Properties

Label 351.2.t.c.181.9
Level $351$
Weight $2$
Character 351.181
Analytic conductor $2.803$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [351,2,Mod(64,351)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(351, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("351.64");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.80274911095\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 6x^{16} + 9x^{14} + 54x^{12} + 81x^{10} + 486x^{8} + 729x^{6} - 4374x^{4} + 59049 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{9} \)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 181.9
Root \(1.23798 - 1.21137i\) of defining polynomial
Character \(\chi\) \(=\) 351.181
Dual form 351.2.t.c.64.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.97712 + 1.14149i) q^{2} +(1.60600 + 2.78168i) q^{4} +(-2.78501 + 1.60793i) q^{5} +(2.09815 + 1.21137i) q^{7} +2.76698i q^{8} -7.34174 q^{10} +(1.27730 + 0.737448i) q^{11} +(-2.24652 + 2.82013i) q^{13} +(2.76553 + 4.79003i) q^{14} +(0.0535232 - 0.0927049i) q^{16} +5.12974 q^{17} -1.13065i q^{19} +(-8.94547 - 5.16467i) q^{20} +(1.68358 + 2.91604i) q^{22} +(-4.61735 - 7.99748i) q^{23} +(2.67087 - 4.62608i) q^{25} +(-7.66079 + 3.01136i) q^{26} +7.78182i q^{28} +(0.487293 - 0.844016i) q^{29} +(3.16380 - 1.82662i) q^{31} +(5.00419 - 2.88917i) q^{32} +(10.1421 + 5.85555i) q^{34} -7.79116 q^{35} +4.22691i q^{37} +(1.29063 - 2.23543i) q^{38} +(-4.44910 - 7.70607i) q^{40} +(3.47188 - 2.00449i) q^{41} +(4.33040 - 7.50047i) q^{43} +4.73737i q^{44} -21.0826i q^{46} +(1.33337 + 0.769820i) q^{47} +(-0.565185 - 0.978929i) q^{49} +(10.5613 - 6.09755i) q^{50} +(-11.4526 - 1.71995i) q^{52} -0.739889 q^{53} -4.74305 q^{55} +(-3.35182 + 5.80553i) q^{56} +(1.92687 - 1.11248i) q^{58} +(-6.72630 + 3.88343i) q^{59} +(-4.06781 + 7.04566i) q^{61} +8.34028 q^{62} +12.9777 q^{64} +(1.72201 - 11.4664i) q^{65} +(0.669411 - 0.386485i) q^{67} +(8.23837 + 14.2693i) q^{68} +(-15.4041 - 8.89354i) q^{70} +3.01136i q^{71} +9.21010i q^{73} +(-4.82498 + 8.35711i) q^{74} +(3.14510 - 1.81582i) q^{76} +(1.78664 + 3.09455i) q^{77} +(-1.86858 + 3.23648i) q^{79} +0.344246i q^{80} +9.15243 q^{82} +(-12.3640 - 7.13838i) q^{83} +(-14.2864 + 8.24826i) q^{85} +(17.1234 - 9.88621i) q^{86} +(-2.04050 + 3.53425i) q^{88} -8.21257i q^{89} +(-8.12974 + 3.19570i) q^{91} +(14.8309 - 25.6879i) q^{92} +(1.75748 + 3.04405i) q^{94} +(1.81800 + 3.14887i) q^{95} +(-13.1880 - 7.61407i) q^{97} -2.58061i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 12 q^{4} - 16 q^{10} - 4 q^{13} + 18 q^{14} + 4 q^{16} + 12 q^{17} - 10 q^{22} - 24 q^{23} - 12 q^{25} + 12 q^{26} - 12 q^{29} + 12 q^{35} - 12 q^{38} - 8 q^{40} + 4 q^{43} - 10 q^{49} - 108 q^{53}+ \cdots - 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.97712 + 1.14149i 1.39803 + 0.807156i 0.994187 0.107670i \(-0.0343391\pi\)
0.403848 + 0.914826i \(0.367672\pi\)
\(3\) 0 0
\(4\) 1.60600 + 2.78168i 0.803001 + 1.39084i
\(5\) −2.78501 + 1.60793i −1.24550 + 0.719088i −0.970208 0.242274i \(-0.922107\pi\)
−0.275289 + 0.961362i \(0.588773\pi\)
\(6\) 0 0
\(7\) 2.09815 + 1.21137i 0.793025 + 0.457853i 0.841026 0.540994i \(-0.181952\pi\)
−0.0480013 + 0.998847i \(0.515285\pi\)
\(8\) 2.76698i 0.978274i
\(9\) 0 0
\(10\) −7.34174 −2.32166
\(11\) 1.27730 + 0.737448i 0.385119 + 0.222349i 0.680043 0.733172i \(-0.261961\pi\)
−0.294924 + 0.955521i \(0.595294\pi\)
\(12\) 0 0
\(13\) −2.24652 + 2.82013i −0.623072 + 0.782164i
\(14\) 2.76553 + 4.79003i 0.739118 + 1.28019i
\(15\) 0 0
\(16\) 0.0535232 0.0927049i 0.0133808 0.0231762i
\(17\) 5.12974 1.24414 0.622072 0.782960i \(-0.286291\pi\)
0.622072 + 0.782960i \(0.286291\pi\)
\(18\) 0 0
\(19\) 1.13065i 0.259389i −0.991554 0.129694i \(-0.958600\pi\)
0.991554 0.129694i \(-0.0413996\pi\)
\(20\) −8.94547 5.16467i −2.00027 1.15486i
\(21\) 0 0
\(22\) 1.68358 + 2.91604i 0.358940 + 0.621703i
\(23\) −4.61735 7.99748i −0.962784 1.66759i −0.715455 0.698658i \(-0.753781\pi\)
−0.247328 0.968932i \(-0.579553\pi\)
\(24\) 0 0
\(25\) 2.67087 4.62608i 0.534174 0.925217i
\(26\) −7.66079 + 3.01136i −1.50240 + 0.590577i
\(27\) 0 0
\(28\) 7.78182i 1.47063i
\(29\) 0.487293 0.844016i 0.0904880 0.156730i −0.817229 0.576314i \(-0.804491\pi\)
0.907717 + 0.419584i \(0.137824\pi\)
\(30\) 0 0
\(31\) 3.16380 1.82662i 0.568235 0.328071i −0.188209 0.982129i \(-0.560268\pi\)
0.756444 + 0.654058i \(0.226935\pi\)
\(32\) 5.00419 2.88917i 0.884624 0.510738i
\(33\) 0 0
\(34\) 10.1421 + 5.85555i 1.73936 + 1.00422i
\(35\) −7.79116 −1.31695
\(36\) 0 0
\(37\) 4.22691i 0.694900i 0.937698 + 0.347450i \(0.112952\pi\)
−0.937698 + 0.347450i \(0.887048\pi\)
\(38\) 1.29063 2.23543i 0.209367 0.362634i
\(39\) 0 0
\(40\) −4.44910 7.70607i −0.703465 1.21844i
\(41\) 3.47188 2.00449i 0.542217 0.313049i −0.203760 0.979021i \(-0.565316\pi\)
0.745977 + 0.665972i \(0.231983\pi\)
\(42\) 0 0
\(43\) 4.33040 7.50047i 0.660379 1.14381i −0.320137 0.947371i \(-0.603729\pi\)
0.980516 0.196439i \(-0.0629377\pi\)
\(44\) 4.73737i 0.714185i
\(45\) 0 0
\(46\) 21.0826i 3.10847i
\(47\) 1.33337 + 0.769820i 0.194492 + 0.112290i 0.594084 0.804403i \(-0.297515\pi\)
−0.399592 + 0.916693i \(0.630848\pi\)
\(48\) 0 0
\(49\) −0.565185 0.978929i −0.0807407 0.139847i
\(50\) 10.5613 6.09755i 1.49359 0.862324i
\(51\) 0 0
\(52\) −11.4526 1.71995i −1.58819 0.238514i
\(53\) −0.739889 −0.101632 −0.0508158 0.998708i \(-0.516182\pi\)
−0.0508158 + 0.998708i \(0.516182\pi\)
\(54\) 0 0
\(55\) −4.74305 −0.639553
\(56\) −3.35182 + 5.80553i −0.447906 + 0.775796i
\(57\) 0 0
\(58\) 1.92687 1.11248i 0.253011 0.146076i
\(59\) −6.72630 + 3.88343i −0.875689 + 0.505580i −0.869235 0.494400i \(-0.835388\pi\)
−0.00645471 + 0.999979i \(0.502055\pi\)
\(60\) 0 0
\(61\) −4.06781 + 7.04566i −0.520830 + 0.902104i 0.478877 + 0.877882i \(0.341044\pi\)
−0.999707 + 0.0242218i \(0.992289\pi\)
\(62\) 8.34028 1.05922
\(63\) 0 0
\(64\) 12.9777 1.62222
