Properties

Label 351.2.t.c.64.4
Level $351$
Weight $2$
Character 351.64
Analytic conductor $2.803$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [351,2,Mod(64,351)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(351, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("351.64");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.80274911095\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 6x^{16} + 9x^{14} + 54x^{12} + 81x^{10} + 486x^{8} + 729x^{6} - 4374x^{4} + 59049 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{9} \)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 64.4
Root \(1.65391 + 0.514376i\) of defining polynomial
Character \(\chi\) \(=\) 351.64
Dual form 351.2.t.c.181.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.929969 + 0.536918i) q^{2} +(-0.423439 + 0.733417i) q^{4} +(-1.10543 - 0.638222i) q^{5} +(0.890926 - 0.514376i) q^{7} -3.05708i q^{8} +1.37069 q^{10} +(-4.03796 + 2.33132i) q^{11} +(-3.55524 - 0.600200i) q^{13} +(-0.552355 + 0.956708i) q^{14} +(0.794522 + 1.37615i) q^{16} +0.476187 q^{17} -6.69096i q^{19} +(0.936166 - 0.540496i) q^{20} +(2.50345 - 4.33610i) q^{22} +(0.479867 - 0.831155i) q^{23} +(-1.68535 - 2.91910i) q^{25} +(3.62852 - 1.35071i) q^{26} +0.871227i q^{28} +(-4.68880 - 8.12123i) q^{29} +(-1.66927 - 0.963754i) q^{31} +(3.81725 + 2.20389i) q^{32} +(-0.442839 + 0.255673i) q^{34} -1.31314 q^{35} +4.94666i q^{37} +(3.59249 + 6.22238i) q^{38} +(-1.95109 + 3.37939i) q^{40} +(1.31994 + 0.762068i) q^{41} +(-1.31426 - 2.27637i) q^{43} -3.94868i q^{44} +1.03060i q^{46} +(-5.92316 + 3.41974i) q^{47} +(-2.97083 + 5.14564i) q^{49} +(3.13464 + 1.80978i) q^{50} +(1.94563 - 2.35333i) q^{52} -0.582145 q^{53} +5.95159 q^{55} +(-1.57249 - 2.72363i) q^{56} +(8.72087 + 5.03499i) q^{58} +(3.64799 + 2.10617i) q^{59} +(-4.71645 - 8.16913i) q^{61} +2.06983 q^{62} -7.91132 q^{64} +(3.54702 + 2.93252i) q^{65} +(-2.01156 - 1.16138i) q^{67} +(-0.201636 + 0.349243i) q^{68} +(1.22118 - 0.705051i) q^{70} -1.35071i q^{71} +12.8687i q^{73} +(-2.65595 - 4.60024i) q^{74} +(4.90726 + 2.83321i) q^{76} +(-2.39835 + 4.15406i) q^{77} +(6.45415 + 11.1789i) q^{79} -2.02833i q^{80} -1.63667 q^{82} +(8.86189 - 5.11641i) q^{83} +(-0.526392 - 0.303913i) q^{85} +(2.44445 + 1.41130i) q^{86} +(7.12701 + 12.3444i) q^{88} +6.85985i q^{89} +(-3.47619 + 1.29400i) q^{91} +(0.406389 + 0.703886i) q^{92} +(3.67224 - 6.36050i) q^{94} +(-4.27032 + 7.39640i) q^{95} +(-14.9635 + 8.63918i) q^{97} -6.38037i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 12 q^{4} - 16 q^{10} - 4 q^{13} + 18 q^{14} + 4 q^{16} + 12 q^{17} - 10 q^{22} - 24 q^{23} - 12 q^{25} + 12 q^{26} - 12 q^{29} + 12 q^{35} - 12 q^{38} - 8 q^{40} + 4 q^{43} - 10 q^{49} - 108 q^{53}+ \cdots - 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.929969 + 0.536918i −0.657587 + 0.379658i −0.791357 0.611354i \(-0.790625\pi\)
0.133770 + 0.991012i \(0.457292\pi\)
\(3\) 0 0
\(4\) −0.423439 + 0.733417i −0.211719 + 0.366709i
\(5\) −1.10543 0.638222i −0.494365 0.285422i 0.232019 0.972711i \(-0.425467\pi\)
−0.726383 + 0.687290i \(0.758800\pi\)
\(6\) 0 0
\(7\) 0.890926 0.514376i 0.336738 0.194416i −0.322090 0.946709i \(-0.604386\pi\)
0.658829 + 0.752293i \(0.271052\pi\)
\(8\) 3.05708i 1.08084i
\(9\) 0 0
\(10\) 1.37069 0.433450
\(11\) −4.03796 + 2.33132i −1.21749 + 0.702918i −0.964380 0.264519i \(-0.914787\pi\)
−0.253110 + 0.967438i \(0.581453\pi\)
\(12\) 0 0
\(13\) −3.55524 0.600200i −0.986047 0.166466i
\(14\) −0.552355 + 0.956708i −0.147623 + 0.255691i
\(15\) 0 0
\(16\) 0.794522 + 1.37615i 0.198631 + 0.344038i
\(17\) 0.476187 0.115492 0.0577461 0.998331i \(-0.481609\pi\)
0.0577461 + 0.998331i \(0.481609\pi\)
\(18\) 0 0
\(19\) 6.69096i 1.53501i −0.641042 0.767505i \(-0.721498\pi\)
0.641042 0.767505i \(-0.278502\pi\)
\(20\) 0.936166 0.540496i 0.209333 0.120859i
\(21\) 0 0
\(22\) 2.50345 4.33610i 0.533737 0.924460i
\(23\) 0.479867 0.831155i 0.100059 0.173308i −0.811650 0.584145i \(-0.801430\pi\)
0.911709 + 0.410837i \(0.134763\pi\)
\(24\) 0 0
\(25\) −1.68535 2.91910i −0.337069 0.583821i
\(26\) 3.62852 1.35071i 0.711612 0.264895i
\(27\) 0 0
\(28\) 0.871227i 0.164646i
\(29\) −4.68880 8.12123i −0.870687 1.50807i −0.861287 0.508119i \(-0.830341\pi\)
−0.00940050 0.999956i \(-0.502992\pi\)
\(30\) 0 0
\(31\) −1.66927 0.963754i −0.299810 0.173095i 0.342548 0.939500i \(-0.388710\pi\)
−0.642357 + 0.766405i \(0.722044\pi\)
\(32\) 3.81725 + 2.20389i 0.674801 + 0.389597i
\(33\) 0 0
\(34\) −0.442839 + 0.255673i −0.0759462 + 0.0438476i
\(35\) −1.31314 −0.221962
\(36\) 0 0
\(37\) 4.94666i 0.813226i 0.913601 + 0.406613i \(0.133290\pi\)
−0.913601 + 0.406613i \(0.866710\pi\)
\(38\) 3.59249 + 6.22238i 0.582779 + 1.00940i
\(39\) 0 0
\(40\) −1.95109 + 3.37939i −0.308495 + 0.534329i
\(41\) 1.31994 + 0.762068i 0.206140 + 0.119015i 0.599516 0.800363i \(-0.295360\pi\)
−0.393376 + 0.919378i \(0.628693\pi\)
\(42\) 0 0
\(43\) −1.31426 2.27637i −0.200423 0.347143i 0.748242 0.663426i \(-0.230898\pi\)
−0.948665 + 0.316283i \(0.897565\pi\)
\(44\) 3.94868i 0.595285i
\(45\) 0 0
\(46\) 1.03060i 0.151953i
\(47\) −5.92316 + 3.41974i −0.863982 + 0.498820i −0.865344 0.501179i \(-0.832900\pi\)
0.00136148 + 0.999999i \(0.499567\pi\)
\(48\) 0 0
\(49\) −2.97083 + 5.14564i −0.424405 + 0.735091i
\(50\) 3.13464 + 1.80978i 0.443305 + 0.255942i
\(51\) 0 0
\(52\) 1.94563 2.35333i 0.269810 0.326348i
\(53\) −0.582145 −0.0799637 −0.0399819 0.999200i \(-0.512730\pi\)
−0.0399819 + 0.999200i \(0.512730\pi\)
\(54\) 0 0
\(55\) 5.95159 0.802512
\(56\) −1.57249 2.72363i −0.210133 0.363960i
\(57\) 0 0
\(58\) 8.72087 + 5.03499i 1.14511 + 0.661127i
\(59\) 3.64799 + 2.10617i 0.474927 + 0.274199i 0.718300 0.695733i \(-0.244920\pi\)
−0.243373 + 0.969933i \(0.578254\pi\)
\(60\) 0 0
\(61\) −4.71645 8.16913i −0.603880 1.04595i −0.992227 0.124437i \(-0.960287\pi\)
0.388348 0.921513i \(-0.373046\pi\)
\(62\) 2.06983 0.262868
\(63\) 0 0
\(64\) −7.91132 −0.988915
\(65\) 3.54702 + 2.93252i 0.439954 + 0.363734i
