
\(485\) 6.53537 0.296756
\(486\) 0 0
\(487\) 27.5898i 1.25021i −0.780539 0.625107i \(-0.785055\pi\)
0.780539 0.625107i \(-0.214945\pi\)
\(488\) 3.69181 2.13147i 0.167121 0.0964871i
\(489\) 0 0
\(490\) 2.96319 5.13239i 0.133863 0.231858i
\(491\) 20.3683 35.2790i 0.919210 1.59212i 0.118591 0.992943i \(-0.462162\pi\)
0.800618 0.599175i \(-0.204504\pi\)
\(492\) 0 0
\(493\) 1.41330 + 2.44791i 0.0636520 + 0.110249i
\(494\) 21.1399 2.81312i 0.951128 0.126568i
\(495\) 0 0
\(496\) 32.1254i 1.44248i
\(497\) −9.38523 16.2557i −0.420985 0.729168i
\(498\) 0 0
\(499\) 13.5293 + 7.81113i 0.605654 + 0.349674i 0.771262 0.636517i \(-0.219626\pi\)
−0.165609 + 0.986192i \(0.552959\pi\)
\(500\) −5.66611 3.27133i −0.253396 0.146298i
\(501\) 0 0
\(502\) 11.2883 6.51729i 0.503820 0.290881i
\(503\) −30.2181 −1.34736 −0.673679 0.739024i \(-0.735287\pi\)
−0.673679 + 0.739024i \(0.735287\pi\)
\(504\) 0 0
\(505\) 17.4327i 0.775746i
\(506\) 6.75078 + 11.6927i 0.300109 + 0.519804i
\(507\) 0 0
\(508\) 2.07739 3.59814i 0.0921691 0.159642i
\(509\) 13.0660 + 7.54366i 0.579140 + 0.334367i 0.760792 0.648996i \(-0.224811\pi\)
−0.181651 + 0.983363i \(0.558144\pi\)
\(510\) 0 0
\(511\) 2.00095 + 3.46575i 0.0885170 + 0.153316i
\(512\) 3.14438i 0.138963i
\(513\) 0 0
\(514\) 34.4719i 1.52049i
\(515\) 5.94152 3.43034i 0.261815 0.151159i
\(516\) 0 0
\(517\) 9.03633 15.6514i 0.397417 0.688347i
\(518\) 52.8678 + 30.5232i 2.32288 + 1.34111i
\(519\) 0 0
\(520\) 5.22085 + 6.78433i 0.228949 + 0.297512i
\(521\) −26.8690 −1.17715 −0.588576 0.808442i \(-0.700311\pi\)
−0.588576 + 0.808442i \(0.700311\pi\)
\(522\) 0 0
\(523\) 24.9855 1.09254 0.546270 0.837609i \(-0.316047\pi\)
0.546270 + 0.837609i \(0.316047\pi\)
\(524\) −2.85547 4.94583i −0.124742 0.216059i
\(525\) 0 0
\(526\) 34.1608 + 19.7228i 1.48948 + 0.859954i
\(527\) 8.37333 + 4.83434i 0.364748 + 0.210587i
\(528\) 0 0
\(529\) 0.492707 + 0.853394i 0.0214221 + 0.0371041i
\(530\) −21.1429 −0.918390
\(531\) 0 0
\(532\) 7.86317 0.340911
\(533\) −15.4419 + 11.8832i −0.668862 + 0.514720i
\(534\) 0 0
\(535\) 10.1060 + 5.83471i 0.436921 + 0.252257i
\(536\) −8.93689 + 15.4792i −0.386015 + 0.668598i
\(537\) 0 0
\(538\) 30.8631 17.8188i 1.33060 0.768225i
\(539\) 5.80334i 0.249967i
\(540\) 0 0
\(541\) 33.1735i 1.42624i −0.701042 0.713120i \(-0.747281\pi\)
0.701042 0.713120i \(-0.252719\pi\)
\(542\) 4.17244 + 7.22687i 0.179222 + 0.310421i
\(543\) 0 0
\(544\) −4.70269 2.71510i −0.201626 0.116409i
\(545\) 8.79017 15.2250i 0.376530 0.652168i
\(546\) 0 0
\(547\) −9.36201 16.2155i −0.400291 0.693324i 0.593470 0.804856i \(-0.297758\pi\)
−0.993761 + 0.111532i \(0.964424\pi\)
\(548\) 5.24913i 0.224232i
\(549\) 0 0
\(550\) 10.9226 0.465743
\(551\) 6.00438 3.46663i 0.255795 0.147683i
\(552\) 0 0
\(553\) −1.35030 0.779599i −0.0574208 0.0331519i
\(554\) −17.3994 10.0456i −0.739230 0.426795i