\(65\) 1.72201 11.4664i 0.213589 1.42223i
\(66\) 0 0
\(67\) 0.669411 0.386485i 0.0817816 0.0472166i −0.458552 0.888668i \(-0.651632\pi\)
0.540333 + 0.841451i \(0.318298\pi\)
\(68\) 8.23837 + 14.2693i 0.999049 + 1.73040i
\(69\) 0 0
\(70\) −15.4041 8.89354i −1.84114 1.06298i
\(71\) 3.01136i 0.357383i 0.983905 + 0.178692i \(0.0571864\pi\)
−0.983905 + 0.178692i \(0.942814\pi\)
\(72\) 0 0
\(73\) 9.21010i 1.07796i 0.842318 + 0.538980i \(0.181190\pi\)
−0.842318 + 0.538980i \(0.818810\pi\)
\(74\) −4.82498 + 8.35711i −0.560893 + 0.971495i
\(75\) 0 0
\(76\) 3.14510 1.81582i 0.360768 0.208289i
\(77\) 1.78664 + 3.09455i 0.203606 + 0.352656i
\(78\) 0 0
\(79\) −1.86858 + 3.23648i −0.210232 + 0.364133i −0.951787 0.306759i \(-0.900755\pi\)
0.741555 + 0.670892i \(0.234089\pi\)
\(80\) 0.344246i 0.0384879i
\(81\) 0 0
\(82\) 9.15243 1.01072
\(83\) −12.3640 7.13838i −1.35713 0.783539i −0.367893 0.929868i \(-0.619921\pi\)
−0.989236 + 0.146329i \(0.953254\pi\)
\(84\) 0 0
\(85\) −14.2864 + 8.24826i −1.54958 + 0.894649i
\(86\) 17.1234 9.88621i 1.84647 1.06606i
\(87\) 0 0
\(88\) −2.04050 + 3.53425i −0.217518 + 0.376752i
\(89\) 8.21257i 0.870531i −0.900302 0.435265i \(-0.856655\pi\)
0.900302 0.435265i \(-0.143345\pi\)
\(90\) 0 0
\(91\) −8.12974 + 3.19570i −0.852228 + 0.335000i
\(92\) 14.8309 25.6879i 1.54623 2.67815i
\(93\) 0 0
\(94\) 1.75748 + 3.04405i 0.181271 + 0.313970i
\(95\) 1.81800 + 3.14887i 0.186523 + 0.323068i
\(96\) 0 0
\(97\) −13.1880 7.61407i −1.33903 0.773092i −0.352370 0.935861i \(-0.614624\pi\)
−0.986664 + 0.162769i \(0.947957\pi\)
\(98\) 2.58061i 0.260681i
\(99\) 0 0
\(100\) 17.1577 1.71577
\(101\) −7.45316 + 12.9092i −0.741617 + 1.28452i 0.210142 + 0.977671i \(0.432607\pi\)
−0.951759 + 0.306847i \(0.900726\pi\)
\(102\) 0 0
\(103\) 3.26553 + 5.65606i 0.321762 + 0.557308i 0.980852 0.194756i \(-0.0623916\pi\)
−0.659090 + 0.752064i \(0.729058\pi\)
\(104\) −7.80325 6.21607i −0.765171 0.609535i
\(105\) 0 0
\(106\) −1.46285 0.844576i −0.142084 0.0820325i
\(107\) 9.37527 0.906341 0.453171 0.891424i \(-0.350293\pi\)
0.453171 + 0.891424i \(0.350293\pi\)
\(108\) 0 0
\(109\) 14.5859i 1.39707i −0.715574 0.698537i \(-0.753835\pi\)
0.715574 0.698537i \(-0.246165\pi\)
\(110\) −9.37758 5.41415i −0.894117 0.516219i
\(111\) 0 0
\(112\) 0.224599 0.129672i 0.0212226 0.0122529i
\(113\) 1.53382 + 2.65665i 0.144290 + 0.249917i 0.929108 0.369809i \(-0.120577\pi\)
−0.784818 + 0.619726i \(0.787244\pi\)
\(114\) 0 0
\(115\) 25.7188 + 14.8487i 2.39829 + 1.38465i
\(116\) 3.13037 0.290648
\(117\) 0 0
\(118\) −17.7316 −1.63233
\(119\) 10.7630 + 6.21399i 0.986638 + 0.569636i
\(120\) 0 0
\(121\) −4.41234 7.64240i −0.401122 0.694764i
\(122\) −16.0851 + 9.28674i −1.45628 + 0.840782i
\(123\) 0 0
\(124\) 10.1621 + 5.86711i 0.912587 + 0.526882i
\(125\) 1.09900i 0.0982972i
\(126\) 0 0
\(127\) 0.163893 0.0145432 0.00727160 0.999974i \(-0.497685\pi\)
0.00727160 + 0.999974i \(0.497685\pi\)
\(128\) 15.6502 + 9.03564i 1.38329 + 0.798645i
\(129\) 0 0
\(130\) 16.4934 20.7047i 1.44656 1.81592i
\(131\) 3.26584 + 5.65660i 0.285338 + 0.494220i 0.972691 0.232104i \(-0.0745609\pi\)
−0.687353 + 0.726323i \(0.741228\pi\)
\(132\) 0 0
\(133\) 1.36963 2.37227i 0.118762 0.205702i
\(134\) 1.76467 0.152445
\(135\) 0 0
\(136\) 14.1939i 1.21712i
\(137\) 12.0632 + 6.96467i 1.03063 + 0.595032i 0.917164 0.398511i \(-0.130473\pi\)
0.113462 + 0.993542i \(0.463806\pi\)
\(138\) 0 0
\(139\) 7.09082 + 12.2817i 0.601436 + 1.04172i 0.992604 + 0.121398i \(0.0387377\pi\)
−0.391168 + 0.920319i \(0.627929\pi\)
\(140\) −12.5126 21.6725i −1.05751 1.83166i
\(141\) 0 0
\(142\) −3.43744 + 5.95382i −0.288464 + 0.499634i
\(143\) −4.94917 + 1.94546i −0.413870 + 0.162687i
\(144\) 0 0
\(145\) 3.13413i 0.260275i
\(146\) −10.5132 + 18.2095i −0.870082 + 1.50703i
\(147\) 0 0
\(148\) −11.7579 + 6.78843i −0.966493 + 0.558005i
\(149\) −16.0882 + 9.28851i −1.31799 + 0.760945i −0.983406 0.181419i \(-0.941931\pi\)
−0.334589 + 0.942364i \(0.608598\pi\)
\(150\) 0 0
\(151\) −10.2989 5.94609i −0.838115 0.483886i 0.0185081 0.999829i \(-0.494108\pi\)
−0.856623 + 0.515943i \(0.827442\pi\)
\(152\) 3.12848 0.253753
\(153\) 0 0
\(154\) 8.15772i 0.657368i
\(155\) −5.87415 + 10.1743i −0.471823 + 0.817222i
\(156\) 0 0
\(157\) −1.99459 3.45472i −0.159185 0.275717i 0.775390 0.631483i \(-0.217553\pi\)
−0.934575 + 0.355766i \(0.884220\pi\)
\(158\) −7.38883 + 4.26594i −0.587824 + 0.339380i
\(159\) 0 0
\(160\) −9.29116 + 16.0928i −0.734531 + 1.27224i
\(161\) 22.3732i 1.76325i
\(162\) 0 0
\(163\) 5.18096i 0.405804i −0.979199 0.202902i \(-0.934963\pi\)
0.979199 0.202902i \(-0.0650373\pi\)
\(164\) 11.1517 + 6.43843i 0.870801 + 0.502757i
\(165\) 0 0
\(166\) −16.2968 28.2268i −1.26488 2.19083i
\(167\) 0.706703 0.408015i 0.0546863 0.0315732i −0.472408 0.881380i \(-0.656615\pi\)
0.527094 + 0.849807i \(0.323282\pi\)
\(168\) 0 0
\(169\) −2.90631 12.6710i −0.223562 0.974690i
\(170\) −37.6612 −2.88848
\(171\) 0 0
\(172\) 27.8185 2.12114
\(173\) 0.261538 0.452997i 0.0198844 0.0344407i −0.855912 0.517122i \(-0.827004\pi\)
0.875796 + 0.482681i \(0.160337\pi\)
\(174\) 0 0
\(175\) 11.2078 6.47081i 0.847227 0.489147i
\(176\) 0.136730 0.0789411i 0.0103064 0.00595041i
\(177\) 0 0
\(178\) 9.37457 16.2372i 0.702654 1.21703i
\(179\) 14.1750 1.05949 0.529746 0.848156i \(-0.322287\pi\)
0.529746 + 0.848156i \(0.322287\pi\)
\(180\) 0 0
\(181\) −17.9757 −1.33612 −0.668060 0.744107i \(-0.732875\pi\)
−0.668060 + 0.744107i \(0.732875\pi\)
\(182\) −19.7213 2.96174i −1.46184 0.219539i
\(183\) 0 0
\(184\) 22.1289 12.7761i 1.63136 0.941867i
\(185\) −6.79658 11.7720i −0.499694 0.865496i
\(186\) 0 0
\(187\) 6.55220 + 3.78291i 0.479144 + 0.276634i
\(188\) 4.94532i 0.360675i
\(189\) 0 0
\(190\) 8.30093i 0.602213i
\(191\) 4.64755 8.04979i 0.336285 0.582462i −0.647446 0.762111i \(-0.724163\pi\)
0.983731 + 0.179649i \(0.0574962\pi\)
\(192\) 0 0
\(193\) −9.93585 + 5.73646i −0.715198 + 0.412920i −0.812983 0.582288i \(-0.802158\pi\)