\(66\) 0 0
\(67\) −2.01156 1.16138i −0.245751 0.141885i 0.372066 0.928206i \(-0.378650\pi\)
−0.617817 + 0.786322i \(0.711983\pi\)
\(68\) −0.201636 + 0.349243i −0.0244519 + 0.0423520i
\(69\) 0 0
\(70\) 1.22118 0.705051i 0.145959 0.0842697i
\(71\) 1.35071i 0.160299i −0.996783 0.0801497i \(-0.974460\pi\)
0.996783 0.0801497i \(-0.0255398\pi\)
\(72\) 0 0
\(73\) 12.8687i 1.50617i 0.657923 + 0.753085i \(0.271435\pi\)
−0.657923 + 0.753085i \(0.728565\pi\)
\(74\) −2.65595 4.60024i −0.308748 0.534767i
\(75\) 0 0
\(76\) 4.90726 + 2.83321i 0.562902 + 0.324991i
\(77\) −2.39835 + 4.15406i −0.273317 + 0.473399i
\(78\) 0 0
\(79\) 6.45415 + 11.1789i 0.726149 + 1.25773i 0.958499 + 0.285094i \(0.0920250\pi\)
−0.232351 + 0.972632i \(0.574642\pi\)
\(80\) 2.02833i 0.226774i
\(81\) 0 0
\(82\) −1.63667 −0.180740
\(83\) 8.86189 5.11641i 0.972718 0.561599i 0.0726545 0.997357i \(-0.476853\pi\)
0.900064 + 0.435758i \(0.143520\pi\)
\(84\) 0 0
\(85\) −0.526392 0.303913i −0.0570953 0.0329640i
\(86\) 2.44445 + 1.41130i 0.263591 + 0.152185i
\(87\) 0 0
\(88\) 7.12701 + 12.3444i 0.759742 + 1.31591i
\(89\) 6.85985i 0.727143i 0.931566 + 0.363572i \(0.118443\pi\)
−0.931566 + 0.363572i \(0.881557\pi\)
\(90\) 0 0
\(91\) −3.47619 + 1.29400i −0.364403 + 0.135648i
\(92\) 0.406389 + 0.703886i 0.0423690 + 0.0733852i
\(93\) 0 0
\(94\) 3.67224 6.36050i 0.378763 0.656036i
\(95\) −4.27032 + 7.39640i −0.438125 + 0.758855i
\(96\) 0 0
\(97\) −14.9635 + 8.63918i −1.51931 + 0.877175i −0.519571 + 0.854427i \(0.673908\pi\)
−0.999741 + 0.0227483i \(0.992758\pi\)
\(98\) 6.38037i 0.644515i
\(99\) 0 0
\(100\) 2.85456 0.285456
\(101\) 6.76434 + 11.7162i 0.673077 + 1.16580i 0.977027 + 0.213116i \(0.0683611\pi\)
−0.303950 + 0.952688i \(0.598306\pi\)
\(102\) 0 0
\(103\) −0.0523553 + 0.0906821i −0.00515873 + 0.00893517i −0.868593 0.495526i \(-0.834975\pi\)
0.863435 + 0.504461i \(0.168309\pi\)
\(104\) −1.83486 + 10.8687i −0.179923 + 1.06576i
\(105\) 0 0
\(106\) 0.541376 0.312564i 0.0525831 0.0303589i
\(107\) −12.4240 −1.20107 −0.600535 0.799598i \(-0.705046\pi\)
−0.600535 + 0.799598i \(0.705046\pi\)
\(108\) 0 0
\(109\) 14.1160i 1.35207i −0.736869 0.676036i \(-0.763696\pi\)
0.736869 0.676036i \(-0.236304\pi\)
\(110\) −5.53479 + 3.19551i −0.527722 + 0.304680i
\(111\) 0 0
\(112\) 1.41572 + 0.817366i 0.133773 + 0.0772339i
\(113\) 5.84280 10.1200i 0.549645 0.952013i −0.448654 0.893706i \(-0.648096\pi\)
0.998299 0.0583071i \(-0.0185703\pi\)
\(114\) 0 0
\(115\) −1.06092 + 0.612524i −0.0989315 + 0.0571181i
\(116\) 7.94167 0.737365
\(117\) 0 0
\(118\) −4.52335 −0.416408
\(119\) 0.424247 0.244939i 0.0388906 0.0224535i
\(120\) 0 0
\(121\) 5.37007 9.30123i 0.488188 0.845566i
\(122\) 8.77230 + 5.06469i 0.794207 + 0.458536i
\(123\) 0 0
\(124\) 1.41367 0.816181i 0.126951 0.0732952i
\(125\) 10.6847i 0.955670i
\(126\) 0 0
\(127\) −8.11161 −0.719789 −0.359894 0.932993i \(-0.617187\pi\)
−0.359894 + 0.932993i \(0.617187\pi\)
\(128\) −0.277222 + 0.160054i −0.0245032 + 0.0141469i
\(129\) 0 0
\(130\) −4.87314 0.822689i −0.427403 0.0721546i
\(131\) 4.68039 8.10667i 0.408927 0.708283i −0.585843 0.810425i \(-0.699236\pi\)
0.994770 + 0.102142i \(0.0325697\pi\)
\(132\) 0 0
\(133\) −3.44167 5.96115i −0.298431 0.516897i
\(134\) 2.49425 0.215471
\(135\) 0 0
\(136\) 1.45574i 0.124829i
\(137\) 0.512400 0.295834i 0.0437773 0.0252748i −0.477952 0.878386i \(-0.658621\pi\)
0.521729 + 0.853111i \(0.325287\pi\)
\(138\) 0 0
\(139\) 6.33633 10.9749i 0.537441 0.930875i −0.461600 0.887088i \(-0.652724\pi\)
0.999041 0.0437867i \(-0.0139422\pi\)
\(140\) 0.556036 0.963083i 0.0469936 0.0813954i
\(141\) 0 0
\(142\) 0.725218 + 1.25611i 0.0608589 + 0.105411i
\(143\) 15.7552 5.86481i 1.31751 0.490440i
\(144\) 0 0
\(145\) 11.9700i 0.994052i
\(146\) −6.90945 11.9675i −0.571830 0.990438i
\(147\) 0 0
\(148\) −3.62796 2.09461i −0.298217 0.172176i
\(149\) −10.1242 5.84520i −0.829406 0.478858i 0.0242432 0.999706i \(-0.492282\pi\)
−0.853649 + 0.520848i \(0.825616\pi\)
\(150\) 0 0
\(151\) 8.83800 5.10262i 0.719226 0.415245i −0.0952418 0.995454i \(-0.530362\pi\)
0.814468 + 0.580209i \(0.197029\pi\)
\(152\) −20.4548 −1.65910
\(153\) 0 0
\(154\) 5.15086i 0.415068i
\(155\) 1.23018 + 2.13073i 0.0988102 + 0.171144i
\(156\) 0 0
\(157\) −5.47021 + 9.47468i −0.436570 + 0.756162i −0.997422 0.0717541i \(-0.977140\pi\)
0.560852 + 0.827916i \(0.310474\pi\)
\(158\) −12.0043 6.93070i −0.955012 0.551377i
\(159\) 0 0
\(160\) −2.81314 4.87251i −0.222399 0.385206i
\(161\) 0.987329i 0.0778125i
\(162\) 0 0
\(163\) 16.9633i 1.32867i −0.747436 0.664334i \(-0.768715\pi\)
0.747436 0.664334i \(-0.231285\pi\)
\(164\) −1.11783 + 0.645378i −0.0872877 + 0.0503956i
\(165\) 0 0
\(166\) −5.49419 + 9.51621i −0.426431 + 0.738601i
\(167\) −14.5559 8.40384i −1.12637 0.650309i −0.183349 0.983048i \(-0.558694\pi\)
−0.943019 + 0.332739i \(0.892027\pi\)
\(168\) 0 0
\(169\) 12.2795 + 4.26772i 0.944578 + 0.328286i
\(170\) 0.652705 0.0500602
\(171\) 0 0
\(172\) 2.22604 0.169734
\(173\) −9.54320 16.5293i −0.725556 1.25670i −0.958745 0.284268i \(-0.908249\pi\)
0.233189 0.972431i \(-0.425084\pi\)
\(174\) 0 0
\(175\) −3.00303 1.73380i −0.227008 0.131063i
\(176\) −6.41649 3.70456i −0.483661 0.279242i
\(177\) 0 0
\(178\) −3.68318 6.37945i −0.276066 0.478160i
\(179\) 8.33634 0.623087 0.311544 0.950232i \(-0.399154\pi\)
0.311544 + 0.950232i \(0.399154\pi\)
\(180\) 0 0
\(181\) 9.93629 0.738558 0.369279 0.929318i \(-0.379605\pi\)
0.369279 + 0.929318i \(0.379605\pi\)
\(182\) 2.53797 3.06980i 0.188127 0.227549i
\(183\) 0 0
\(184\) −2.54090 1.46699i −0.187318 0.108148i
\(185\) 3.15707 5.46820i 0.232112 0.402030i
\(186\) 0 0
\(187\) −1.92282 + 1.11014i −0.140611 + 0.0811816i
\(188\) 5.79220i 0.422440i
\(189\) 0 0
\(190\) 9.17123i 0.665351i
\(191\) −3.03797 5.26192i −0.219820 0.380739i 0.734933 0.678140i \(-0.237214\pi\)
−0.954753 + 0.297401i \(0.903880\pi\)
\(192\) 0 0
\(193\) 14.3007 + 8.25650i 1.02939 + 0.594316i 0.916809 0.399327i \(-0.130756\pi\)
0.112577 + 0.993643i \(0.464090\pi\)