\(555\) 0 0
\(556\) 4.26898 + 7.39409i 0.181045 + 0.313579i
\(557\) 27.4258i 1.16207i −0.813879 0.581035i \(-0.802648\pi\)
0.813879 0.581035i \(-0.197352\pi\)
\(558\) 0 0
\(559\) 6.35567 0.845762i 0.268816 0.0357719i
\(560\) 8.62203 + 14.9338i 0.364347 + 0.631068i
\(561\) 0 0
\(562\) 5.98286 10.3626i 0.252372 0.437121i
\(563\) −9.85731 + 17.0734i −0.415436 + 0.719556i −0.995474 0.0950331i \(-0.969704\pi\)
0.580038 + 0.814589i \(0.303038\pi\)
\(564\) 0 0
\(565\) −2.82955 + 1.63364i −0.119040 + 0.0687279i
\(566\) 20.9422i 0.880267i
\(567\) 0 0
\(568\) 12.6540 0.530952
\(569\) 9.70872 + 16.8160i 0.407011 + 0.704963i 0.994553 0.104230i \(-0.0332379\pi\)
−0.587543 + 0.809193i \(0.699905\pi\)
\(570\) 0 0
\(571\) −4.99536 + 8.65223i −0.209050 + 0.362084i −0.951415 0.307910i \(-0.900370\pi\)
0.742366 + 0.669995i \(0.233704\pi\)
\(572\) 3.97282 + 1.63911i 0.166112 + 0.0685344i
\(573\) 0 0
\(574\) −24.5795 + 14.1910i −1.02593 + 0.592320i
\(575\) −17.8096 −0.742711
\(576\) 0 0
\(577\) 17.2976i 0.720107i 0.932932 + 0.360054i \(0.117242\pi\)
−0.932932 + 0.360054i \(0.882758\pi\)
\(578\) −21.0146 + 12.1328i −0.874090 + 0.504656i
\(579\) 0 0
\(580\) −1.23566 0.713408i −0.0513079 0.0296227i
\(581\) 24.8945 43.1186i 1.03280 1.78886i
\(582\) 0 0
\(583\) 17.9302 10.3520i 0.742591 0.428735i
\(584\) −2.69787 −0.111639
\(585\) 0 0
\(586\) 10.7582 0.444415
\(587\) 19.0473 10.9970i 0.786166 0.453893i −0.0524453 0.998624i \(-0.516702\pi\)
0.838611 + 0.544731i \(0.183368\pi\)
\(588\) 0 0
\(589\) 11.8579 20.5386i 0.488598 0.846277i
\(590\) 8.59423 + 4.96188i 0.353819 + 0.204277i
\(591\) 0 0
\(592\) −49.2875 + 28.4561i −2.02570 + 1.16954i
\(593\) 29.8711i 1.22666i −0.789826 0.613330i \(-0.789829\pi\)
0.789826 0.613330i \(-0.210171\pi\)
\(594\) 0 0
\(595\) −5.18988 −0.212765
\(596\) −4.58726 + 2.64845i −0.187901 + 0.108485i
\(597\) 0 0
\(598\) −25.5908 10.5583i −1.04649 0.431760i
\(599\) −0.00682877 + 0.0118278i −0.000279016 + 0.000483270i −0.866165 0.499758i \(-0.833422\pi\)
0.865886 + 0.500242i \(0.166755\pi\)
\(600\) 0 0
\(601\) −3.25799 5.64301i −0.132896 0.230183i 0.791896 0.610657i \(-0.209094\pi\)
−0.924792 + 0.380473i \(0.875761\pi\)
\(602\) 9.33934 0.380643
\(603\) 0 0
\(604\) 11.9816i 0.487526i
\(605\) −7.51520 + 4.33890i −0.305536 + 0.176401i
\(606\) 0 0
\(607\) 17.7921 30.8168i 0.722158 1.25081i −0.237975 0.971271i \(-0.576484\pi\)
0.960133 0.279543i \(-0.0901831\pi\)
\(608\) −6.65975 + 11.5350i −0.270088 + 0.467807i
\(609\) 0 0
\(610\) −1.76909 3.06415i −0.0716284 0.124064i
\(611\) 4.88801 + 36.7320i 0.197748 + 1.48602i
\(612\) 0 0
\(613\) 2.03420i 0.0821607i −0.999156 0.0410803i \(-0.986920\pi\)
0.999156 0.0410803i \(-0.0130800\pi\)
\(614\) −19.9075 34.4809i −0.803403 1.39153i
\(615\) 0 0
\(616\) −10.5747 6.10530i −0.426067 0.245990i
\(617\) −2.65725 1.53417i −0.106977 0.0617632i 0.445557 0.895254i \(-0.353006\pi\)