0.0977848 + 0.995208i \(0.468824\pi\)
\(194\) −17.3828 30.1079i −1.24801 2.16162i
\(195\) 0 0
\(196\) 1.81538 3.14432i 0.129670 0.224595i
\(197\) 11.0296i 0.785828i −0.919575 0.392914i \(-0.871467\pi\)
0.919575 0.392914i \(-0.128533\pi\)
\(198\) 0 0
\(199\) −1.38397 −0.0981068 −0.0490534 0.998796i \(-0.515620\pi\)
−0.0490534 + 0.998796i \(0.515620\pi\)
\(200\) 12.8003 + 7.39024i 0.905116 + 0.522569i
\(201\) 0 0
\(202\) −29.4716 + 17.0154i −2.07361 + 1.19720i
\(203\) 2.04482 1.18058i 0.143518 0.0828604i
\(204\) 0 0
\(205\) −6.44616 + 11.1651i −0.450219 + 0.779803i
\(206\) 14.9103i 1.03885i
\(207\) 0 0
\(208\) 0.141199 + 0.359206i 0.00979042 + 0.0249064i
\(209\) 0.833794 1.44417i 0.0576748 0.0998956i
\(210\) 0 0
\(211\) 4.59187 + 7.95335i 0.316117 + 0.547531i 0.979674 0.200595i \(-0.0642874\pi\)
−0.663557 + 0.748126i \(0.730954\pi\)
\(212\) −1.18826 2.05813i −0.0816102 0.141353i
\(213\) 0 0
\(214\) 18.5360 + 10.7018i 1.26710 + 0.731558i
\(215\) 27.8519i 1.89948i
\(216\) 0 0
\(217\) 8.85083 0.600833
\(218\) 16.6496 28.8380i 1.12766 1.95316i
\(219\) 0 0
\(220\) −7.61735 13.1936i −0.513562 0.889515i
\(221\) −11.5241 + 14.4666i −0.775192 + 0.973126i
\(222\) 0 0
\(223\) −5.51495 3.18406i −0.369308 0.213220i 0.303848 0.952721i \(-0.401729\pi\)
−0.673156 + 0.739500i \(0.735062\pi\)
\(224\) 13.9994 0.935372
\(225\) 0 0
\(226\) 7.00336i 0.465857i
\(227\) 8.83052 + 5.09830i 0.586102 + 0.338386i 0.763555 0.645743i \(-0.223452\pi\)
−0.177453 + 0.984129i \(0.556786\pi\)
\(228\) 0 0
\(229\) 7.02980 4.05866i 0.464542 0.268204i −0.249410 0.968398i \(-0.580237\pi\)
0.713952 + 0.700194i \(0.246903\pi\)
\(230\) 33.8994 + 58.7155i 2.23526 + 3.87158i
\(231\) 0 0
\(232\) 2.33537 + 1.34833i 0.153325 + 0.0885221i
\(233\) −8.37795 −0.548858 −0.274429 0.961607i \(-0.588489\pi\)
−0.274429 + 0.961607i \(0.588489\pi\)
\(234\) 0 0
\(235\) −4.95126 −0.322985
\(236\) −21.6049 12.4736i −1.40636 0.811961i
\(237\) 0 0
\(238\) 14.1864 + 24.5716i 0.919570 + 1.59274i
\(239\) 3.99453 2.30624i 0.258385 0.149178i −0.365213 0.930924i \(-0.619004\pi\)
0.623598 + 0.781746i \(0.285670\pi\)
\(240\) 0 0
\(241\) 6.95910 + 4.01784i 0.448275 + 0.258812i 0.707101 0.707112i \(-0.250002\pi\)
−0.258826 + 0.965924i \(0.583336\pi\)
\(242\) 20.1466i 1.29507i
\(243\) 0 0
\(244\) −26.1316 −1.67291
\(245\) 3.14810 + 1.81756i 0.201125 + 0.116119i
\(246\) 0 0
\(247\) 3.18858 + 2.54002i 0.202885 + 0.161618i
\(248\) 5.05422 + 8.75417i 0.320943 + 0.555890i
\(249\) 0 0
\(250\) −1.25449 + 2.17285i −0.0793411 + 0.137423i
\(251\) −17.1127 −1.08015 −0.540073 0.841618i \(-0.681604\pi\)
−0.540073 + 0.841618i \(0.681604\pi\)
\(252\) 0 0
\(253\) 13.6202i 0.856295i
\(254\) 0.324037 + 0.187083i 0.0203319 + 0.0117386i
\(255\) 0 0
\(256\) 7.65044 + 13.2509i 0.478152 + 0.828184i
\(257\) −4.75712 8.23957i −0.296741 0.513971i 0.678647 0.734464i \(-0.262566\pi\)
−0.975388 + 0.220494i \(0.929233\pi\)
\(258\) 0 0
\(259\) −5.12034 + 8.86869i −0.318162 + 0.551073i
\(260\) 34.6612 13.6249i 2.14960 0.844981i
\(261\) 0 0
\(262\) 14.9117i 0.921248i
\(263\) −13.9945 + 24.2392i −0.862937 + 1.49465i 0.00614342 + 0.999981i \(0.498044\pi\)
−0.869081 + 0.494670i \(0.835289\pi\)
\(264\) 0 0
\(265\) 2.06060 1.18969i 0.126582 0.0730820i
\(266\) 5.41584 3.12684i 0.332067 0.191719i
\(267\) 0 0
\(268\) 2.15015 + 1.24139i 0.131341 + 0.0758299i
\(269\) 11.4199 0.696285 0.348143 0.937442i \(-0.386812\pi\)
0.348143 + 0.937442i \(0.386812\pi\)
\(270\) 0 0
\(271\) 13.2786i 0.806620i −0.915064 0.403310i \(-0.867860\pi\)
0.915064 0.403310i \(-0.132140\pi\)
\(272\) 0.274560 0.475552i 0.0166477 0.0288346i
\(273\) 0 0
\(274\) 15.9002 + 27.5400i 0.960567 + 1.66375i
\(275\) 6.82299 3.93925i 0.411442 0.237546i
\(276\) 0 0
\(277\) −0.900995 + 1.56057i −0.0541356 + 0.0937655i −0.891823 0.452384i \(-0.850574\pi\)
0.837688 + 0.546150i \(0.183907\pi\)
\(278\) 32.3764i 1.94181i
\(279\) 0 0
\(280\) 21.5580i 1.28834i
\(281\) −9.94035 5.73906i −0.592991 0.342364i 0.173288 0.984871i \(-0.444561\pi\)
−0.766279 + 0.642507i \(0.777894\pi\)
\(282\) 0 0
\(283\) 11.3277 + 19.6201i 0.673360 + 1.16629i 0.976945 + 0.213490i \(0.0684831\pi\)
−0.303585 + 0.952804i \(0.598184\pi\)
\(284\) −8.37663 + 4.83625i −0.497062 + 0.286979i
\(285\) 0 0
\(286\) −12.0058 1.80303i −0.709919 0.106615i
\(287\) 9.71269 0.573322
\(288\) 0 0
\(289\) 9.31424 0.547896
\(290\) −3.57758 + 6.19655i −0.210083 + 0.363874i
\(291\) 0 0
\(292\) −25.6195 + 14.7914i −1.49927 + 0.865603i
\(293\) 14.1753 8.18413i 0.828132 0.478122i −0.0250809 0.999685i \(-0.507984\pi\)
0.853213 + 0.521563i \(0.174651\pi\)
\(294\) 0 0
\(295\) 12.4886 21.6308i 0.727112 1.25940i
\(296\) −11.6958 −0.679803
\(297\) 0 0
\(298\) −42.4110 −2.45680
\(299\) 32.9269 + 4.94495i 1.90421 + 0.285974i
\(300\) 0 0
\(301\) 18.1716 10.4914i 1.04739 0.604714i
\(302\) −13.5748 23.5123i −0.781142 1.35298i
\(303\) 0 0
\(304\) −0.104817 0.0605160i −0.00601165 0.00347083i
\(305\) 26.1630i 1.49809i
\(306\) 0 0
\(307\) 16.6786i 0.951898i −0.879473 0.475949i \(-0.842105\pi\)
0.879473 0.475949i \(-0.157895\pi\)
\(308\) −5.73868 + 9.93969i −0.326992 + 0.566367i
\(309\) 0 0
\(310\) −23.2278 + 13.4106i −1.31925 + 0.761670i
\(311\) 4.05615 + 7.02546i 0.230003 + 0.398377i 0.957809 0.287406i \(-0.0927930\pi\)
−0.727806 + 0.685784i \(0.759460\pi\)
\(312\) 0 0
\(313\) 11.0021 19.0562i 0.621877 1.07712i −0.367260 0.930119i \(-0.619704\pi\)
0.989136 0.147003i \(-0.0469628\pi\)
\(314\) 9.10720i 0.513949i
\(315\) 0 0
\(316\) −12.0038 −0.675266
\(317\) −5.82742 3.36446i −0.327301 0.188967i 0.327341 0.944906i \(-0.393847\pi\)
−0.654642 + 0.755939i \(0.727181\pi\)
\(318\) 0 0
\(319\) 1.24483 0.718706i 0.0696974 0.0402398i
\(320\) −36.1432 + 20.8673i −2.02047 + 1.16652i
\(321\) 0 0
\(322\) 25.5388 44.2345i 1.42322 2.46509i
\(323\) 5.79994i 0.322717i
\(324\) 0 0
\(325\) 7.04602 + 17.9248i 0.390843 + 0.994289i