\(194\) 9.27705 16.0683i 0.666054 1.15364i
\(195\) 0 0
\(196\) −2.51593 4.35772i −0.179709 0.311266i
\(197\) 19.1696i 1.36578i 0.730523 + 0.682888i \(0.239276\pi\)
−0.730523 + 0.682888i \(0.760724\pi\)
\(198\) 0 0
\(199\) 9.06267 0.642436 0.321218 0.947005i \(-0.395908\pi\)
0.321218 + 0.947005i \(0.395908\pi\)
\(200\) −8.92393 + 5.15223i −0.631017 + 0.364318i
\(201\) 0 0
\(202\) −12.5813 7.26379i −0.885214 0.511078i
\(203\) −8.35474 4.82361i −0.586387 0.338551i
\(204\) 0 0
\(205\) −0.972737 1.68483i −0.0679389 0.117674i
\(206\) 0.112442i 0.00783421i
\(207\) 0 0
\(208\) −1.99875 5.36943i −0.138589 0.372303i
\(209\) 15.5987 + 27.0178i 1.07899 + 1.86886i
\(210\) 0 0
\(211\) 7.34882 12.7285i 0.505913 0.876268i −0.494063 0.869426i \(-0.664489\pi\)
0.999977 0.00684175i \(-0.00217781\pi\)
\(212\) 0.246503 0.426955i 0.0169299 0.0293234i
\(213\) 0 0
\(214\) 11.5539 6.67065i 0.789809 0.455996i
\(215\) 3.35516i 0.228820i
\(216\) 0 0
\(217\) −1.98293 −0.134610
\(218\) 7.57916 + 13.1275i 0.513325 + 0.889105i
\(219\) 0 0
\(220\) −2.52013 + 4.36500i −0.169907 + 0.294288i
\(221\) −1.69296 0.285807i −0.113881 0.0192255i
\(222\) 0 0
\(223\) 17.4983 10.1026i 1.17177 0.676521i 0.217673 0.976022i \(-0.430153\pi\)
0.954096 + 0.299500i \(0.0968199\pi\)
\(224\) 4.53452 0.302975
\(225\) 0 0
\(226\) 12.5484i 0.834709i
\(227\) 17.8003 10.2770i 1.18145 0.682109i 0.225098 0.974336i \(-0.427730\pi\)
0.956349 + 0.292228i \(0.0943965\pi\)
\(228\) 0 0
\(229\) −17.2270 9.94602i −1.13839 0.657251i −0.192361 0.981324i \(-0.561614\pi\)
−0.946032 + 0.324073i \(0.894948\pi\)
\(230\) 0.657750 1.13926i 0.0433707 0.0751203i
\(231\) 0 0
\(232\) −24.8272 + 14.3340i −1.62999 + 0.941074i
\(233\) −28.3932 −1.86010 −0.930049 0.367436i \(-0.880236\pi\)
−0.930049 + 0.367436i \(0.880236\pi\)
\(234\) 0 0
\(235\) 8.73021 0.569496
\(236\) −3.08940 + 1.78366i −0.201103 + 0.116107i
\(237\) 0 0
\(238\) −0.263024 + 0.455571i −0.0170493 + 0.0295303i
\(239\) −12.7434 7.35741i −0.824302 0.475911i 0.0275956 0.999619i \(-0.491215\pi\)
−0.851898 + 0.523708i \(0.824548\pi\)
\(240\) 0 0
\(241\) −11.4631 + 6.61822i −0.738403 + 0.426317i −0.821488 0.570225i \(-0.806856\pi\)
0.0830856 + 0.996542i \(0.473523\pi\)
\(242\) 11.5331i 0.741378i
\(243\) 0 0
\(244\) 7.98851 0.511412
\(245\) 6.56812 3.79210i 0.419622 0.242269i
\(246\) 0 0
\(247\) −4.01591 + 23.7880i −0.255526 + 1.51359i
\(248\) −2.94627 + 5.10309i −0.187088 + 0.324047i
\(249\) 0 0
\(250\) −5.73681 9.93645i −0.362828 0.628437i
\(251\) 11.9439 0.753893 0.376946 0.926235i \(-0.376974\pi\)
0.376946 + 0.926235i \(0.376974\pi\)
\(252\) 0 0
\(253\) 4.47489i 0.281334i
\(254\) 7.54354 4.35527i 0.473324 0.273274i
\(255\) 0 0
\(256\) 8.08319 14.0005i 0.505200 0.875032i
\(257\) −7.48243 + 12.9600i −0.466741 + 0.808419i −0.999278 0.0379872i \(-0.987905\pi\)
0.532537 + 0.846407i \(0.321239\pi\)
\(258\) 0 0
\(259\) 2.54444 + 4.40710i 0.158104 + 0.273844i
\(260\) −3.65270 + 1.35971i −0.226531 + 0.0843255i
\(261\) 0 0
\(262\) 10.0519i 0.621010i
\(263\) 0.774621 + 1.34168i 0.0477652 + 0.0827317i 0.888919 0.458063i \(-0.151457\pi\)
−0.841154 + 0.540795i \(0.818123\pi\)
\(264\) 0 0
\(265\) 0.643522 + 0.371538i 0.0395312 + 0.0228234i
\(266\) 6.40129 + 3.69579i 0.392488 + 0.226603i
\(267\) 0 0
\(268\) 1.70355 0.983543i 0.104061 0.0600794i
\(269\) −21.0293 −1.28218 −0.641090 0.767466i \(-0.721517\pi\)
−0.641090 + 0.767466i \(0.721517\pi\)
\(270\) 0 0
\(271\) 12.7508i 0.774554i −0.921963 0.387277i \(-0.873416\pi\)
0.921963 0.387277i \(-0.126584\pi\)
\(272\) 0.378341 + 0.655305i 0.0229403 + 0.0397337i
\(273\) 0 0
\(274\) −0.317677 + 0.550233i −0.0191916 + 0.0332408i
\(275\) 13.6107 + 7.85814i 0.820756 + 0.473864i
\(276\) 0 0
\(277\) 5.81364 + 10.0695i 0.349308 + 0.605019i 0.986127 0.165995i \(-0.0530835\pi\)
−0.636819 + 0.771013i \(0.719750\pi\)
\(278\) 13.6084i 0.816175i
\(279\) 0 0
\(280\) 4.01439i 0.239905i
\(281\) 14.9681 8.64183i 0.892921 0.515528i 0.0180245 0.999838i \(-0.494262\pi\)
0.874897 + 0.484309i \(0.160929\pi\)
\(282\) 0 0
\(283\) −10.8047 + 18.7143i −0.642273 + 1.11245i 0.342651 + 0.939463i \(0.388675\pi\)
−0.984924 + 0.172987i \(0.944658\pi\)
\(284\) 0.990631 + 0.571941i 0.0587831 + 0.0339385i
\(285\) 0 0
\(286\) −11.5029 + 13.9133i −0.680181 + 0.822712i
\(287\) 1.56796 0.0925536
\(288\) 0 0
\(289\) −16.7732 −0.986662
\(290\) −6.42689 11.1317i −0.377400 0.653676i
\(291\) 0 0
\(292\) −9.43814 5.44912i −0.552326 0.318885i
\(293\) −0.0618730 0.0357224i −0.00361466 0.00208692i 0.498192 0.867067i \(-0.333998\pi\)
−0.501806 + 0.864980i \(0.667331\pi\)
\(294\) 0 0
\(295\) −2.68840 4.65645i −0.156525 0.271109i
\(296\) 15.1223 0.878967
\(297\) 0 0
\(298\) 12.5536 0.727209
\(299\) −2.20491 + 2.66694i −0.127513 + 0.154233i
\(300\) 0 0
\(301\) −2.34182 1.35205i −0.134980 0.0779309i
\(302\) −5.47937 + 9.49055i −0.315303 + 0.546120i
\(303\) 0 0
\(304\) 9.20778 5.31611i 0.528102 0.304900i
\(305\) 12.0406i 0.689441i
\(306\) 0 0
\(307\) 19.9335i 1.13766i 0.822454 + 0.568831i \(0.192604\pi\)
−0.822454 + 0.568831i \(0.807396\pi\)
\(308\) −2.03111 3.51798i −0.115733 0.200455i
\(309\) 0 0
\(310\) −2.28805 1.32101i −0.129953 0.0750282i
\(311\) 3.04014 5.26567i 0.172390 0.298589i −0.766865 0.641809i \(-0.778184\pi\)
0.939255 + 0.343220i \(0.111518\pi\)
\(312\) 0 0
\(313\) −3.04622 5.27620i −0.172182 0.298228i 0.767000 0.641647i \(-0.221748\pi\)
−0.939183 + 0.343418i \(0.888415\pi\)
\(314\) 11.7482i 0.662990i
\(315\) 0 0
\(316\) −10.9317 −0.614959
\(317\) 8.25032 4.76332i 0.463384 0.267535i −0.250082 0.968225i \(-0.580458\pi\)
0.713466 + 0.700690i \(0.247124\pi\)
\(318\) 0 0
\(319\) 37.8663 + 21.8621i 2.12011 + 1.22404i
\(320\) 8.74544 + 5.04918i 0.488885 + 0.282258i
\(321\) 0 0
\(322\) 0.530115 + 0.918186i 0.0295421 + 0.0511685i
\(323\) 3.18614i 0.177282i
\(324\) 0 0
\(325\) 4.23977 + 11.3897i 0.235180 + 0.631785i
\(326\) 9.10790 + 15.7753i 0.504440 + 0.873715i
\(327\) 0 0
\(328\) 2.32970 4.03516i 0.128636 0.222804i