−0.552534 + 0.833490i \(0.686339\pi\)
\(618\) 0 0
\(619\) −3.43093 + 1.98085i −0.137901 + 0.0796169i −0.567363 0.823468i \(-0.692036\pi\)
0.429463 + 0.903085i \(0.358703\pi\)
\(620\) −4.88056 −0.196008
\(621\) 0 0
\(622\) 18.2733i 0.732693i
\(623\) 21.5423 + 37.3123i 0.863074 + 1.49489i
\(624\) 0 0
\(625\) −4.19330 + 7.26301i −0.167732 + 0.290520i
\(626\) −25.2296 14.5663i −1.00838 0.582186i
\(627\) 0 0
\(628\) −6.03256 10.4487i −0.240725 0.416948i
\(629\) 17.1287i 0.682966i
\(630\) 0 0
\(631\) 8.56943i 0.341144i 0.985345 + 0.170572i \(0.0545615\pi\)
−0.985345 + 0.170572i \(0.945438\pi\)
\(632\) 0.910304 0.525564i 0.0362099 0.0209058i
\(633\) 0 0
\(634\) −25.2517 + 43.7372i −1.00287 + 1.73703i
\(635\) 5.82519 + 3.36317i 0.231166 + 0.133464i
\(636\) 0 0
\(637\) −7.25685 9.43004i −0.287527 0.373632i
\(638\) 5.51971 0.218527
\(639\) 0 0
\(640\) −14.8438 −0.586752
\(641\) −5.45756 9.45277i −0.215561 0.373362i 0.737885 0.674926i \(-0.235825\pi\)
−0.953446 + 0.301564i \(0.902491\pi\)
\(642\) 0 0
\(643\) −25.3834 14.6551i −1.00102 0.577941i −0.0924728 0.995715i \(-0.529477\pi\)
−0.908551 + 0.417774i \(0.862810\pi\)
\(644\) −8.83961 5.10355i −0.348329 0.201108i
\(645\) 0 0
\(646\) −4.35803 7.54834i −0.171465 0.296985i
\(647\) 5.27064 0.207210 0.103605 0.994619i \(-0.466962\pi\)
0.103605 + 0.994619i \(0.466962\pi\)
\(648\) 0 0
\(649\) −9.71773 −0.381454
\(650\) −17.7486 + 13.6583i −0.696156 + 0.535724i
\(651\) 0 0
\(652\) 9.81802 + 5.66843i 0.384503 + 0.221993i
\(653\) 10.5317 18.2414i 0.412137 0.713842i −0.582986 0.812482i \(-0.698116\pi\)
0.995123 + 0.0986399i \(0.0314492\pi\)
\(654\) 0 0
\(655\) 8.00702 4.62286i 0.312860 0.180630i
\(656\) 26.4599i 1.03308i
\(657\) 0 0
\(658\) 53.9759i 2.10420i
\(659\) 4.60414 + 7.97460i 0.179352 + 0.310646i 0.941659 0.336569i \(-0.109267\pi\)
−0.762307 + 0.647216i \(0.775933\pi\)
\(660\) 0 0
\(661\) −8.39767 4.84840i −0.326632 0.188581i 0.327713 0.944777i \(-0.393722\pi\)
−0.654345 + 0.756196i \(0.727055\pi\)
\(662\) −14.2407 + 24.6657i −0.553481 + 0.958658i
\(663\) 0 0
\(664\) 16.7826 + 29.0683i 0.651290 + 1.12807i
\(665\) 12.7300i 0.493650i
\(666\) 0 0
\(667\) −9.00000 −0.348481
\(668\) 3.13164 1.80805i 0.121167 0.0699557i
\(669\) 0 0
\(670\) 12.8475 + 7.41750i 0.496342 + 0.286563i
\(671\) 3.00054 + 1.73236i 0.115835 + 0.0668771i
\(672\) 0 0
\(673\) 13.8136 + 23.9259i 0.532475 + 0.922275i 0.999281 + 0.0379146i \(0.0120715\pi\)
−0.466805 + 0.884360i \(0.654595\pi\)
\(674\) 14.3322i 0.552054i
\(675\) 0 0
\(676\) −8.50521 + 2.30442i −0.327123 + 0.0886314i
\(677\) −11.4941 19.9084i −0.441755 0.765141i 0.556065 0.831139i \(-0.312310\pi\)
−0.997820 + 0.0659973i \(0.978977\pi\)
\(678\) 0 0
\(679\) 9.55668 16.5527i 0.366752 0.635232i
\(680\) 1.74937 3.03000i 0.0670854 0.116195i
\(681\) 0 0
\(682\) 16.3512 9.44035i 0.626118 0.361490i