\(326\) 5.91402 10.2434i 0.327547 0.567328i
\(327\) 0 0
\(328\) 5.54639 + 9.60662i 0.306248 + 0.530437i
\(329\) 1.86507 + 3.23039i 0.102824 + 0.178097i
\(330\) 0 0
\(331\) 0.226288 + 0.130648i 0.0124379 + 0.00718104i 0.506206 0.862413i \(-0.331048\pi\)
−0.493768 + 0.869594i \(0.664381\pi\)
\(332\) 45.8570i 2.51673i
\(333\) 0 0
\(334\) 1.86298 0.101938
\(335\) −1.24288 + 2.15273i −0.0679058 + 0.117616i
\(336\) 0 0
\(337\) −2.94402 5.09920i −0.160371 0.277771i 0.774631 0.632414i \(-0.217936\pi\)
−0.935002 + 0.354643i \(0.884602\pi\)
\(338\) 8.71766 28.3695i 0.474178 1.54310i
\(339\) 0 0
\(340\) −45.8880 26.4934i −2.48862 1.43681i
\(341\) 5.38815 0.291785
\(342\) 0 0
\(343\) 19.6977i 1.06358i
\(344\) 20.7536 + 11.9821i 1.11896 + 0.646032i
\(345\) 0 0
\(346\) 1.03418 0.597086i 0.0555980 0.0320995i
\(347\) 1.59900 + 2.76956i 0.0858391 + 0.148678i 0.905748 0.423816i \(-0.139310\pi\)
−0.819909 + 0.572493i \(0.805976\pi\)
\(348\) 0 0
\(349\) −12.0677 6.96727i −0.645967 0.372949i 0.140942 0.990018i \(-0.454987\pi\)
−0.786909 + 0.617069i \(0.788320\pi\)
\(350\) 29.5454 1.57927
\(351\) 0 0
\(352\) 8.52245 0.454248
\(353\) 13.5867 + 7.84426i 0.723145 + 0.417508i 0.815909 0.578180i \(-0.196237\pi\)
−0.0927643 + 0.995688i \(0.529570\pi\)
\(354\) 0 0
\(355\) −4.84206 8.38669i −0.256990 0.445119i
\(356\) 22.8447 13.1894i 1.21077 0.699036i
\(357\) 0 0
\(358\) 28.0257 + 16.1807i 1.48121 + 0.855175i
\(359\) 5.86486i 0.309535i 0.987951 + 0.154768i \(0.0494629\pi\)
−0.987951 + 0.154768i \(0.950537\pi\)
\(360\) 0 0
\(361\) 17.7216 0.932718
\(362\) −35.5400 20.5190i −1.86794 1.07846i
\(363\) 0 0
\(364\) −21.9458 17.4820i −1.15027 0.916306i
\(365\) −14.8092 25.6503i −0.775148 1.34260i
\(366\) 0 0
\(367\) −1.66786 + 2.88882i −0.0870617 + 0.150795i −0.906268 0.422704i \(-0.861081\pi\)
0.819206 + 0.573499i \(0.194414\pi\)
\(368\) −0.988541 −0.0515313
\(369\) 0 0
\(370\) 31.0329i 1.61332i
\(371\) −1.55240 0.896277i −0.0805964 0.0465324i
\(372\) 0 0
\(373\) −13.3206 23.0720i −0.689716 1.19462i −0.971930 0.235272i \(-0.924402\pi\)
0.282214 0.959352i \(-0.408931\pi\)
\(374\) 8.63632 + 14.9585i 0.446574 + 0.773488i
\(375\) 0 0
\(376\) −2.13007 + 3.68940i −0.109850 + 0.190266i
\(377\) 1.28553 + 3.27033i 0.0662079 + 0.168430i
\(378\) 0 0
\(379\) 30.4926i 1.56630i 0.621832 + 0.783150i \(0.286389\pi\)
−0.621832 + 0.783150i \(0.713611\pi\)
\(380\) −5.83943 + 10.1142i −0.299556 + 0.518847i
\(381\) 0 0
\(382\) 18.3775 10.6103i 0.940275 0.542868i
\(383\) 21.6814 12.5178i 1.10787 0.639628i 0.169592 0.985514i \(-0.445755\pi\)
0.938276 + 0.345886i \(0.112422\pi\)
\(384\) 0 0
\(385\) −9.95162 5.74557i −0.507182 0.292821i
\(386\) −26.1925 −1.33316
\(387\) 0 0
\(388\) 48.9128i 2.48317i
\(389\) −1.05615 + 1.82931i −0.0535490 + 0.0927495i −0.891557 0.452908i \(-0.850387\pi\)
0.838008 + 0.545657i \(0.183720\pi\)
\(390\) 0 0
\(391\) −23.6858 41.0250i −1.19784 2.07472i
\(392\) 2.70868 1.56385i 0.136809 0.0789866i
\(393\) 0 0
\(394\) 12.5902 21.8069i 0.634286 1.09861i
\(395\) 12.0182i 0.604701i
\(396\) 0 0
\(397\) 28.7853i 1.44469i 0.691533 + 0.722345i \(0.256936\pi\)
−0.691533 + 0.722345i \(0.743064\pi\)
\(398\) −2.73627 1.57979i −0.137157 0.0791875i
\(399\) 0 0
\(400\) −0.285907 0.495206i −0.0142954 0.0247603i
\(401\) −9.86207 + 5.69387i −0.492488 + 0.284338i −0.725606 0.688110i \(-0.758440\pi\)
0.233118 + 0.972448i \(0.425107\pi\)
\(402\) 0 0
\(403\) −1.95622 + 13.0259i −0.0974462 + 0.648865i
\(404\) −47.8791 −2.38208
\(405\) 0 0
\(406\) 5.39048 0.267525
\(407\) −3.11713 + 5.39902i −0.154510 + 0.267620i
\(408\) 0 0
\(409\) 2.90604 1.67780i 0.143695 0.0829621i −0.426429 0.904521i \(-0.640229\pi\)
0.570124 + 0.821559i \(0.306895\pi\)
\(410\) −25.4897 + 14.7165i −1.25884 + 0.726794i
\(411\) 0 0
\(412\) −10.4889 + 18.1673i −0.516750 + 0.895037i
\(413\) −18.8170 −0.925925
\(414\) 0 0
\(415\) 45.9120 2.25373
\(416\) −3.09416 + 20.6031i −0.151703 + 1.01015i
\(417\) 0 0
\(418\) 3.29702 1.90354i 0.161263 0.0931050i
\(419\) 1.03279 + 1.78885i 0.0504552 + 0.0873910i 0.890150 0.455668i \(-0.150599\pi\)
−0.839695 + 0.543059i \(0.817266\pi\)
\(420\) 0 0
\(421\) 29.3605 + 16.9513i 1.43094 + 0.826156i 0.997193 0.0748758i \(-0.0238560\pi\)
0.433752 + 0.901032i \(0.357189\pi\)
\(422\) 20.9663i 1.02062i
\(423\) 0 0
\(424\) 2.04726i 0.0994236i
\(425\) 13.7009 23.7306i 0.664590 1.15110i
\(426\) 0 0
\(427\) −17.0697 + 9.85522i −0.826063 + 0.476927i
\(428\) 15.0567 + 26.0789i 0.727792 + 1.26057i
\(429\) 0 0
\(430\) −31.7927 + 55.0665i −1.53318 + 2.65554i
\(431\) 30.6212i 1.47497i 0.675364 + 0.737485i \(0.263987\pi\)
−0.675364 + 0.737485i \(0.736013\pi\)
\(432\) 0 0
\(433\) 8.63597 0.415018 0.207509 0.978233i \(-0.433464\pi\)
0.207509 + 0.978233i \(0.433464\pi\)
\(434\) 17.4991 + 10.1031i 0.839986 + 0.484966i
\(435\) 0 0
\(436\) 40.5732 23.4249i 1.94310 1.12185i
\(437\) −9.04234 + 5.22060i −0.432554 + 0.249735i
\(438\) 0 0
\(439\) −14.7827 + 25.6043i −0.705538 + 1.22203i 0.260959 + 0.965350i \(0.415961\pi\)
−0.966497 + 0.256678i \(0.917372\pi\)
\(440\) 13.1239i 0.625658i
\(441\) 0 0
\(442\) −39.2979 + 15.4475i −1.86921 + 0.734763i
\(443\) 15.6331 27.0773i 0.742751 1.28648i −0.208487 0.978025i \(-0.566854\pi\)
0.951238 0.308457i \(-0.0998127\pi\)
\(444\) 0 0
\(445\) 13.2052 + 22.8721i 0.625988 + 1.08424i
\(446\) −7.26915 12.5905i −0.344204 0.596179i
\(447\) 0 0
\(448\) 27.2292 + 15.7208i 1.28646 + 0.742738i
\(449\) 10.8346i 0.511316i −0.966767 0.255658i \(-0.917708\pi\)
0.966767 0.255658i \(-0.0822922\pi\)
\(450\) 0 0
\(451\) 5.91283 0.278424
\(452\) −4.92663 + 8.53318i −0.231729 + 0.401367i
\(453\) 0 0
\(454\) 11.6393 + 20.1599i 0.546261 + 0.946152i
\(455\) 17.5030 21.9721i 0.820553 1.03007i
\(456\) 0 0
\(457\) −13.8936 8.02147i −0.649915 0.375229i 0.138509 0.990361i \(-0.455769\pi\)
−0.788424 + 0.615133i \(0.789102\pi\)
\(458\) 18.5317 0.865929
\(459\) 0 0
\(460\) 95.3883i 4.44750i