\(329\) −3.51807 + 6.09347i −0.193957 + 0.335944i
\(330\) 0 0
\(331\) 15.7143 9.07268i 0.863739 0.498680i −0.00152386 0.999999i \(-0.500485\pi\)
0.865262 + 0.501319i \(0.167152\pi\)
\(332\) 8.66595i 0.475606i
\(333\) 0 0
\(334\) 18.0487 0.987580
\(335\) 1.48243 + 2.56765i 0.0809938 + 0.140285i
\(336\) 0 0
\(337\) 4.00930 6.94430i 0.218400 0.378280i −0.735919 0.677070i \(-0.763250\pi\)
0.954319 + 0.298789i \(0.0965828\pi\)
\(338\) −13.7110 + 2.62425i −0.745779 + 0.142740i
\(339\) 0 0
\(340\) 0.445790 0.257377i 0.0241763 0.0139582i
\(341\) 8.98726 0.486687
\(342\) 0 0
\(343\) 13.3138i 0.718876i
\(344\) −6.95904 + 4.01780i −0.375206 + 0.216625i
\(345\) 0 0
\(346\) 17.7497 + 10.2478i 0.954232 + 0.550926i
\(347\) 8.31364 14.3996i 0.446299 0.773013i −0.551842 0.833949i \(-0.686075\pi\)
0.998142 + 0.0609351i \(0.0194083\pi\)
\(348\) 0 0
\(349\) 0.155013 0.0894966i 0.00829764 0.00479065i −0.495845 0.868411i \(-0.665142\pi\)
0.504143 + 0.863620i \(0.331808\pi\)
\(350\) 3.72364 0.199037
\(351\) 0 0
\(352\) −20.5519 −1.09542
\(353\) 14.6540 8.46052i 0.779956 0.450308i −0.0564585 0.998405i \(-0.517981\pi\)
0.836415 + 0.548097i \(0.184648\pi\)
\(354\) 0 0
\(355\) −0.862050 + 1.49311i −0.0457529 + 0.0792463i
\(356\) −5.03114 2.90473i −0.266650 0.153950i
\(357\) 0 0
\(358\) −7.75253 + 4.47593i −0.409734 + 0.236560i
\(359\) 34.4410i 1.81773i −0.417093 0.908864i \(-0.636951\pi\)
0.417093 0.908864i \(-0.363049\pi\)
\(360\) 0 0
\(361\) −25.7689 −1.35626
\(362\) −9.24044 + 5.33497i −0.485667 + 0.280400i
\(363\) 0 0
\(364\) 0.522911 3.09742i 0.0274080 0.162349i
\(365\) 8.21310 14.2255i 0.429893 0.744597i
\(366\) 0 0
\(367\) −12.5426 21.7244i −0.654717 1.13400i −0.981965 0.189064i \(-0.939455\pi\)
0.327248 0.944939i \(-0.393879\pi\)
\(368\) 1.52506 0.0794993
\(369\) 0 0
\(370\) 6.78034i 0.352493i
\(371\) −0.518648 + 0.299441i −0.0269268 + 0.0155462i
\(372\) 0 0
\(373\) −5.47530 + 9.48350i −0.283500 + 0.491037i −0.972244 0.233968i \(-0.924829\pi\)
0.688744 + 0.725005i \(0.258162\pi\)
\(374\) 1.19211 2.06479i 0.0616425 0.106768i
\(375\) 0 0
\(376\) 10.4544 + 18.1076i 0.539145 + 0.933827i
\(377\) 11.7954 + 31.6872i 0.607496 + 1.63197i
\(378\) 0 0
\(379\) 11.1048i 0.570415i −0.958466 0.285208i \(-0.907937\pi\)
0.958466 0.285208i \(-0.0920626\pi\)
\(380\) −3.61643 6.26385i −0.185519 0.321329i
\(381\) 0 0
\(382\) 5.65043 + 3.26228i 0.289101 + 0.166913i
\(383\) 5.09111 + 2.93935i 0.260144 + 0.150194i 0.624400 0.781105i \(-0.285344\pi\)
−0.364256 + 0.931299i \(0.618677\pi\)
\(384\) 0 0
\(385\) 5.30242 3.06135i 0.270236 0.156021i
\(386\) −17.7322 −0.902548
\(387\) 0 0
\(388\) 14.6326i 0.742860i
\(389\) −0.0401383 0.0695217i −0.00203510 0.00352489i 0.865006 0.501761i \(-0.167314\pi\)
−0.867041 + 0.498237i \(0.833981\pi\)
\(390\) 0 0
\(391\) 0.228506 0.395785i 0.0115561 0.0200157i
\(392\) 15.7306 + 9.08207i 0.794516 + 0.458714i
\(393\) 0 0
\(394\) −10.2925 17.8271i −0.518528 0.898117i
\(395\) 16.4767i 0.829034i
\(396\) 0 0
\(397\) 1.33964i 0.0672345i −0.999435 0.0336172i \(-0.989297\pi\)
0.999435 0.0336172i \(-0.0107027\pi\)
\(398\) −8.42800 + 4.86591i −0.422458 + 0.243906i
\(399\) 0 0
\(400\) 2.67809 4.63858i 0.133904 0.231929i
\(401\) 27.4333 + 15.8386i 1.36995 + 0.790942i 0.990921 0.134442i \(-0.0429243\pi\)
0.379030 + 0.925384i \(0.376258\pi\)
\(402\) 0 0
\(403\) 5.35622 + 4.42828i 0.266812 + 0.220588i
\(404\) −11.4571 −0.570014
\(405\) 0 0
\(406\) 10.3595 0.514135
\(407\) −11.5322 19.9744i −0.571631 0.990094i
\(408\) 0 0
\(409\) 2.92633 + 1.68952i 0.144698 + 0.0835412i 0.570601 0.821227i \(-0.306710\pi\)
−0.425903 + 0.904769i \(0.640044\pi\)
\(410\) 1.80923 + 1.04456i 0.0893515 + 0.0515871i
\(411\) 0 0
\(412\) −0.0443386 0.0767966i −0.00218440 0.00378350i
\(413\) 4.33345 0.213235
\(414\) 0 0
\(415\) −13.0616 −0.641170
\(416\) −12.2485 10.1265i −0.600532 0.496492i
\(417\) 0 0
\(418\) −29.0127 16.7505i −1.41906 0.819293i
\(419\) −10.8330 + 18.7633i −0.529228 + 0.916649i 0.470191 + 0.882565i \(0.344185\pi\)
−0.999419 + 0.0340847i \(0.989148\pi\)
\(420\) 0 0
\(421\) −12.1688 + 7.02566i −0.593071 + 0.342409i −0.766311 0.642470i \(-0.777910\pi\)
0.173240 + 0.984880i \(0.444576\pi\)
\(422\) 15.7828i 0.768297i
\(423\) 0 0
\(424\) 1.77966i 0.0864280i
\(425\) −0.802539 1.39004i −0.0389288 0.0674267i
\(426\) 0 0
\(427\) −8.40401 4.85206i −0.406699 0.234808i
\(428\) 5.26079 9.11195i 0.254290 0.440443i
\(429\) 0 0
\(430\) −1.80145 3.12020i −0.0868735 0.150469i
\(431\) 26.5547i 1.27909i −0.768752 0.639547i \(-0.779122\pi\)
0.768752 0.639547i \(-0.220878\pi\)
\(432\) 0 0
\(433\) 21.7861 1.04697 0.523485 0.852035i \(-0.324631\pi\)
0.523485 + 0.852035i \(0.324631\pi\)
\(434\) 1.84406 1.06467i 0.0885178 0.0511058i
\(435\) 0 0
\(436\) 10.3530 + 5.97728i 0.495817 + 0.286260i
\(437\) −5.56122 3.21077i −0.266029 0.153592i
\(438\) 0 0
\(439\) 3.89690 + 6.74963i 0.185989 + 0.322142i 0.943909 0.330205i \(-0.107118\pi\)
−0.757920 + 0.652347i \(0.773784\pi\)
\(440\) 18.1945i 0.867387i
\(441\) 0 0
\(442\) 1.72785 0.643188i 0.0821857 0.0305933i
\(443\) 8.00154 + 13.8591i 0.380165 + 0.658465i 0.991086 0.133227i \(-0.0425339\pi\)
−0.610921 + 0.791692i \(0.709201\pi\)
\(444\) 0 0
\(445\) 4.37811 7.58311i 0.207542 0.359474i
\(446\) −10.8486 + 18.7902i −0.513694 + 0.889744i
\(447\) 0 0
\(448\) −7.04840 + 4.06940i −0.333006 + 0.192261i
\(449\) 8.58501i 0.405151i 0.979267 + 0.202576i \(0.0649312\pi\)
−0.979267 + 0.202576i \(0.935069\pi\)
\(450\) 0 0
\(451\) −7.10648 −0.334631
\(452\) 4.94814 + 8.57043i 0.232741 + 0.403119i
\(453\) 0 0
\(454\) −11.0358 + 19.1146i −0.517936 + 0.897092i
\(455\) 4.66855 + 0.788150i 0.218865 + 0.0369490i
\(456\) 0 0
\(457\) −4.76629 + 2.75182i −0.222958 + 0.128725i −0.607319 0.794458i \(-0.707755\pi\)
0.384361 + 0.923183i \(0.374422\pi\)
\(458\) 21.3608 0.998123
\(459\) 0 0
\(460\) 1.03747i 0.0483721i
\(461\) −19.9077 + 11.4937i −0.927196 + 0.535317i −0.885924 0.463831i \(-0.846475\pi\)
−0.0412725 + 0.999148i \(0.513141\pi\)
\(462\) 0 0