\(683\) 19.2616i 0.737023i −0.929623 0.368512i \(-0.879867\pi\)
0.929623 0.368512i \(-0.120133\pi\)
\(684\) 0 0
\(685\) 8.49806 0.324694
\(686\) 9.71544 + 16.8276i 0.370937 + 0.642482i
\(687\) 0 0
\(688\) −4.35343 + 7.54036i −0.165973 + 0.287473i
\(689\) −16.1906 + 39.2423i −0.616812 + 1.49501i
\(690\) 0 0
\(691\) −0.829355 + 0.478828i −0.0315502 + 0.0182155i −0.515692 0.856774i \(-0.672465\pi\)
0.484142 + 0.874989i \(0.339132\pi\)
\(692\) −8.34185 −0.317109
\(693\) 0 0
\(694\) 11.9091i 0.452062i
\(695\) −11.9706 + 6.91125i −0.454072 + 0.262159i
\(696\) 0 0
\(697\) 6.89662 + 3.98177i 0.261228 + 0.150820i
\(698\) 10.2485 17.7509i 0.387911 0.671882i
\(699\) 0 0
\(700\) −7.15116 + 4.12872i −0.270288 + 0.156051i
\(701\) 5.78079 0.218337 0.109169 0.994023i \(-0.465181\pi\)
0.109169 + 0.994023i \(0.465181\pi\)
\(702\) 0 0
\(703\) −42.0142 −1.58460
\(704\) 5.72949 3.30792i 0.215938 0.124672i
\(705\) 0 0
\(706\) 1.34260 2.32546i 0.0505296 0.0875198i
\(707\) −44.1532 25.4919i −1.66055 0.958721i
\(708\) 0 0
\(709\) 4.84652 2.79814i 0.182015 0.105086i −0.406224 0.913773i \(-0.633155\pi\)
0.588239 + 0.808687i \(0.299821\pi\)
\(710\) 10.5027i 0.394159i
\(711\) 0 0
\(712\) −29.0453 −1.08852
\(713\) −26.6609 + 15.3927i −0.998459 + 0.576461i
\(714\) 0 0
\(715\) −2.65362 + 6.43178i −0.0992399 + 0.240535i
\(716\) 6.38652 11.0618i 0.238675 0.413398i
\(717\) 0 0
\(718\) 5.73388 + 9.93137i 0.213987 + 0.370636i
\(719\) −17.4320 −0.650102 −0.325051 0.945696i \(-0.605382\pi\)
−0.325051 + 0.945696i \(0.605382\pi\)
\(720\) 0 0
\(721\) 20.0647i 0.747250i
\(722\) 8.41129 4.85626i 0.313036 0.180731i
\(723\) 0 0
\(724\) 3.68635 6.38495i 0.137002 0.237295i
\(725\) −3.64046 + 6.30546i −0.135203 + 0.234179i
\(726\) 0 0
\(727\) −12.0213 20.8215i −0.445845 0.772225i 0.552266 0.833668i \(-0.313763\pi\)
−0.998111 + 0.0614425i \(0.980430\pi\)
\(728\) 24.8176 3.30253i 0.919803 0.122400i
\(729\) 0 0
\(730\) 2.23920i 0.0828764i
\(731\) −1.31024 2.26940i −0.0484608 0.0839367i
\(732\) 0 0
\(733\) −11.8926 6.86619i −0.439263 0.253608i 0.264022 0.964517i \(-0.414951\pi\)
−0.703285 + 0.710908i \(0.748284\pi\)
\(734\) 1.69023 + 0.975856i 0.0623876 + 0.0360195i
\(735\) 0 0
\(736\) 14.9735 8.64495i 0.551930 0.318657i
\(737\) −14.5270 −0.535109
\(738\) 0 0
\(739\) 13.1229i 0.482732i −0.970434 0.241366i \(-0.922405\pi\)
0.970434 0.241366i \(-0.0775954\pi\)
\(740\) 4.32311 + 7.48785i 0.158921 + 0.275259i
\(741\) 0 0
\(742\) −30.9173 + 53.5503i −1.13501 + 1.96589i
\(743\) 30.7672 + 17.7634i 1.12874 + 0.651677i 0.943617 0.331039i \(-0.107399\pi\)
0.185120 + 0.982716i \(0.440732\pi\)
\(744\) 0 0
\(745\) −4.28770 7.42652i −0.157089 0.272087i
\(746\) 28.3164i 1.03674i
\(747\) 0 0
\(748\) 1.75646i 0.0642227i
\(749\) 29.5561 17.0642i 1.07996 0.623512i
\(750\) 0 0
\(751\) −11.7119 + 20.2856i −0.427374 + 0.740233i −0.996639 0.0819210i \(-0.973894\pi\)