\(461\) −22.1953 12.8145i −1.03374 0.596830i −0.115686 0.993286i \(-0.536907\pi\)
−0.918054 + 0.396456i \(0.870240\pi\)
\(462\) 0 0
\(463\) 28.1926 16.2770i 1.31022 0.756457i 0.328090 0.944647i \(-0.393595\pi\)
0.982133 + 0.188189i \(0.0602619\pi\)
\(464\) −0.0521629 0.0903488i −0.00242160 0.00419434i
\(465\) 0 0
\(466\) −16.5642 9.56335i −0.767322 0.443014i
\(467\) −16.2179 −0.750474 −0.375237 0.926929i \(-0.622439\pi\)
−0.375237 + 0.926929i \(0.622439\pi\)
\(468\) 0 0
\(469\) 1.87270 0.0864731
\(470\) −9.78924 5.65182i −0.451544 0.260699i
\(471\) 0 0
\(472\) −10.7454 18.6115i −0.494596 0.856665i
\(473\) 11.0624 6.38688i 0.508650 0.293669i
\(474\) 0 0
\(475\) −5.23048 3.01982i −0.239991 0.138559i
\(476\) 39.9187i 1.82967i
\(477\) 0 0
\(478\) 10.5302 0.481641
\(479\) 8.86463 + 5.11800i 0.405035 + 0.233847i 0.688654 0.725090i \(-0.258202\pi\)
−0.283619 + 0.958937i \(0.591535\pi\)
\(480\) 0 0
\(481\) −11.9205 9.49584i −0.543526 0.432973i
\(482\) 9.17265 + 15.8875i 0.417803 + 0.723655i
\(483\) 0 0
\(484\) 14.1725 24.5474i 0.644202 1.11579i
\(485\) 48.9715 2.22368
\(486\) 0 0
\(487\) 16.0863i 0.728940i 0.931215 + 0.364470i \(0.118750\pi\)
−0.931215 + 0.364470i \(0.881250\pi\)
\(488\) −19.4952 11.2555i −0.882505 0.509515i
\(489\) 0 0
\(490\) 4.14944 + 7.18705i 0.187453 + 0.324678i
\(491\) 2.20943 + 3.82684i 0.0997101 + 0.172703i 0.911565 0.411157i \(-0.134875\pi\)
−0.811855 + 0.583860i \(0.801542\pi\)
\(492\) 0 0
\(493\) 2.49969 4.32958i 0.112580 0.194995i
\(494\) 3.40479 + 8.66167i 0.153189 + 0.389707i
\(495\) 0 0
\(496\) 0.391066i 0.0175594i
\(497\) −3.64786 + 6.31828i −0.163629 + 0.283414i
\(498\) 0 0
\(499\) 6.39369 3.69140i 0.286221 0.165250i −0.350015 0.936744i \(-0.613824\pi\)
0.636236 + 0.771494i \(0.280490\pi\)
\(500\) −3.05705 + 1.76499i −0.136715 + 0.0789327i
\(501\) 0 0
\(502\) −33.8339 19.5340i −1.51008 0.871847i
\(503\) −5.65418 −0.252107 −0.126054 0.992023i \(-0.540231\pi\)
−0.126054 + 0.992023i \(0.540231\pi\)
\(504\) 0 0
\(505\) 47.9366i 2.13315i
\(506\) 15.5473 26.9288i 0.691163 1.19713i
\(507\) 0 0
\(508\) 0.263213 + 0.455898i 0.0116782 + 0.0202272i
\(509\) −23.2192 + 13.4056i −1.02917 + 0.594193i −0.916747 0.399467i \(-0.869195\pi\)
−0.112425 + 0.993660i \(0.535862\pi\)
\(510\) 0 0
\(511\) −11.1568 + 19.3242i −0.493548 + 0.854850i
\(512\) 1.21094i 0.0535165i
\(513\) 0 0
\(514\) 21.7208i 0.958065i
\(515\) −18.1891 10.5015i −0.801506 0.462750i
\(516\) 0 0
\(517\) 1.13540 + 1.96658i 0.0499350 + 0.0864899i
\(518\) −20.2470 + 11.6896i −0.889604 + 0.513613i
\(519\) 0 0
\(520\) 31.7272 + 4.76477i 1.39133 + 0.208949i
\(521\) 20.3407 0.891143 0.445572 0.895246i \(-0.353000\pi\)
0.445572 + 0.895246i \(0.353000\pi\)
\(522\) 0 0
\(523\) 5.74660 0.251281 0.125641 0.992076i \(-0.459901\pi\)
0.125641 + 0.992076i \(0.459901\pi\)
\(524\) −10.4899 + 18.1690i −0.458253 + 0.793717i
\(525\) 0 0
\(526\) −55.3376 + 31.9492i −2.41283 + 1.39305i
\(527\) 16.2295 9.37009i 0.706967 0.408168i
\(528\) 0 0
\(529\) −31.1398 + 53.9357i −1.35390 + 2.34503i
\(530\) 5.43208 0.235954
\(531\) 0 0
\(532\) 8.79851 0.381464
\(533\) −2.14671 + 14.2943i −0.0929843 + 0.619155i
\(534\) 0 0
\(535\) −26.1103 + 15.0748i −1.12884 + 0.651739i
\(536\) 1.06939 + 1.85225i 0.0461908 + 0.0800048i
\(537\) 0 0
\(538\) 22.5786 + 13.0357i 0.973431 + 0.562011i
\(539\) 1.66718i 0.0718104i
\(540\) 0 0
\(541\) 43.0286i 1.84994i 0.380036 + 0.924972i \(0.375912\pi\)
−0.380036 + 0.924972i \(0.624088\pi\)
\(542\) 15.1574 26.2534i 0.651068 1.12768i
\(543\) 0 0
\(544\) 25.6702 14.8207i 1.10060 0.635432i
\(545\) 23.4531 + 40.6219i 1.00462 + 1.74005i
\(546\) 0 0
\(547\) 11.1581 19.3265i 0.477088 0.826340i −0.522567 0.852598i \(-0.675026\pi\)
0.999655 + 0.0262576i \(0.00835902\pi\)
\(548\) 44.7411i 1.91124i
\(549\) 0 0
\(550\) 17.9865 0.766946
\(551\) −0.954285 0.550957i −0.0406539 0.0234716i
\(552\) 0 0
\(553\) −7.84113 + 4.52708i −0.333439 + 0.192511i
\(554\) −3.56275 + 2.05696i −0.151367 + 0.0873917i
\(555\) 0 0
\(556\) −22.7757 + 39.4487i −0.965906 + 1.67300i
\(557\) 28.7460i 1.21801i 0.793168 + 0.609003i \(0.208430\pi\)
−0.793168 + 0.609003i \(0.791570\pi\)
\(558\) 0 0
\(559\) 11.4240 + 29.0622i 0.483184 + 1.22920i
\(560\) −0.417008 + 0.722279i −0.0176218 + 0.0305219i
\(561\) 0 0
\(562\) −13.1022 22.6936i −0.552682 0.957273i
\(563\) −5.91647 10.2476i −0.249350 0.431886i 0.713996 0.700150i \(-0.246883\pi\)
−0.963346 + 0.268264i \(0.913550\pi\)
\(564\) 0 0
\(565\) −8.54342 4.93255i −0.359424 0.207514i
\(566\) 51.7217i 2.17403i
\(567\) 0 0
\(568\) −8.33237 −0.349619
\(569\) −4.39661 + 7.61515i −0.184315 + 0.319244i −0.943346 0.331812i \(-0.892340\pi\)
0.759030 + 0.651055i \(0.225673\pi\)
\(570\) 0 0
\(571\) −15.6380 27.0858i −0.654430 1.13351i −0.982036 0.188692i \(-0.939575\pi\)
0.327606 0.944814i \(-0.393758\pi\)
\(572\) −13.3600 10.6426i −0.558610 0.444989i
\(573\) 0 0
\(574\) 19.2032 + 11.0869i 0.801524 + 0.462760i
\(575\) −49.3294 −2.05718
\(576\) 0 0
\(577\) 45.2450i 1.88357i −0.336210 0.941787i \(-0.609145\pi\)
0.336210 0.941787i \(-0.390855\pi\)
\(578\) 18.4154 + 10.6321i 0.765978 + 0.442238i
\(579\) 0 0
\(580\) −8.71813 + 5.03341i −0.362001 + 0.209001i
\(581\) −17.2944 29.9547i −0.717492 1.24273i
\(582\) 0 0
\(583\) −0.945058 0.545629i −0.0391403 0.0225977i
\(584\) −25.4841 −1.05454
\(585\) 0 0
\(586\) 37.3684 1.54368
\(587\) −25.1277 14.5075i −1.03713 0.598788i −0.118112 0.993000i \(-0.537684\pi\)
−0.919020 + 0.394212i \(0.871018\pi\)
\(588\) 0 0
\(589\) −2.06527 3.57715i −0.0850978 0.147394i
\(590\) 49.3828 28.5111i 2.03306 1.17379i
\(591\) 0 0
\(592\) 0.391856 + 0.226238i 0.0161052 + 0.00929832i
\(593\) 25.7497i 1.05741i −0.848805 0.528707i \(-0.822677\pi\)
0.848805 0.528707i \(-0.177323\pi\)
\(594\) 0 0
\(595\) −39.9666 −1.63847
\(596\) −51.6753 29.8347i −2.11670 1.22208i
\(597\) 0 0
\(598\) 59.4559 + 47.3625i 2.43133 + 1.93680i
\(599\) 18.8670 + 32.6786i 0.770885 + 1.33521i 0.937079 + 0.349118i \(0.113519\pi\)