\(463\) −21.8412 12.6100i −1.01505 0.586037i −0.102381 0.994745i \(-0.532646\pi\)
−0.912665 + 0.408708i \(0.865979\pi\)
\(464\) 7.45070 12.9050i 0.345890 0.599099i
\(465\) 0 0
\(466\) 26.4048 15.2448i 1.22318 0.706201i
\(467\) −18.1098 −0.838023 −0.419012 0.907981i \(-0.637623\pi\)
−0.419012 + 0.907981i \(0.637623\pi\)
\(468\) 0 0
\(469\) −2.38954 −0.110338
\(470\) −8.11883 + 4.68741i −0.374494 + 0.216214i
\(471\) 0 0
\(472\) 6.43871 11.1522i 0.296366 0.513321i
\(473\) 10.6139 + 6.12792i 0.488026 + 0.281762i
\(474\) 0 0
\(475\) −19.5316 + 11.2766i −0.896171 + 0.517405i
\(476\) 0.414867i 0.0190154i
\(477\) 0 0
\(478\) 15.8013 0.722734
\(479\) 14.3564 8.28869i 0.655962 0.378720i −0.134775 0.990876i \(-0.543031\pi\)
0.790737 + 0.612157i \(0.209698\pi\)
\(480\) 0 0
\(481\) 2.96899 17.5866i 0.135374 0.801879i
\(482\) 7.10688 12.3095i 0.323709 0.560681i
\(483\) 0 0
\(484\) 4.54779 + 7.87700i 0.206718 + 0.358045i
\(485\) 22.0548 1.00146
\(486\) 0 0
\(487\) 5.78932i 0.262339i −0.991360 0.131170i \(-0.958127\pi\)
0.991360 0.131170i \(-0.0418732\pi\)
\(488\) −24.9737 + 14.4186i −1.13051 + 0.652697i
\(489\) 0 0
\(490\) −4.07210 + 7.05308i −0.183959 + 0.318626i
\(491\) −5.23530 + 9.06781i −0.236266 + 0.409224i −0.959640 0.281232i \(-0.909257\pi\)
0.723374 + 0.690456i \(0.242590\pi\)
\(492\) 0 0
\(493\) −2.23274 3.86722i −0.100558 0.174171i
\(494\) −9.03752 24.2783i −0.406617 1.09233i
\(495\) 0 0
\(496\) 3.06289i 0.137528i
\(497\) −0.694771 1.20338i −0.0311647 0.0539789i
\(498\) 0 0
\(499\) −7.82629 4.51851i −0.350353 0.202276i 0.314488 0.949262i \(-0.398167\pi\)
−0.664841 + 0.746985i \(0.731501\pi\)
\(500\) −7.83636 4.52432i −0.350453 0.202334i
\(501\) 0 0
\(502\) −11.1075 + 6.41289i −0.495750 + 0.286221i
\(503\) 9.96486 0.444311 0.222155 0.975011i \(-0.428691\pi\)
0.222155 + 0.975011i \(0.428691\pi\)
\(504\) 0 0
\(505\) 17.2686i 0.768443i
\(506\) −2.40265 4.16151i −0.106811 0.185002i
\(507\) 0 0
\(508\) 3.43477 5.94920i 0.152393 0.263953i
\(509\) −30.5593 17.6434i −1.35452 0.782030i −0.365638 0.930757i \(-0.619149\pi\)
−0.988878 + 0.148727i \(0.952482\pi\)
\(510\) 0 0
\(511\) 6.61936 + 11.4651i 0.292823 + 0.507185i
\(512\) 16.7198i 0.738919i
\(513\) 0 0
\(514\) 16.0698i 0.708808i
\(515\) 0.115751 0.0668287i 0.00510058 0.00294482i
\(516\) 0 0
\(517\) 15.9450 27.6175i 0.701260 1.21462i
\(518\) −4.73251 2.73231i −0.207934 0.120051i
\(519\) 0 0
\(520\) 8.96493 10.8435i 0.393138 0.475520i
\(521\) −12.9544 −0.567541 −0.283770 0.958892i \(-0.591585\pi\)
−0.283770 + 0.958892i \(0.591585\pi\)
\(522\) 0 0
\(523\) −0.367139 −0.0160539 −0.00802694 0.999968i \(-0.502555\pi\)
−0.00802694 + 0.999968i \(0.502555\pi\)
\(524\) 3.96371 + 6.86535i 0.173156 + 0.299914i
\(525\) 0 0
\(526\) −1.44075 0.831815i −0.0628195 0.0362689i
\(527\) −0.794884 0.458927i −0.0346257 0.0199912i
\(528\) 0 0
\(529\) 11.0395 + 19.1209i 0.479976 + 0.831343i
\(530\) −0.797940 −0.0346603
\(531\) 0 0
\(532\) 5.82934 0.252734
\(533\) −4.23532 3.50157i −0.183452 0.151670i
\(534\) 0 0
\(535\) 13.7339 + 7.92925i 0.593767 + 0.342811i
\(536\) −3.55042 + 6.14950i −0.153355 + 0.265618i
\(537\) 0 0
\(538\) 19.5566 11.2910i 0.843145 0.486790i
\(539\) 27.7038i 1.19329i
\(540\) 0 0
\(541\) 42.0316i 1.80708i −0.428504 0.903540i \(-0.640959\pi\)
0.428504 0.903540i \(-0.359041\pi\)
\(542\) 6.84612 + 11.8578i 0.294066 + 0.509337i
\(543\) 0 0
\(544\) 1.81772 + 1.04946i 0.0779343 + 0.0449954i
\(545\) −9.00917 + 15.6043i −0.385911 + 0.668417i
\(546\) 0 0
\(547\) 14.2892 + 24.7496i 0.610962 + 1.05822i 0.991079 + 0.133279i \(0.0425506\pi\)
−0.380116 + 0.924939i \(0.624116\pi\)
\(548\) 0.501071i 0.0214047i
\(549\) 0 0
\(550\) −16.8767 −0.719625
\(551\) −54.3388 + 31.3725i −2.31491 + 1.33651i
\(552\) 0 0
\(553\) 11.5003 + 6.63972i 0.489044 + 0.282350i
\(554\) −10.8130 6.24289i −0.459401 0.265235i
\(555\) 0 0
\(556\) 5.36610 + 9.29435i 0.227573 + 0.394168i
\(557\) 3.59187i 0.152192i −0.997100 0.0760961i \(-0.975754\pi\)
0.997100 0.0760961i \(-0.0242456\pi\)
\(558\) 0 0
\(559\) 3.30625 + 8.88187i 0.139839 + 0.375663i
\(560\) −1.04332 1.80709i −0.0440884 0.0763634i
\(561\) 0 0
\(562\) −9.27991 + 16.0733i −0.391449 + 0.678010i
\(563\) −15.3227 + 26.5396i −0.645774 + 1.11851i 0.338349 + 0.941021i \(0.390132\pi\)
−0.984122 + 0.177492i \(0.943202\pi\)
\(564\) 0 0
\(565\) −12.9177 + 7.45801i −0.543450 + 0.313761i
\(566\) 23.2050i 0.975377i
\(567\) 0 0
\(568\) −4.12921 −0.173258
\(569\) −17.3324 30.0206i −0.726612 1.25853i −0.958307 0.285740i \(-0.907761\pi\)
0.231695 0.972788i \(-0.425573\pi\)
\(570\) 0 0
\(571\) 7.76050 13.4416i 0.324767 0.562512i −0.656698 0.754153i \(-0.728048\pi\)
0.981465 + 0.191641i \(0.0613809\pi\)
\(572\) −2.37000 + 14.0385i −0.0990946 + 0.586980i
\(573\) 0 0
\(574\) −1.45815 + 0.841864i −0.0608621 + 0.0351387i
\(575\) −3.23497 −0.134908
\(576\) 0 0
\(577\) 18.6264i 0.775426i 0.921780 + 0.387713i \(0.126735\pi\)
−0.921780 + 0.387713i \(0.873265\pi\)
\(578\) 15.5986 9.00585i 0.648816 0.374594i
\(579\) 0 0
\(580\) −8.77898 5.06855i −0.364527 0.210460i
\(581\) 5.26352 9.11669i 0.218368 0.378224i
\(582\) 0 0
\(583\) 2.35068 1.35716i 0.0973550 0.0562080i
\(584\) 39.3407 1.62793
\(585\) 0 0
\(586\) 0.0767199 0.00316927
\(587\) −30.6515 + 17.6966i −1.26512 + 0.730418i −0.974061 0.226287i \(-0.927341\pi\)
−0.291060 + 0.956705i \(0.594008\pi\)
\(588\) 0 0
\(589\) −6.44844 + 11.1690i −0.265703 + 0.460211i
\(590\) 5.00026 + 2.88690i 0.205857 + 0.118852i
\(591\) 0 0
\(592\) −6.80736 + 3.93023i −0.279781 + 0.161531i
\(593\) 2.41535i 0.0991864i −0.998770 0.0495932i \(-0.984208\pi\)
0.998770 0.0495932i \(-0.0157925\pi\)
\(594\) 0 0
\(595\) −0.625302 −0.0256349
\(596\) 8.57395 4.95017i 0.351203 0.202767i
\(597\) 0 0
\(598\) 0.618565 3.66402i 0.0252950 0.149833i
\(599\) 20.4683 35.4522i 0.836314 1.44854i −0.0566424 0.998395i \(-0.518040\pi\)
0.892956 0.450143i \(-0.148627\pi\)
\(600\) 0 0
\(601\) 8.82077 + 15.2780i 0.359807 + 0.623203i 0.987928 0.154912i \(-0.0495093\pi\)