0.569265 + 0.822154i \(0.307228\pi\)
\(752\) −43.5788 25.1603i −1.58916 0.917500i
\(753\) 0 0
\(754\) −8.96916 + 6.90218i −0.326638 + 0.251363i
\(755\) −19.3976 −0.705951
\(756\) 0 0
\(757\) 18.7868 0.682817 0.341409 0.939915i \(-0.389096\pi\)
0.341409 + 0.939915i \(0.389096\pi\)
\(758\) 1.26244 + 2.18661i 0.0458538 + 0.0794212i
\(759\) 0 0
\(760\) −7.43216 4.29096i −0.269593 0.155649i
\(761\) −14.6714 8.47054i −0.531838 0.307057i 0.209927 0.977717i \(-0.432677\pi\)
−0.741765 + 0.670660i \(0.766011\pi\)
\(762\) 0 0
\(763\) −25.7077 44.5271i −0.930682 1.61199i
\(764\) 12.6057 0.456060
\(765\) 0 0
\(766\) −38.7194 −1.39899
\(767\) 15.7907 12.1517i 0.570168 0.438771i
\(768\) 0 0
\(769\) −33.2707 19.2088i −1.19977 0.692688i −0.239267 0.970954i \(-0.576907\pi\)
−0.960504 + 0.278266i \(0.910240\pi\)
\(770\) −5.06732 + 8.77685i −0.182613 + 0.316296i
\(771\) 0 0
\(772\) −7.60627 + 4.39148i −0.273756 + 0.158053i
\(773\) 21.1236i 0.759761i 0.925036 + 0.379881i \(0.124035\pi\)
−0.925036 + 0.379881i \(0.875965\pi\)
\(774\) 0 0
\(775\) 24.9051i 0.894617i
\(776\) 6.44261 + 11.1589i 0.231276 + 0.400582i
\(777\) 0 0
\(778\) −7.32212 4.22743i −0.262511 0.151561i
\(779\) 9.76670 16.9164i 0.349928 0.606094i
\(780\) 0 0
\(781\) 5.14232 + 8.90676i 0.184007 + 0.318709i
\(782\) 11.3142i 0.404597i
\(783\) 0 0
\(784\) 16.1585 0.577089
\(785\) 16.9159 9.76638i 0.603753 0.348577i
\(786\) 0 0
\(787\) −2.57534 1.48688i −0.0918011 0.0530014i 0.453397 0.891309i \(-0.350212\pi\)
−0.545198 + 0.838307i \(0.683545\pi\)
\(788\) 8.27487 + 4.77750i 0.294780 + 0.170191i
\(789\) 0 0
\(790\) −0.436211 0.755540i −0.0155197 0.0268809i
\(791\) 9.55551i 0.339755i
\(792\) 0 0
\(793\) −7.04193 + 0.937084i −0.250066 + 0.0332768i
\(794\) 11.4921 + 19.9049i 0.407840 + 0.706400i
\(795\) 0 0
\(796\) 5.65697 9.79816i 0.200506 0.347287i
\(797\) −14.8513 + 25.7233i −0.526061 + 0.911165i 0.473478 + 0.880806i \(0.342998\pi\)
−0.999539 + 0.0303591i \(0.990335\pi\)
\(798\) 0 0
\(799\) 13.1158 7.57240i 0.464003 0.267892i
\(800\) 13.9874i 0.494528i
\(801\) 0 0
\(802\) −24.5268 −0.866071
\(803\) −1.09635 1.89894i −0.0386895 0.0670122i
\(804\) 0 0
\(805\) 8.26237 14.3108i 0.291210 0.504391i
\(806\) −14.7648 + 35.7864i −0.520067 + 1.26052i
\(807\) 0 0
\(808\) 29.7658 17.1853i 1.04716 0.604576i
\(809\) −1.78891 −0.0628946 −0.0314473 0.999505i \(-0.510012\pi\)
−0.0314473 + 0.999505i \(0.510012\pi\)
\(810\) 0 0
\(811\) 17.3429i 0.608991i 0.952514 + 0.304496i \(0.0984879\pi\)
−0.952514 + 0.304496i \(0.901512\pi\)
\(812\) −3.61381 + 2.08643i −0.126820 + 0.0732194i
\(813\) 0 0
\(814\) −28.9671 16.7242i −1.01530 0.586182i
\(815\) −9.17689 + 15.8948i −0.321452 + 0.556772i
\(816\) 0 0
\(817\) −5.56650 + 3.21382i −0.194747 + 0.112437i
\(818\) 0.778285 0.0272121
\(819\) 0 0
\(820\) −4.01983 −0.140379