−0.166194 + 0.986093i \(0.553148\pi\)
\(600\) 0 0
\(601\) −8.46451 + 14.6610i −0.345274 + 0.598033i −0.985404 0.170235i \(-0.945547\pi\)
0.640129 + 0.768267i \(0.278881\pi\)
\(602\) 47.9033 1.95239
\(603\) 0 0
\(604\) 38.1977i 1.55424i
\(605\) 24.5769 + 14.1895i 0.999192 + 0.576884i
\(606\) 0 0
\(607\) 6.13946 + 10.6339i 0.249193 + 0.431615i 0.963302 0.268420i \(-0.0865014\pi\)
−0.714109 + 0.700034i \(0.753168\pi\)
\(608\) −3.26664 5.65798i −0.132480 0.229461i
\(609\) 0 0
\(610\) 29.8648 51.7274i 1.20919 2.09438i
\(611\) −5.16643 + 2.03086i −0.209011 + 0.0821598i
\(612\) 0 0
\(613\) 3.84764i 0.155405i 0.996977 + 0.0777023i \(0.0247584\pi\)
−0.996977 + 0.0777023i \(0.975242\pi\)
\(614\) 19.0385 32.9756i 0.768330 1.33079i
\(615\) 0 0
\(616\) −8.56254 + 4.94359i −0.344995 + 0.199183i
\(617\) −29.7198 + 17.1587i −1.19647 + 0.690785i −0.959767 0.280796i \(-0.909401\pi\)
−0.236707 + 0.971581i \(0.576068\pi\)
\(618\) 0 0
\(619\) −36.7880 21.2396i −1.47864 0.853691i −0.478928 0.877854i \(-0.658975\pi\)
−0.999708 + 0.0241630i \(0.992308\pi\)
\(620\) −37.7356 −1.51550
\(621\) 0 0
\(622\) 18.5202i 0.742594i
\(623\) 9.94843 17.2312i 0.398575 0.690353i
\(624\) 0 0
\(625\) 11.5872 + 20.0697i 0.463490 + 0.802788i
\(626\) 43.5050 25.1176i 1.73881 1.00390i
\(627\) 0 0
\(628\) 6.40661 11.0966i 0.255652 0.442802i
\(629\) 21.6830i 0.864557i
\(630\) 0 0
\(631\) 17.9430i 0.714300i 0.934047 + 0.357150i \(0.116252\pi\)
−0.934047 + 0.357150i \(0.883748\pi\)
\(632\) −8.95528 5.17033i −0.356222 0.205665i
\(633\) 0 0
\(634\) −7.68100 13.3039i −0.305052 0.528365i
\(635\) −0.456446 + 0.263529i −0.0181135 + 0.0104578i
\(636\) 0 0
\(637\) 4.03041 + 0.605285i 0.159691 + 0.0239823i
\(638\) 3.28158 0.129919
\(639\) 0 0
\(640\) −58.1146 −2.29718
\(641\) −8.43114 + 14.6032i −0.333010 + 0.576790i −0.983101 0.183066i \(-0.941398\pi\)
0.650090 + 0.759857i \(0.274731\pi\)
\(642\) 0 0
\(643\) 43.2179 24.9519i 1.70435 0.984006i 0.763105 0.646274i \(-0.223674\pi\)
0.941242 0.337732i \(-0.109660\pi\)
\(644\) 62.2350 35.9314i 2.45240 1.41589i
\(645\) 0 0
\(646\) 6.62057 11.4672i 0.260483 0.451170i
\(647\) −28.5920 −1.12407 −0.562034 0.827114i \(-0.689981\pi\)
−0.562034 + 0.827114i \(0.689981\pi\)
\(648\) 0 0
\(649\) −11.4553 −0.449660
\(650\) −6.53017 + 43.4824i −0.256134 + 1.70552i
\(651\) 0 0
\(652\) 14.4118 8.32063i 0.564408 0.325861i
\(653\) 13.2734 + 22.9902i 0.519429 + 0.899677i 0.999745 + 0.0225814i \(0.00718849\pi\)
−0.480316 + 0.877095i \(0.659478\pi\)
\(654\) 0 0
\(655\) −18.1908 10.5025i −0.710774 0.410366i
\(656\) 0.429147i 0.0167554i
\(657\) 0 0
\(658\) 8.51582i 0.331981i
\(659\) −21.7318 + 37.6406i −0.846552 + 1.46627i 0.0377144 + 0.999289i \(0.487992\pi\)
−0.884266 + 0.466983i \(0.845341\pi\)
\(660\) 0 0
\(661\) −13.6716 + 7.89332i −0.531765 + 0.307015i −0.741735 0.670693i \(-0.765997\pi\)
0.209970 + 0.977708i \(0.432663\pi\)
\(662\) 0.298266 + 0.516612i 0.0115924 + 0.0200787i
\(663\) 0 0
\(664\) 19.7517 34.2110i 0.766516 1.32764i
\(665\) 8.80907i 0.341601i
\(666\) 0 0
\(667\) −9.00000 −0.348481
\(668\) 2.26993 + 1.31055i 0.0878263 + 0.0507065i
\(669\) 0 0
\(670\) −4.91464 + 2.83747i −0.189869 + 0.109621i
\(671\) −10.3916 + 5.99960i −0.401163 + 0.231612i
\(672\) 0 0
\(673\) 8.76355 15.1789i 0.337810 0.585104i −0.646210 0.763159i \(-0.723647\pi\)
0.984021 + 0.178055i \(0.0569805\pi\)
\(674\) 13.4423i 0.517778i
\(675\) 0 0
\(676\) 30.5790 28.4340i 1.17611 1.09362i
\(677\) −9.25036 + 16.0221i −0.355520 + 0.615779i −0.987207 0.159445i \(-0.949030\pi\)
0.631687 + 0.775224i \(0.282363\pi\)
\(678\) 0 0
\(679\) −18.4469 31.9509i −0.707925 1.22616i
\(680\) −22.8227 39.5302i −0.875212 1.51591i
\(681\) 0 0
\(682\) 10.6530 + 6.15052i 0.407925 + 0.235516i
\(683\) 4.68607i 0.179307i −0.995973 0.0896537i \(-0.971424\pi\)
0.995973 0.0896537i \(-0.0285760\pi\)
\(684\) 0 0
\(685\) −44.7948 −1.71152
\(686\) 22.4847 38.9447i 0.858472 1.48692i
\(687\) 0 0
\(688\) −0.463553 0.802898i −0.0176728 0.0306102i
\(689\) 1.66217 2.08659i 0.0633238 0.0794926i
\(690\) 0 0
\(691\) 37.3398 + 21.5581i 1.42047 + 0.820110i 0.996339 0.0854897i \(-0.0272455\pi\)
0.424133 + 0.905600i \(0.360579\pi\)
\(692\) 1.68012 0.0638686
\(693\) 0 0
\(694\) 7.30099i 0.277142i
\(695\) −39.4961 22.8031i −1.49817 0.864970i
\(696\) 0 0
\(697\) 17.8099 10.2825i 0.674596 0.389478i
\(698\) −15.9061 27.5502i −0.602056 1.04279i
\(699\) 0 0
\(700\) 35.9994 + 20.7842i 1.36065 + 0.785570i
\(701\) −35.9226 −1.35678 −0.678389 0.734703i \(-0.737322\pi\)
−0.678389 + 0.734703i \(0.737322\pi\)
\(702\) 0 0
\(703\) 4.77915 0.180249
\(704\) 16.5764 + 9.57041i 0.624748 + 0.360698i
\(705\) 0 0
\(706\) 17.9083 + 31.0181i 0.673988 + 1.16738i
\(707\) −31.2756 + 18.0570i −1.17624 + 0.679104i
\(708\) 0 0
\(709\) 20.9125 + 12.0738i 0.785384 + 0.453442i 0.838335 0.545156i \(-0.183529\pi\)
−0.0529511 + 0.998597i \(0.516863\pi\)
\(710\) 22.1087i 0.829723i
\(711\) 0 0
\(712\) 22.7240 0.851618
\(713\) −29.2167 16.8683i −1.09418 0.631722i
\(714\) 0 0
\(715\) 10.6554 13.3760i 0.398488 0.500236i
\(716\) 22.7651 + 39.4303i 0.850772 + 1.47358i
\(717\) 0 0
\(718\) −6.69468 + 11.5955i −0.249843 + 0.432741i
\(719\) 32.3717 1.20726 0.603630 0.797265i \(-0.293720\pi\)
0.603630 + 0.797265i \(0.293720\pi\)
\(720\) 0 0
\(721\) 15.8230i 0.589279i
\(722\) 35.0378 + 20.2291i 1.30397 + 0.752848i
\(723\) 0 0
\(724\) −28.8689 50.0024i −1.07291 1.85833i
\(725\) −2.60299 4.50851i −0.0966727 0.167442i
\(726\) 0 0
\(727\) −9.76910 + 16.9206i −0.362316 + 0.627549i −0.988342 0.152253i \(-0.951347\pi\)
0.626026 + 0.779802i \(0.284680\pi\)
\(728\) −8.84243 22.4948i −0.327722 0.833713i
\(729\) 0 0
\(730\) 67.6182i 2.50266i
\(731\) 22.2138 38.4754i 0.821607 1.42307i
\(732\) 0 0
\(733\) −35.7224 + 20.6243i −1.31944 + 0.761777i −0.983638 0.180157i \(-0.942340\pi\)
−0.335799 + 0.941934i \(0.609006\pi\)
\(734\) −6.59513 + 3.80770i −0.243431 + 0.140545i