−0.628122 + 0.778115i \(0.716176\pi\)
\(602\) 2.90376 0.118348
\(603\) 0 0
\(604\) 8.64259i 0.351662i
\(605\) −11.8725 + 6.85459i −0.482686 + 0.278679i
\(606\) 0 0
\(607\) 9.22956 15.9861i 0.374616 0.648854i −0.615653 0.788017i \(-0.711108\pi\)
0.990270 + 0.139163i \(0.0444412\pi\)
\(608\) 14.7461 25.5411i 0.598035 1.03583i
\(609\) 0 0
\(610\) −6.46480 11.1974i −0.261752 0.453368i
\(611\) 23.1108 8.60293i 0.934964 0.348037i
\(612\) 0 0
\(613\) 7.01548i 0.283352i −0.989913 0.141676i \(-0.954751\pi\)
0.989913 0.141676i \(-0.0452492\pi\)
\(614\) −10.7026 18.5375i −0.431923 0.748112i
\(615\) 0 0
\(616\) 12.6993 + 7.33193i 0.511669 + 0.295412i
\(617\) −8.78344 5.07112i −0.353608 0.204156i 0.312665 0.949863i \(-0.398778\pi\)
−0.666273 + 0.745708i \(0.732112\pi\)
\(618\) 0 0
\(619\) 8.11092 4.68284i 0.326005 0.188219i −0.328061 0.944657i \(-0.606395\pi\)
0.654066 + 0.756437i \(0.273062\pi\)
\(620\) −2.08362 −0.0836802
\(621\) 0 0
\(622\) 6.52922i 0.261798i
\(623\) 3.52855 + 6.11162i 0.141368 + 0.244857i
\(624\) 0 0
\(625\) −1.60751 + 2.78428i −0.0643002 + 0.111371i
\(626\) 5.66577 + 3.27113i 0.226450 + 0.130741i
\(627\) 0 0
\(628\) −4.63260 8.02389i −0.184861 0.320188i
\(629\) 2.35553i 0.0939212i
\(630\) 0 0
\(631\) 0.999379i 0.0397846i 0.999802 + 0.0198923i \(0.00633234\pi\)
−0.999802 + 0.0198923i \(0.993668\pi\)
\(632\) 34.1748 19.7308i 1.35940 0.784851i
\(633\) 0 0
\(634\) −5.11503 + 8.85948i −0.203144 + 0.351855i
\(635\) 8.96684 + 5.17701i 0.355838 + 0.205443i
\(636\) 0 0
\(637\) 13.6505 16.5109i 0.540851 0.654186i
\(638\) −46.9526 −1.85887
\(639\) 0 0
\(640\) 0.408601 0.0161514
\(641\) −4.27107 7.39770i −0.168697 0.292192i 0.769265 0.638930i \(-0.220623\pi\)
−0.937962 + 0.346738i \(0.887289\pi\)
\(642\) 0 0
\(643\) 0.783139 + 0.452145i 0.0308840 + 0.0178309i 0.515362 0.856972i \(-0.327657\pi\)
−0.484479 + 0.874803i \(0.660991\pi\)
\(644\) 0.724124 + 0.418073i 0.0285345 + 0.0164744i
\(645\) 0 0
\(646\) 1.71070 + 2.96301i 0.0673065 + 0.116578i
\(647\) −20.5148 −0.806518 −0.403259 0.915086i \(-0.632123\pi\)
−0.403259 + 0.915086i \(0.632123\pi\)
\(648\) 0 0
\(649\) −19.6406 −0.770959
\(650\) −10.0582 8.31563i −0.394514 0.326166i
\(651\) 0 0
\(652\) 12.4412 + 7.18292i 0.487234 + 0.281305i
\(653\) 4.68449 8.11378i 0.183318 0.317517i −0.759690 0.650285i \(-0.774649\pi\)
0.943009 + 0.332768i \(0.107983\pi\)
\(654\) 0 0
\(655\) −10.3477 + 5.97425i −0.404318 + 0.233433i
\(656\) 2.42192i 0.0945600i
\(657\) 0 0
\(658\) 7.55565i 0.294550i
\(659\) 17.6521 + 30.5743i 0.687627 + 1.19101i 0.972603 + 0.232471i \(0.0746811\pi\)
−0.284976 + 0.958535i \(0.591986\pi\)
\(660\) 0 0
\(661\) −20.2167 11.6721i −0.786337 0.453992i 0.0523346 0.998630i \(-0.483334\pi\)
−0.838671 + 0.544638i \(0.816667\pi\)
\(662\) −9.74257 + 16.8746i −0.378656 + 0.655851i
\(663\) 0 0
\(664\) −15.6413 27.0915i −0.606999 1.05135i
\(665\) 8.78619i 0.340714i
\(666\) 0 0
\(667\) −9.00000 −0.348481
\(668\) 12.3270 7.11702i 0.476948 0.275366i
\(669\) 0 0
\(670\) −2.75723 1.59189i −0.106521 0.0615000i
\(671\) 38.0897 + 21.9911i 1.47043 + 0.848956i
\(672\) 0 0
\(673\) −24.9264 43.1738i −0.960842 1.66423i −0.720393 0.693566i \(-0.756039\pi\)
−0.240449 0.970662i \(-0.577295\pi\)
\(674\) 8.61065i 0.331670i
\(675\) 0 0
\(676\) −8.32964 + 7.19890i −0.320371 + 0.276881i
\(677\) 5.45592 + 9.44994i 0.209688 + 0.363191i 0.951616 0.307289i \(-0.0994218\pi\)
−0.741928 + 0.670479i \(0.766088\pi\)
\(678\) 0 0
\(679\) −8.88757 + 15.3937i −0.341074 + 0.590757i
\(680\) −0.929085 + 1.60922i −0.0356288 + 0.0617109i
\(681\) 0 0
\(682\) −8.35787 + 4.82542i −0.320039 + 0.184775i
\(683\) 24.0595i 0.920610i 0.887761 + 0.460305i \(0.152260\pi\)
−0.887761 + 0.460305i \(0.847740\pi\)
\(684\) 0 0
\(685\) −0.755232 −0.0288559
\(686\) −7.14840 12.3814i −0.272927 0.472724i
\(687\) 0 0
\(688\) 2.08842 3.61725i 0.0796203 0.137906i
\(689\) 2.06967 + 0.349403i 0.0788480 + 0.0133112i
\(690\) 0 0
\(691\) −25.4878 + 14.7154i −0.969600 + 0.559799i −0.899114 0.437714i \(-0.855788\pi\)
−0.0704856 + 0.997513i \(0.522455\pi\)
\(692\) 16.1638 0.614457
\(693\) 0 0
\(694\) 17.8550i 0.677765i
\(695\) −14.0088 + 8.08798i −0.531383 + 0.306794i
\(696\) 0 0
\(697\) 0.628538 + 0.362886i 0.0238076 + 0.0137453i
\(698\) −0.0961047 + 0.166458i −0.00363762 + 0.00630053i
\(699\) 0 0
\(700\) 2.54320 1.46832i 0.0961240 0.0554972i
\(701\) −16.6961 −0.630604 −0.315302 0.948991i \(-0.602106\pi\)
−0.315302 + 0.948991i \(0.602106\pi\)
\(702\) 0 0
\(703\) 33.0979 1.24831
\(704\) 31.9456 18.4438i 1.20399 0.695127i
\(705\) 0 0
\(706\) −9.08520 + 15.7360i −0.341926 + 0.592234i
\(707\) 12.0530 + 6.95883i 0.453302 + 0.261714i
\(708\) 0 0
\(709\) 28.9718 16.7269i 1.08806 0.628191i 0.155000 0.987915i \(-0.450462\pi\)
0.933059 + 0.359724i \(0.117129\pi\)
\(710\) 1.85140i 0.0694818i
\(711\) 0 0
\(712\) 20.9711 0.785925
\(713\) −1.60206 + 0.924948i −0.0599975 + 0.0346396i
\(714\) 0 0
\(715\) −21.1593 3.57214i −0.791315 0.133591i
\(716\) −3.52993 + 6.11401i −0.131920 + 0.228491i
\(717\) 0 0
\(718\) 18.4920 + 32.0291i 0.690115 + 1.19531i
\(719\) 31.3183 1.16797 0.583987 0.811763i \(-0.301492\pi\)
0.583987 + 0.811763i \(0.301492\pi\)
\(720\) 0 0
\(721\) 0.107721i 0.00401175i
\(722\) 23.9643 13.8358i 0.891858 0.514915i
\(723\) 0 0
\(724\) −4.20741 + 7.28745i −0.156367 + 0.270836i
\(725\) −15.8045 + 27.3742i −0.586964 + 1.01665i
\(726\) 0 0
\(727\) −18.8915 32.7210i −0.700646 1.21356i −0.968240 0.250023i \(-0.919562\pi\)
0.267593 0.963532i \(-0.413772\pi\)
\(728\) 3.95586 + 10.6270i 0.146614 + 0.393862i
\(729\) 0 0
\(730\) 17.6390i 0.652850i
\(731\) −0.625834 1.08398i −0.0231473 0.0400923i
\(732\) 0 0
\(733\) 5.55072 + 3.20471i 0.205021 + 0.118369i 0.598995 0.800753i \(-0.295567\pi\)
−0.393975 + 0.919121i \(0.628900\pi\)
\(734\) 23.3284 + 13.4687i 0.861067 + 0.497137i
\(735\) 0 0
\(736\) 3.66355 2.11515i 0.135040 0.0779655i
\(737\) 10.8301 0.398933
\(738\) 0 0
\(739\) 26.2292i 0.964856i 0.875936 + 0.482428i \(0.160245\pi\)