\(821\) −30.1046 + 17.3809i −1.05066 + 0.606598i −0.922834 0.385198i \(-0.874133\pi\)
−0.127825 + 0.991797i \(0.540800\pi\)
\(822\) 0 0
\(823\) 10.0169 17.3498i 0.349167 0.604776i −0.636934 0.770918i \(-0.719798\pi\)
0.986102 + 0.166142i \(0.0531311\pi\)
\(824\) 11.7144 + 6.76329i 0.408089 + 0.235610i
\(825\) 0 0
\(826\) 25.1347 14.5115i 0.874548 0.504920i
\(827\) 11.7034i 0.406966i −0.979078 0.203483i \(-0.934774\pi\)
0.979078 0.203483i \(-0.0652262\pi\)
\(828\) 0 0
\(829\) 25.2016 0.875287 0.437644 0.899149i \(-0.355813\pi\)
0.437644 + 0.899149i \(0.355813\pi\)
\(830\) 24.1263 13.9293i 0.837435 0.483493i
\(831\) 0 0
\(832\) −5.17361 + 12.5397i −0.179363 + 0.434734i
\(833\) −2.43158 + 4.21163i −0.0842494 + 0.145924i
\(834\) 0 0
\(835\) 2.92714 + 5.06995i 0.101298 + 0.175453i
\(836\) −4.30836 −0.149008
\(837\) 0 0
\(838\) 21.1394i 0.730248i
\(839\) 10.9918 6.34609i 0.379478 0.219091i −0.298113 0.954530i \(-0.596357\pi\)
0.677591 + 0.735439i \(0.263024\pi\)
\(840\) 0 0
\(841\) 12.6603 21.9283i 0.436562 0.756148i
\(842\) −25.8683 + 44.8052i −0.891480 + 1.54409i
\(843\) 0 0
\(844\) 1.85772 + 3.21767i 0.0639454 + 0.110757i
\(845\) −3.73072 13.7695i −0.128341 0.473684i
\(846\) 0 0
\(847\) 25.3791i 0.872036i
\(848\) −28.8235 49.9238i −0.989803 1.71439i
\(849\) 0 0
\(850\) 7.92683 + 4.57656i 0.271888 + 0.156975i
\(851\) 47.2315 + 27.2691i 1.61908 + 0.934773i
\(852\) 0 0
\(853\) −5.60579 + 3.23650i −0.191939 + 0.110816i −0.592890 0.805284i \(-0.702013\pi\)
0.400951 + 0.916099i \(0.368680\pi\)
\(854\) −10.3478 −0.354093
\(855\) 0 0
\(856\) 23.0076i 0.786382i
\(857\) 13.2153 + 22.8895i 0.451425 + 0.781890i 0.998475 0.0552094i \(-0.0175826\pi\)
−0.547050 + 0.837100i \(0.684249\pi\)
\(858\) 0 0
\(859\) 1.49096 2.58242i 0.0508710 0.0881112i −0.839469 0.543408i \(-0.817134\pi\)
0.890340 + 0.455297i \(0.150467\pi\)
\(860\) 1.14555 + 0.661381i 0.0390628 + 0.0225529i
\(861\) 0 0
\(862\) −10.2733 17.7940i −0.349911 0.606064i
\(863\) 3.40827i 0.116019i −0.998316 0.0580095i \(-0.981525\pi\)
0.998316 0.0580095i \(-0.0184754\pi\)
\(864\) 0 0
\(865\) 13.5050i 0.459184i
\(866\) −39.6476 + 22.8906i −1.34728 + 0.777853i
\(867\) 0 0
\(868\) −7.13684 + 12.3614i −0.242240 + 0.419572i
\(869\) 0.739854 + 0.427155i 0.0250978 + 0.0144902i
\(870\) 0 0
\(871\) 23.6054 18.1655i 0.799839 0.615513i
\(872\) 34.6616 1.17379
\(873\) 0 0
\(874\) 27.7522 0.938732
\(875\) −15.4890 26.8277i −0.523623 0.906942i
\(876\) 0 0
\(877\) 13.8761 + 8.01136i 0.468562 + 0.270524i 0.715638 0.698472i \(-0.246136\pi\)
−0.247076 + 0.968996i \(0.579470\pi\)
\(878\) 16.3479 + 9.43847i 0.551715 + 0.318533i
\(879\) 0 0
\(880\) −4.72415 8.18246i −0.159251 0.275831i
\(881\) 26.8852 0.905787 0.452894 0.891565i \(-0.350392\pi\)
0.452894 + 0.891565i \(0.350392\pi\)
\(882\) 0 0
\(883\) −16.3368 −0.549778 −0.274889 0.961476i \(-0.588641\pi\)