\(735\) 0 0
\(736\) −46.2122 26.6806i −1.70340 0.983460i
\(737\) 1.14005 0.0419942
\(738\) 0 0
\(739\) 12.6677i 0.465988i −0.972478 0.232994i \(-0.925148\pi\)
0.972478 0.232994i \(-0.0748523\pi\)
\(740\) 21.8306 37.8117i 0.802509 1.38999i
\(741\) 0 0
\(742\) −2.04618 3.54409i −0.0751177 0.130108i
\(743\) −10.3523 + 5.97690i −0.379789 + 0.219271i −0.677726 0.735314i \(-0.737035\pi\)
0.297938 + 0.954585i \(0.403701\pi\)
\(744\) 0 0
\(745\) 29.8705 51.7373i 1.09437 1.89551i
\(746\) 60.8215i 2.22683i
\(747\) 0 0
\(748\) 24.3015i 0.888549i
\(749\) 19.6707 + 11.3569i 0.718751 + 0.414971i
\(750\) 0 0
\(751\) 6.59296 + 11.4193i 0.240581 + 0.416698i 0.960880 0.276966i \(-0.0893289\pi\)
−0.720299 + 0.693663i \(0.755996\pi\)
\(752\) 0.142732 0.0824064i 0.00520490 0.00300505i
\(753\) 0 0
\(754\) −1.19141 + 7.93324i −0.0433886 + 0.288912i
\(755\) 38.2436 1.39183
\(756\) 0 0
\(757\) −26.1835 −0.951657 −0.475829 0.879538i \(-0.657852\pi\)
−0.475829 + 0.879538i \(0.657852\pi\)
\(758\) −34.8070 + 60.2876i −1.26425 + 2.18974i
\(759\) 0 0
\(760\) −8.71286 + 5.03037i −0.316049 + 0.182471i
\(761\) −6.00320 + 3.46595i −0.217616 + 0.125640i −0.604846 0.796343i \(-0.706765\pi\)
0.387230 + 0.921983i \(0.373432\pi\)
\(762\) 0 0
\(763\) 17.6688 30.6033i 0.639655 1.10792i
\(764\) 29.8559 1.08015
\(765\) 0 0
\(766\) 57.1557 2.06512
\(767\) 4.15896 27.6933i 0.150171 0.999946i
\(768\) 0 0
\(769\) −33.4083 + 19.2883i −1.20473 + 0.695553i −0.961604 0.274441i \(-0.911507\pi\)
−0.243129 + 0.969994i \(0.578174\pi\)
\(770\) −13.1170 22.7194i −0.472705 0.818749i
\(771\) 0 0
\(772\) −31.9140 18.4255i −1.14861 0.663149i
\(773\) 34.7210i 1.24883i −0.781093 0.624415i \(-0.785338\pi\)
0.781093 0.624415i \(-0.214662\pi\)
\(774\) 0 0
\(775\) 19.5147i 0.700988i
\(776\) 21.0680 36.4908i 0.756296 1.30994i
\(777\) 0 0
\(778\) −4.17627 + 2.41117i −0.149727 + 0.0864447i
\(779\) −2.26638 3.92548i −0.0812014 0.140645i
\(780\) 0 0
\(781\) −2.22072 + 3.84640i −0.0794637 + 0.137635i
\(782\) 108.148i 3.86738i
\(783\) 0 0
\(784\) −0.121002 −0.00432150
\(785\) 11.1099 + 6.41430i 0.396529 + 0.228936i
\(786\) 0 0
\(787\) −31.0375 + 17.9195i −1.10637 + 0.638761i −0.937886 0.346944i \(-0.887219\pi\)
−0.168480 + 0.985705i \(0.553886\pi\)
\(788\) 30.6808 17.7136i 1.09296 0.631020i
\(789\) 0 0
\(790\) 13.7187 23.7614i 0.488088 0.845394i
\(791\) 7.43207i 0.264254i
\(792\) 0 0
\(793\) −10.7313 27.3000i −0.381079 0.969451i
\(794\) −32.8581 + 56.9119i −1.16609 + 2.01973i
\(795\) 0 0
\(796\) −2.22265 3.84975i −0.0787798 0.136451i
\(797\) −19.4271 33.6487i −0.688144 1.19190i −0.972438 0.233163i \(-0.925093\pi\)
0.284294 0.958737i \(-0.408241\pi\)
\(798\) 0 0
\(799\) 6.83983 + 3.94898i 0.241976 + 0.139705i
\(800\) 30.8664i 1.09129i
\(801\) 0 0
\(802\) −25.9980 −0.918020
\(803\) −6.79197 + 11.7640i −0.239683 + 0.415144i
\(804\) 0 0
\(805\) 35.9745 + 62.3097i 1.26793 + 2.19613i
\(806\) −18.7366 + 23.5207i −0.659968 + 0.828482i
\(807\) 0 0
\(808\) −35.7196 20.6227i −1.25661 0.725505i
\(809\) 12.2765 0.431619 0.215809 0.976435i \(-0.430761\pi\)
0.215809 + 0.976435i \(0.430761\pi\)
\(810\) 0 0
\(811\) 13.8855i 0.487585i 0.969827 + 0.243792i \(0.0783915\pi\)
−0.969827 + 0.243792i \(0.921608\pi\)
\(812\) 6.56798 + 3.79202i 0.230491 + 0.133074i
\(813\) 0 0
\(814\) −12.3259 + 7.11634i −0.432021 + 0.249428i
\(815\) 8.33062 + 14.4291i 0.291809 + 0.505428i
\(816\) 0 0
\(817\) −8.48039 4.89616i −0.296691 0.171295i
\(818\) 7.66079 0.267853
\(819\) 0 0
\(820\) −41.4102 −1.44611
\(821\) 7.91360 + 4.56892i 0.276187 + 0.159456i 0.631696 0.775216i \(-0.282359\pi\)
−0.355509 + 0.934673i \(0.615693\pi\)
\(822\) 0 0
\(823\) −1.95741 3.39033i −0.0682310 0.118180i 0.829892 0.557925i \(-0.188402\pi\)
−0.898123 + 0.439745i \(0.855069\pi\)
\(824\) −15.6502 + 9.03564i −0.545200 + 0.314771i
\(825\) 0 0
\(826\) −37.2035 21.4794i −1.29448 0.747366i
\(827\) 18.1786i 0.632131i 0.948737 + 0.316065i \(0.102362\pi\)
−0.948737 + 0.316065i \(0.897638\pi\)
\(828\) 0 0
\(829\) 38.0468 1.32142 0.660711 0.750641i \(-0.270255\pi\)
0.660711 + 0.750641i \(0.270255\pi\)
\(830\) 90.7735 + 52.4081i 3.15080 + 1.81911i
\(831\) 0 0
\(832\) −29.1548 + 36.5990i −1.01076 + 1.26884i
\(833\) −2.89925 5.02165i −0.100453 0.173990i
\(834\) 0 0
\(835\) −1.31212 + 2.27266i −0.0454077 + 0.0786485i
\(836\) 5.35630 0.185251
\(837\) 0 0
\(838\) 4.71569i 0.162901i
\(839\) −24.7704 14.3012i −0.855171 0.493733i 0.00722153 0.999974i \(-0.497701\pi\)
−0.862392 + 0.506241i \(0.831035\pi\)
\(840\) 0 0
\(841\) 14.0251 + 24.2922i 0.483624 + 0.837661i
\(842\) 38.6995 + 67.0295i 1.33367 + 2.30999i
\(843\) 0 0
\(844\) −14.7491 + 25.5462i −0.507684 + 0.879335i
\(845\) 28.4681 + 30.6157i 0.979334 + 1.05321i
\(846\) 0 0
\(847\) 21.3798i 0.734620i
\(848\) −0.0396012 + 0.0685914i −0.00135991 + 0.00235544i
\(849\) 0 0
\(850\) 54.1765 31.2788i 1.85824 1.07286i
\(851\) 33.8047 19.5171i 1.15881 0.669039i
\(852\) 0 0
\(853\) 26.0272 + 15.0268i 0.891154 + 0.514508i 0.874320 0.485350i \(-0.161308\pi\)
0.0168345 + 0.999858i \(0.494641\pi\)
\(854\) −44.9986 −1.53982
\(855\) 0 0
\(856\) 25.9412i 0.886650i
\(857\) −0.668881 + 1.15854i −0.0228485 + 0.0395748i −0.877224 0.480082i \(-0.840607\pi\)
0.854375 + 0.519657i \(0.173940\pi\)
\(858\) 0 0
\(859\) 20.6362 + 35.7429i 0.704097 + 1.21953i 0.967017 + 0.254714i \(0.0819812\pi\)
−0.262920 + 0.964818i \(0.584685\pi\)
\(860\) −77.4749 + 44.7301i −2.64187 + 1.52529i
\(861\) 0 0
\(862\) −34.9538 + 60.5417i −1.19053 + 2.06206i
\(863\) 37.3326i 1.27082i 0.772176 + 0.635408i \(0.219168\pi\)
−0.772176 + 0.635408i \(0.780832\pi\)
\(864\) 0 0
\(865\) 1.68214i 0.0571944i
\(866\) 17.0743 + 9.85788i 0.580210 + 0.334984i
\(867\) 0 0
\(868\) 14.2144 + 24.6201i 0.482469 + 0.835661i
\(869\) −4.77347 + 2.75597i −0.161929 + 0.0934897i
\(870\) 0 0
\(871\) −0.413906 + 2.75607i −0.0140247 + 0.0933860i
\(872\) 40.3588 1.36672
\(873\) 0 0
\(874\) −23.8371 −0.806301