−0.875936 + 0.482428i \(0.839755\pi\)
\(740\) 2.67365 + 4.63089i 0.0982852 + 0.170235i
\(741\) 0 0
\(742\) 0.321551 0.556942i 0.0118045 0.0204460i
\(743\) 23.7541 + 13.7144i 0.871454 + 0.503134i 0.867831 0.496859i \(-0.165513\pi\)
0.00362278 + 0.999993i \(0.498847\pi\)
\(744\) 0 0
\(745\) 7.46108 + 12.9230i 0.273353 + 0.473461i
\(746\) 11.7591i 0.430533i
\(747\) 0 0
\(748\) 1.88031i 0.0687508i
\(749\) −11.0688 + 6.39059i −0.404446 + 0.233507i
\(750\) 0 0
\(751\) 7.31837 12.6758i 0.267051 0.462546i −0.701048 0.713114i \(-0.747284\pi\)
0.968099 + 0.250568i \(0.0806174\pi\)
\(752\) −9.41217 5.43412i −0.343227 0.198162i
\(753\) 0 0
\(754\) −27.9828 23.1349i −1.01907 0.842523i
\(755\) −13.0264 −0.474080
\(756\) 0 0
\(757\) 4.79203 0.174169 0.0870846 0.996201i \(-0.472245\pi\)
0.0870846 + 0.996201i \(0.472245\pi\)
\(758\) 5.96236 + 10.3271i 0.216563 + 0.375098i
\(759\) 0 0
\(760\) 22.6114 + 13.0547i 0.820201 + 0.473543i
\(761\) 16.7477 + 9.66927i 0.607103 + 0.350511i 0.771831 0.635828i \(-0.219341\pi\)
−0.164728 + 0.986339i \(0.552675\pi\)
\(762\) 0 0
\(763\) −7.26096 12.5763i −0.262864 0.455294i
\(764\) 5.14558 0.186160
\(765\) 0 0
\(766\) −6.31277 −0.228089
\(767\) −11.7054 9.67746i −0.422656 0.349433i
\(768\) 0 0
\(769\) 8.74040 + 5.04627i 0.315187 + 0.181973i 0.649245 0.760579i \(-0.275085\pi\)
−0.334058 + 0.942552i \(0.608418\pi\)
\(770\) −3.28739 + 5.69393i −0.118469 + 0.205195i
\(771\) 0 0
\(772\) −12.1109 + 6.99224i −0.435882 + 0.251656i
\(773\) 8.43470i 0.303375i −0.988428 0.151688i \(-0.951529\pi\)
0.988428 0.151688i \(-0.0484708\pi\)
\(774\) 0 0
\(775\) 6.49703i 0.233380i
\(776\) 26.4106 + 45.7446i 0.948087 + 1.64213i
\(777\) 0 0
\(778\) 0.0746548 + 0.0431020i 0.00267651 + 0.00154528i
\(779\) 5.09896 8.83166i 0.182689 0.316427i
\(780\) 0 0
\(781\) 3.14892 + 5.45409i 0.112677 + 0.195163i
\(782\) 0.490757i 0.0175494i
\(783\) 0 0
\(784\) −9.44157 −0.337199
\(785\) 12.0939 6.98242i 0.431650 0.249213i
\(786\) 0 0
\(787\) −11.0977 6.40724i −0.395589 0.228393i 0.288990 0.957332i \(-0.406681\pi\)
−0.684579 + 0.728939i \(0.740014\pi\)
\(788\) −14.0593 8.11714i −0.500842 0.289161i
\(789\) 0 0
\(790\) 8.84665 + 15.3228i 0.314750 + 0.545162i
\(791\) 12.0216i 0.427439i
\(792\) 0 0
\(793\) 11.8650 + 31.8741i 0.421339 + 1.13188i
\(794\) 0.719275 + 1.24582i 0.0255261 + 0.0442125i
\(795\) 0 0
\(796\) −3.83749 + 6.64672i −0.136016 + 0.235587i
\(797\) 14.6074 25.3008i 0.517421 0.896200i −0.482374 0.875965i \(-0.660225\pi\)
0.999795 0.0202344i \(-0.00644124\pi\)
\(798\) 0 0
\(799\) −2.82053 + 1.62843i −0.0997832 + 0.0576099i
\(800\) 14.8573i 0.525284i
\(801\) 0 0
\(802\) −34.0161 −1.20115
\(803\) −30.0011 51.9634i −1.05871 1.83375i
\(804\) 0 0
\(805\) −0.630135 + 1.09143i −0.0222094 + 0.0384677i
\(806\) −7.35874 1.24231i −0.259200 0.0437585i
\(807\) 0 0
\(808\) 35.8173 20.6791i 1.26005 0.727489i
\(809\) 11.3570 0.399292 0.199646 0.979868i \(-0.436021\pi\)
0.199646 + 0.979868i \(0.436021\pi\)
\(810\) 0 0
\(811\) 26.8826i 0.943974i −0.881605 0.471987i \(-0.843537\pi\)
0.881605 0.471987i \(-0.156463\pi\)
\(812\) 7.07544 4.08500i 0.248299 0.143356i
\(813\) 0 0
\(814\) 21.4492 + 12.3837i 0.751795 + 0.434049i
\(815\) −10.8264 + 18.7518i −0.379231 + 0.656847i
\(816\) 0 0
\(817\) −15.2311 + 8.79367i −0.532868 + 0.307652i
\(818\) −3.62852 −0.126868
\(819\) 0 0
\(820\) 1.64758 0.0575359
\(821\) 14.2700 8.23880i 0.498027 0.287536i −0.229871 0.973221i \(-0.573831\pi\)
0.727898 + 0.685685i \(0.240497\pi\)
\(822\) 0 0
\(823\) −4.10205 + 7.10496i −0.142988 + 0.247663i −0.928621 0.371031i \(-0.879005\pi\)
0.785632 + 0.618694i \(0.212338\pi\)
\(824\) 0.277222 + 0.160054i 0.00965750 + 0.00557576i
\(825\) 0 0
\(826\) −4.02997 + 2.32670i −0.140221 + 0.0809564i
\(827\) 43.6569i 1.51810i 0.651033 + 0.759049i \(0.274336\pi\)
−0.651033 + 0.759049i \(0.725664\pi\)
\(828\) 0 0
\(829\) 23.3338 0.810415 0.405208 0.914225i \(-0.367199\pi\)
0.405208 + 0.914225i \(0.367199\pi\)
\(830\) 12.1469 7.01302i 0.421625 0.243425i
\(831\) 0 0
\(832\) 28.1267 + 4.74838i 0.975117 + 0.164620i
\(833\) −1.41467 + 2.45028i −0.0490155 + 0.0848973i
\(834\) 0 0
\(835\) 10.7270 + 18.5798i 0.371224 + 0.642979i
\(836\) −26.4204 −0.913770
\(837\) 0 0
\(838\) 23.2658i 0.803702i
\(839\) −11.8836 + 6.86099i −0.410267 + 0.236868i −0.690904 0.722946i \(-0.742787\pi\)
0.280638 + 0.959814i \(0.409454\pi\)
\(840\) 0 0
\(841\) −29.4696 + 51.0428i −1.01619 + 1.76010i
\(842\) 7.54440 13.0673i 0.259997 0.450328i
\(843\) 0 0
\(844\) 6.22355 + 10.7795i 0.214223 + 0.371046i
\(845\) −10.8504 12.5547i −0.373266 0.431896i
\(846\) 0 0
\(847\) 11.0489i 0.379646i
\(848\) −0.462527 0.801120i −0.0158832 0.0275106i
\(849\) 0 0
\(850\) 1.49267 + 0.861795i 0.0511982 + 0.0295593i
\(851\) 4.11144 + 2.37374i 0.140938 + 0.0813708i
\(852\) 0 0
\(853\) −13.2769 + 7.66545i −0.454594 + 0.262460i −0.709768 0.704435i \(-0.751200\pi\)
0.255175 + 0.966895i \(0.417867\pi\)
\(854\) 10.4206 0.356587
\(855\) 0 0
\(856\) 37.9810i 1.29817i
\(857\) 21.3961 + 37.0590i 0.730875 + 1.26591i 0.956510 + 0.291701i \(0.0942212\pi\)
−0.225634 + 0.974212i \(0.572445\pi\)
\(858\) 0 0
\(859\) 13.1536 22.7826i 0.448793 0.777333i −0.549514 0.835484i \(-0.685187\pi\)
0.998308 + 0.0581513i \(0.0185206\pi\)
\(860\) −2.46074 1.42071i −0.0839104 0.0484457i
\(861\) 0 0
\(862\) 14.2577 + 24.6950i 0.485618 + 0.841116i
\(863\) 8.03444i 0.273495i 0.990606 + 0.136748i \(0.0436650\pi\)
−0.990606 + 0.136748i \(0.956335\pi\)
\(864\) 0 0
\(865\) 24.3627i 0.828357i
\(866\) −20.2603 + 11.6973i −0.688475 + 0.397491i
\(867\) 0 0
\(868\) 0.839648 1.45431i 0.0284995 0.0493626i
\(869\) −52.1232 30.0933i −1.76816 1.02085i
\(870\) 0 0
\(871\) 6.45453 + 5.33631i 0.218704 + 0.180814i
\(872\) −43.1539 −1.46137
\(873\) 0 0
\(874\) 6.89568 0.233250
\(875\) 5.49596 + 9.51929i 0.185797 + 0.321811i
\(876\) 0 0
\(877\) 6.03899 + 3.48661i 0.203922 + 0.117735i 0.598484 0.801135i \(-0.295770\pi\)
−0.394561 + 0.918870i \(0.629103\pi\)
\(878\) −7.24799 4.18463i −0.244608 0.141224i