−0.274889 + 0.961476i \(0.588641\pi\)
\(884\) 2.19639 + 2.85414i 0.0738726 + 0.0959951i
\(885\) 0 0
\(886\) 37.2213 + 21.4897i 1.25047 + 0.721962i
\(887\) 12.4100 21.4947i 0.416686 0.721721i −0.578918 0.815386i \(-0.696525\pi\)
0.995604 + 0.0936651i \(0.0298583\pi\)
\(888\) 0 0
\(889\) 17.0363 9.83594i 0.571381 0.329887i
\(890\) 24.1072i 0.808076i
\(891\) 0 0
\(892\) 6.21933i 0.208239i
\(893\) −18.5740 32.1711i −0.621555 1.07656i
\(894\) 0 0
\(895\) 17.9084 + 10.3394i 0.598612 + 0.345609i
\(896\) −21.7061 + 37.5960i −0.725149 + 1.25599i
\(897\) 0 0
\(898\) 24.5114 + 42.4549i 0.817955 + 1.41674i
\(899\) 12.5857i 0.419756i
\(900\) 0 0
\(901\) 17.3498 0.578006
\(902\) 13.4675 7.77546i 0.448419 0.258895i
\(903\) 0 0
\(904\) −5.57878 3.22091i −0.185547 0.107126i
\(905\) 10.3369 + 5.96800i 0.343610 + 0.198383i
\(906\) 0 0
\(907\) 14.4337 + 25.0000i 0.479265 + 0.830111i 0.999717 0.0237800i \(-0.00757011\pi\)
−0.520453 + 0.853891i \(0.674237\pi\)
\(908\) 2.33510i 0.0774930i
\(909\) 0 0
\(910\) −2.74106 20.5983i −0.0908651 0.682827i
\(911\) 6.64094 + 11.5024i 0.220024 + 0.381093i 0.954815 0.297201i \(-0.0960530\pi\)
−0.734791 + 0.678294i \(0.762720\pi\)
\(912\) 0 0
\(913\) −13.6401 + 23.6254i −0.451422 + 0.781886i
\(914\) −9.37672 + 16.2410i −0.310154 + 0.537203i
\(915\) 0 0
\(916\) 7.32708 4.23029i 0.242093 0.139773i
\(917\) 27.0400i 0.892940i
\(918\) 0 0
\(919\) −3.98083 −0.131316 −0.0656578 0.997842i \(-0.520915\pi\)
−0.0656578 + 0.997842i \(0.520915\pi\)
\(920\) 5.57005 + 9.64761i 0.183639 + 0.318072i
\(921\) 0 0
\(922\) 23.3291 40.4072i 0.768303 1.33074i
\(923\) −19.4935 8.04262i −0.641636 0.264726i
\(924\) 0 0
\(925\) 38.2098 22.0605i 1.25633 0.725344i
\(926\) −2.77516 −0.0911975
\(927\) 0 0
\(928\) 7.06846i 0.232033i
\(929\) 6.37258 3.67921i 0.209077 0.120711i −0.391805 0.920048i \(-0.628149\pi\)
0.600883 + 0.799337i \(0.294816\pi\)
\(930\) 0 0
\(931\) 10.3305 + 5.96432i 0.338569 + 0.195473i
\(932\) 1.72448 2.98689i 0.0564873 0.0978389i
\(933\) 0 0
\(934\) −20.0129 + 11.5545i −0.654843 + 0.378074i
\(935\) 2.84362 0.0929964
\(936\) 0 0
\(937\) 8.02666 0.262220 0.131110 0.991368i \(-0.458146\pi\)
0.131110 + 0.991368i \(0.458146\pi\)
\(938\) 37.5738 21.6932i 1.22683 0.708309i
\(939\) 0 0
\(940\) −3.82240 + 6.62058i −0.124673 + 0.215940i
\(941\) 12.3516 + 7.13120i 0.402650 + 0.232470i 0.687627 0.726064i \(-0.258652\pi\)
−0.284977 + 0.958534i \(0.591986\pi\)
\(942\) 0 0
\(943\) −21.9590 + 12.6781i −0.715085 + 0.412854i
\(944\) 27.0575i 0.880648i
\(945\) 0 0
\(946\) −5.11717 −0.166374
\(947\) −7.11939 + 4.11038i −0.231349 + 0.133569i −0.611194 0.791481i \(-0.709311\pi\)
0.379845 + 0.925050i \(0.375977\pi\)
\(948\) 0 0
\(949\) 4.15606 + 1.71471i 0.134911 + 0.0556617i
\(950\) 11.2256 19.4434i 0.364208 0.630826i
\(951\) 0 0
\(952\) −5.11621 8.86154i −0.165817 0.287204i