\(879\) 0 0
\(880\) 4.72867 + 8.19029i 0.159403 + 0.276095i
\(881\) −30.4317 −1.02527 −0.512635 0.858606i \(-0.671331\pi\)
−0.512635 + 0.858606i \(0.671331\pi\)
\(882\) 0 0
\(883\) −1.51291 −0.0509134 −0.0254567 0.999676i \(-0.508104\pi\)
−0.0254567 + 0.999676i \(0.508104\pi\)
\(884\) 0.926480 1.12062i 0.0311609 0.0376907i
\(885\) 0 0
\(886\) −14.8824 8.59234i −0.499983 0.288665i
\(887\) −18.4472 + 31.9514i −0.619395 + 1.07282i 0.370201 + 0.928952i \(0.379289\pi\)
−0.989596 + 0.143872i \(0.954045\pi\)
\(888\) 0 0
\(889\) −7.22684 + 4.17242i −0.242380 + 0.139938i
\(890\) 9.40274i 0.315181i
\(891\) 0 0
\(892\) 17.1114i 0.572931i
\(893\) 22.8813 + 39.6316i 0.765695 + 1.32622i
\(894\) 0 0
\(895\) −9.21526 5.32043i −0.308032 0.177842i
\(896\) −0.164656 + 0.285193i −0.00550078 + 0.00952763i
\(897\) 0 0
\(898\) −4.60944 7.98379i −0.153819 0.266422i
\(899\) 18.0754i 0.602848i
\(900\) 0 0
\(901\) −0.277209 −0.00923519
\(902\) 6.60881 3.81560i 0.220049 0.127045i
\(903\) 0 0
\(904\) −30.9377 17.8619i −1.02897 0.594078i
\(905\) −10.9839 6.34156i −0.365117 0.210801i
\(906\) 0 0
\(907\) −14.3940 24.9312i −0.477946 0.827827i 0.521734 0.853108i \(-0.325285\pi\)
−0.999680 + 0.0252808i \(0.991952\pi\)
\(908\) 17.4067i 0.577662i
\(909\) 0 0
\(910\) −4.76478 + 1.77367i −0.157951 + 0.0587967i
\(911\) −19.8931 34.4559i −0.659089 1.14158i −0.980852 0.194755i \(-0.937609\pi\)
0.321763 0.946820i \(-0.395725\pi\)
\(912\) 0 0
\(913\) −23.8559 + 41.3197i −0.789517 + 1.36748i
\(914\) 2.95500 5.11822i 0.0977428 0.169296i
\(915\) 0 0
\(916\) 14.5892 8.42306i 0.482039 0.278306i
\(917\) 9.62991i 0.318008i
\(918\) 0 0
\(919\) 28.4990 0.940095 0.470047 0.882641i \(-0.344237\pi\)
0.470047 + 0.882641i \(0.344237\pi\)
\(920\) 1.87253 + 3.24332i 0.0617356 + 0.106929i
\(921\) 0 0
\(922\) 12.3424 21.3776i 0.406475 0.704035i
\(923\) −0.810694 + 4.80209i −0.0266843 + 0.158063i
\(924\) 0 0
\(925\) 14.4398 8.33683i 0.474778 0.274113i
\(926\) 27.0822 0.889975
\(927\) 0 0
\(928\) 41.3344i 1.35687i
\(929\) 26.1642 15.1059i 0.858421 0.495610i −0.00506213 0.999987i \(-0.501611\pi\)
0.863483 + 0.504378i \(0.168278\pi\)
\(930\) 0 0
\(931\) 34.4292 + 19.8777i 1.12837 + 0.651466i
\(932\) 12.0228 20.8240i 0.393819 0.682114i
\(933\) 0 0
\(934\) 16.8416 9.72349i 0.551073 0.318162i
\(935\) 2.83407 0.0926839
\(936\) 0 0
\(937\) 6.31683 0.206362 0.103181 0.994663i \(-0.467098\pi\)
0.103181 + 0.994663i \(0.467098\pi\)
\(938\) 2.22219 1.28298i 0.0725572 0.0418909i
\(939\) 0 0
\(940\) −3.69671 + 6.40289i −0.120573 + 0.208839i
\(941\) −36.5433 21.0983i −1.19128 0.687784i −0.232681 0.972553i \(-0.574750\pi\)
−0.958596 + 0.284769i \(0.908083\pi\)
\(942\) 0 0
\(943\) 1.26679 0.731383i 0.0412524 0.0238171i
\(944\) 6.69358i 0.217857i
\(945\) 0 0
\(946\) −13.1608 −0.427893
\(947\) −11.7977 + 6.81143i −0.383375 + 0.221342i −0.679286 0.733874i \(-0.737710\pi\)
0.295910 + 0.955216i \(0.404377\pi\)
\(948\) 0 0
\(949\) 7.72381 45.7515i 0.250726 1.48515i
\(950\) 12.1092 20.9737i 0.392874 0.680477i
\(951\) 0 0
\(952\) −0.748798 1.29696i −0.0242687 0.0420346i
\(953\) 43.5443 1.41054 0.705268 0.708940i \(-0.250826\pi\)
0.705268 + 0.708940i \(0.250826\pi\)
\(954\) 0 0
\(955\) 7.75560i 0.250965i
\(956\) 10.7921 6.23082i 0.349041 0.201519i
\(957\) 0 0
\(958\) −8.90068 + 15.4164i −0.287568 + 0.498082i
\(959\) 0.304340 0.527132i 0.00982765 0.0170220i
\(960\) 0 0
\(961\) −13.6424 23.6293i −0.440076 0.762234i
\(962\) 6.68148 + 17.9491i 0.215420 + 0.578701i
\(963\) 0 0
\(964\) 11.2096i 0.361038i
\(965\) −10.5390 18.2540i −0.339261 0.587618i
\(966\) 0 0
\(967\) −13.9813 8.07210i −0.449608 0.259581i 0.258057 0.966130i \(-0.416918\pi\)
−0.707665 + 0.706549i \(0.750251\pi\)
\(968\) −28.4346 16.4167i −0.913922 0.527653i
\(969\) 0 0
\(970\) −20.5103 + 11.8416i −0.658547 + 0.380212i
\(971\) 0.206193 0.00661704 0.00330852 0.999995i \(-0.498947\pi\)
0.00330852 + 0.999995i \(0.498947\pi\)
\(972\) 0 0
\(973\) 13.0370i 0.417948i
\(974\) 3.10839 + 5.38389i 0.0995992 + 0.172511i
\(975\) 0 0
\(976\) 7.49465 12.9811i 0.239898 0.415515i
\(977\) −6.91568 3.99277i −0.221252 0.127740i 0.385278 0.922801i \(-0.374106\pi\)
−0.606530 + 0.795061i \(0.707439\pi\)
\(978\) 0 0
\(979\) −15.9925 27.6998i −0.511122 0.885289i
\(980\) 6.42289i 0.205172i
\(981\) 0 0
\(982\) 11.2437i 0.358801i
\(983\) −24.1512 + 13.9437i −0.770304 + 0.444735i −0.832983 0.553299i \(-0.813369\pi\)
0.0626793 + 0.998034i \(0.480035\pi\)
\(984\) 0 0
\(985\) 12.2344 21.1907i 0.389822 0.675191i
\(986\) 4.15276 + 2.39760i 0.132251 + 0.0763550i
\(987\) 0 0
\(988\) −15.7460 13.0181i −0.500948 0.414161i
\(989\) −2.52269 −0.0802168
\(990\) 0 0
\(991\) −8.84780 −0.281059 −0.140530 0.990076i \(-0.544881\pi\)
−0.140530 + 0.990076i \(0.544881\pi\)
\(992\) −4.24802 7.35778i −0.134875 0.233610i
\(993\) 0 0
\(994\) 1.29223 + 0.746070i 0.0409871 + 0.0236639i
\(995\) −10.0182 5.78400i −0.317598 0.183365i
\(996\) 0 0
\(997\) 12.7226 + 22.0362i 0.402929 + 0.697893i 0.994078 0.108669i \(-0.0346590\pi\)
−0.591149 + 0.806562i \(0.701326\pi\)
\(998\) 9.70427 0.307183
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 351.2.t.c.64.4 20
3.2 odd 2 117.2.t.c.103.7 yes 20
9.2 odd 6 117.2.t.c.25.4 20
9.4 even 3 1053.2.b.i.649.4 10
9.5 odd 6 1053.2.b.j.649.7 10
9.7 even 3 inner 351.2.t.c.181.7 20
13.12 even 2 inner 351.2.t.c.64.7 20
39.38 odd 2 117.2.t.c.103.4 yes 20
117.25 even 6 inner 351.2.t.c.181.4 20
117.38 odd 6 117.2.t.c.25.7 yes 20
117.77 odd 6 1053.2.b.j.649.4 10
117.103 even 6 1053.2.b.i.649.7 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.t.c.25.4 20 9.2 odd 6
117.2.t.c.25.7 yes 20 117.38 odd 6
117.2.t.c.103.4 yes 20 39.38 odd 2
117.2.t.c.103.7 yes 20 3.2 odd 2
351.2.t.c.64.4 20 1.1 even 1 trivial
351.2.t.c.64.7 20 13.12 even 2 inner
351.2.t.c.181.4 20 117.25 even 6 inner
351.2.t.c.181.7 20 9.7 even 3 inner
1053.2.b.i.649.4 10 9.4 even 3
1053.2.b.i.649.7 10 117.103 even 6
1053.2.b.j.649.4 10 117.77 odd 6
1053.2.b.j.649.7 10 9.5 odd 6