\(953\) 34.3915 1.11405 0.557025 0.830496i \(-0.311943\pi\)
0.557025 + 0.830496i \(0.311943\pi\)
\(954\) 0 0
\(955\) 20.4080i 0.660388i
\(956\) 0.891104 0.514479i 0.0288204 0.0166394i
\(957\) 0 0
\(958\) 22.7162 39.3455i 0.733926 1.27120i
\(959\) 12.4267 21.5237i 0.401280 0.695037i
\(960\) 0 0
\(961\) 6.02525 + 10.4360i 0.194363 + 0.336647i
\(962\) 67.9826 9.04658i 2.19185 0.291673i
\(963\) 0 0
\(964\) 12.9486i 0.417045i
\(965\) −7.10957 12.3141i −0.228865 0.396406i
\(966\) 0 0
\(967\) −43.1384 24.9059i −1.38724 0.800921i −0.394233 0.919010i \(-0.628990\pi\)
−0.993003 + 0.118089i \(0.962323\pi\)
\(968\) −14.8170 8.55462i −0.476238 0.274956i
\(969\) 0 0
\(970\) 9.26175 5.34727i 0.297377 0.171691i
\(971\) −49.8192 −1.59878 −0.799388 0.600815i \(-0.794843\pi\)
−0.799388 + 0.600815i \(0.794843\pi\)
\(972\) 0 0
\(973\) 40.4253i 1.29597i
\(974\) −22.5741 39.0995i −0.723322 1.25283i
\(975\) 0 0
\(976\) 4.82349 8.35454i 0.154396 0.267422i
\(977\) −37.7814 21.8131i −1.20873 0.697863i −0.246252 0.969206i \(-0.579199\pi\)
−0.962483 + 0.271343i \(0.912532\pi\)
\(978\) 0 0
\(979\) −11.8034 20.4440i −0.377237 0.653394i
\(980\) 2.45483i 0.0784167i
\(981\) 0 0
\(982\) 66.6618i 2.12726i
\(983\) −49.7372 + 28.7158i −1.58637 + 0.915891i −0.592472 + 0.805591i \(0.701848\pi\)
−0.993898 + 0.110300i \(0.964819\pi\)
\(984\) 0 0
\(985\) −7.73451 + 13.3966i −0.246442 + 0.426850i
\(986\) 4.00579 + 2.31274i 0.127570 + 0.0736528i
\(987\) 0 0
\(988\) 7.00079 5.38743i 0.222725 0.171397i
\(989\) 8.34366 0.265313
\(990\) 0 0
\(991\) 7.92798 0.251841 0.125920 0.992040i \(-0.459812\pi\)
0.125920 + 0.992040i \(0.459812\pi\)
\(992\) −12.0892 20.9391i −0.383831 0.664816i
\(993\) 0 0
\(994\) −26.6010 15.3581i −0.843732 0.487129i
\(995\) 15.8627 + 9.15833i 0.502881 + 0.290339i
\(996\) 0 0
\(997\) 23.0997 + 40.0098i 0.731573 + 1.26712i 0.956210 + 0.292680i \(0.0945470\pi\)
−0.224637 + 0.974443i \(0.572120\pi\)
\(998\) 25.5644 0.809228
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 351.2.t.c.64.8 20
3.2 odd 2 117.2.t.c.103.3 yes 20
9.2 odd 6 117.2.t.c.25.8 yes 20
9.4 even 3 1053.2.b.i.649.8 10
9.5 odd 6 1053.2.b.j.649.3 10
9.7 even 3 inner 351.2.t.c.181.3 20
13.12 even 2 inner 351.2.t.c.64.3 20
39.38 odd 2 117.2.t.c.103.8 yes 20
117.25 even 6 inner 351.2.t.c.181.8 20
117.38 odd 6 117.2.t.c.25.3 20
117.77 odd 6 1053.2.b.j.649.8 10
117.103 even 6 1053.2.b.i.649.3 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.t.c.25.3 20 117.38 odd 6
117.2.t.c.25.8 yes 20 9.2 odd 6
117.2.t.c.103.3 yes 20 3.2 odd 2
117.2.t.c.103.8 yes 20 39.38 odd 2
351.2.t.c.64.3 20 13.12 even 2 inner
351.2.t.c.64.8 20 1.1 even 1 trivial
351.2.t.c.181.3 20 9.7 even 3 inner
351.2.t.c.181.8 20 117.25 even 6 inner
1053.2.b.i.649.3 10 117.103 even 6
1053.2.b.i.649.8 10 9.4 even 3
1053.2.b.j.649.3 10 9.5 odd 6
1053.2.b.j.649.8 10 117.77 odd 6