\(875\) −1.33129 + 2.30586i −0.0450057 + 0.0779521i
\(876\) 0 0
\(877\) 34.8042 20.0942i 1.17526 0.678534i 0.220343 0.975422i \(-0.429282\pi\)
0.954912 + 0.296889i \(0.0959490\pi\)
\(878\) −58.4542 + 33.7485i −1.97273 + 1.13896i
\(879\) 0 0
\(880\) −0.253863 + 0.439704i −0.00855773 + 0.0148224i
\(881\) −13.8402 −0.466289 −0.233144 0.972442i \(-0.574901\pi\)
−0.233144 + 0.972442i \(0.574901\pi\)
\(882\) 0 0
\(883\) −29.1280 −0.980235 −0.490118 0.871656i \(-0.663046\pi\)
−0.490118 + 0.871656i \(0.663046\pi\)
\(884\) −58.7489 8.82288i −1.97594 0.296746i
\(885\) 0 0
\(886\) 61.8170 35.6901i 2.07678 1.19903i
\(887\) 9.07561 + 15.7194i 0.304729 + 0.527806i 0.977201 0.212316i \(-0.0681008\pi\)
−0.672472 + 0.740123i \(0.734767\pi\)
\(888\) 0 0
\(889\) 0.343873 + 0.198535i 0.0115331 + 0.00665865i
\(890\) 60.2946i 2.02108i
\(891\) 0 0
\(892\) 20.4544i 0.684864i
\(893\) 0.870396 1.50757i 0.0291267 0.0504489i
\(894\) 0 0
\(895\) −39.4777 + 22.7924i −1.31959 + 0.761867i
\(896\) 21.8909 + 37.9162i 0.731324 + 1.26669i
\(897\) 0 0
\(898\) 12.3676 21.4213i 0.412712 0.714838i
\(899\) 3.56040i 0.118746i
\(900\) 0 0
\(901\) −3.79544 −0.126444
\(902\) 11.6904 + 6.74944i 0.389247 + 0.224732i
\(903\) 0 0
\(904\) −7.35090 + 4.24404i −0.244487 + 0.141155i
\(905\) 50.0625 28.9036i 1.66413 0.960788i
\(906\) 0 0
\(907\) −2.55936 + 4.43293i −0.0849820 + 0.147193i −0.905384 0.424595i \(-0.860417\pi\)
0.820402 + 0.571788i \(0.193750\pi\)
\(908\) 32.7515i 1.08690i
\(909\) 0 0
\(910\) 59.6865 23.4620i 1.97859 0.777758i
\(911\) 21.1217 36.5839i 0.699794 1.21208i −0.268744 0.963212i \(-0.586608\pi\)
0.968538 0.248867i \(-0.0800582\pi\)
\(912\) 0 0
\(913\) −10.5284 18.2356i −0.348438 0.603512i
\(914\) −18.3129 31.7188i −0.605736 1.04916i
\(915\) 0 0
\(916\) 22.5797 + 13.0364i 0.746056 + 0.430735i
\(917\) 15.8245i 0.522571i
\(918\) 0 0
\(919\) 37.2207 1.22780 0.613899 0.789384i \(-0.289600\pi\)
0.613899 + 0.789384i \(0.289600\pi\)
\(920\) −41.0861 + 71.1633i −1.35457 + 2.34618i
\(921\) 0 0
\(922\) −29.2552 50.6715i −0.963469 1.66878i
\(923\) −8.49245 6.76508i −0.279532 0.222675i
\(924\) 0 0
\(925\) 19.5541 + 11.2895i 0.642933 + 0.371198i
\(926\) 74.3202 2.44231
\(927\) 0 0
\(928\) 5.63149i 0.184863i
\(929\) 18.3982 + 10.6222i 0.603624 + 0.348502i 0.770466 0.637481i \(-0.220024\pi\)
−0.166842 + 0.985984i \(0.553357\pi\)
\(930\) 0 0
\(931\) −1.10683 + 0.639026i −0.0362747 + 0.0209432i
\(932\) −13.4550 23.3047i −0.440733 0.763372i
\(933\) 0 0
\(934\) −32.0647 18.5126i −1.04919 0.605750i
\(935\) −24.3306 −0.795697
\(936\) 0 0
\(937\) −55.6976 −1.81956 −0.909781 0.415089i \(-0.863750\pi\)
−0.909781 + 0.415089i \(0.863750\pi\)
\(938\) 3.70255 + 2.13767i 0.120892 + 0.0697973i
\(939\) 0 0
\(940\) −7.95173 13.7728i −0.259357 0.449219i
\(941\) 17.2655 9.96821i 0.562838 0.324954i −0.191446 0.981503i \(-0.561318\pi\)
0.754284 + 0.656549i \(0.227984\pi\)
\(942\) 0 0
\(943\) −32.0618 18.5109i −1.04408 0.602797i
\(944\) 0.831414i 0.0270602i
\(945\) 0 0
\(946\) 29.1622 0.948146
\(947\) 28.2364 + 16.3023i 0.917560 + 0.529754i 0.882856 0.469644i \(-0.155618\pi\)
0.0347045 + 0.999398i \(0.488951\pi\)
\(948\) 0 0
\(949\) −25.9737 20.6907i −0.843143 0.671647i
\(950\) −6.89419 11.9411i −0.223677 0.387420i
\(951\) 0 0
\(952\) −17.1940 + 29.7808i −0.557260 + 0.965203i
\(953\) 15.6146 0.505808 0.252904 0.967491i \(-0.418614\pi\)
0.252904 + 0.967491i \(0.418614\pi\)
\(954\) 0 0
\(955\) 29.8917i 0.967273i
\(956\) 12.8304 + 7.40766i 0.414966 + 0.239581i
\(957\) 0 0
\(958\) 11.6843 + 20.2378i 0.377502 + 0.653853i
\(959\) 16.8735 + 29.2258i 0.544875 + 0.943750i
\(960\) 0 0
\(961\) −8.82691 + 15.2887i −0.284739 + 0.493183i
\(962\) −12.7288 32.3815i −0.410392 1.04402i
\(963\) 0 0
\(964\) 25.8106i 0.831304i
\(965\) 18.4477 31.9523i 0.593851 1.02858i
\(966\) 0 0
\(967\) −3.47716 + 2.00754i −0.111818 + 0.0645581i −0.554866 0.831940i \(-0.687230\pi\)
0.443048 + 0.896498i \(0.353897\pi\)
\(968\) 21.1464 12.2089i 0.679670 0.392407i
\(969\) 0 0
\(970\) 96.8226 + 55.9006i 3.10879 + 1.79486i
\(971\) 27.3969 0.879209 0.439604 0.898192i \(-0.355119\pi\)
0.439604 + 0.898192i \(0.355119\pi\)
\(972\) 0 0
\(973\) 34.3583i 1.10148i
\(974\) −18.3624 + 31.8045i −0.588368 + 1.01908i
\(975\) 0 0
\(976\) 0.435445 + 0.754212i 0.0139382 + 0.0241417i
\(977\) 33.3866 19.2758i 1.06813 0.616687i 0.140462 0.990086i \(-0.455141\pi\)
0.927671 + 0.373399i \(0.121808\pi\)
\(978\) 0 0
\(979\) 6.05634 10.4899i 0.193561 0.335258i
\(980\) 11.6760i 0.372976i
\(981\) 0 0
\(982\) 10.0882i 0.321926i
\(983\) −40.2933 23.2633i −1.28516 0.741986i −0.307370 0.951590i \(-0.599449\pi\)
−0.977786 + 0.209604i \(0.932782\pi\)
\(984\) 0 0
\(985\) 17.7349 + 30.7177i 0.565079 + 0.978746i
\(986\) 9.88435 5.70673i 0.314782 0.181739i
\(987\) 0 0
\(988\) −1.94466 + 12.9489i −0.0618677 + 0.411959i
\(989\) −79.9798 −2.54321
\(990\) 0 0
\(991\) 41.1031 1.30568 0.652841 0.757495i \(-0.273577\pi\)
0.652841 + 0.757495i \(0.273577\pi\)
\(992\) 10.5548 18.2815i 0.335116 0.580439i
\(993\) 0 0
\(994\) −14.4245 + 8.32800i −0.457518 + 0.264148i
\(995\) 3.85437 2.22532i 0.122192 0.0705474i
\(996\) 0 0
\(997\) 27.8886 48.3045i 0.883241 1.52982i 0.0355252 0.999369i \(-0.488690\pi\)
0.847716 0.530450i \(-0.177977\pi\)
\(998\) 16.8548 0.533529
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 351.2.t.c.181.9 20
3.2 odd 2 117.2.t.c.25.2 20
9.2 odd 6 1053.2.b.j.649.9 10
9.4 even 3 inner 351.2.t.c.64.2 20
9.5 odd 6 117.2.t.c.103.9 yes 20
9.7 even 3 1053.2.b.i.649.2 10
13.12 even 2 inner 351.2.t.c.181.2 20
39.38 odd 2 117.2.t.c.25.9 yes 20
117.25 even 6 1053.2.b.i.649.9 10
117.38 odd 6 1053.2.b.j.649.2 10
117.77 odd 6 117.2.t.c.103.2 yes 20
117.103 even 6 inner 351.2.t.c.64.9 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.t.c.25.2 20 3.2 odd 2
117.2.t.c.25.9 yes 20 39.38 odd 2
117.2.t.c.103.2 yes 20 117.77 odd 6
117.2.t.c.103.9 yes 20 9.5 odd 6
351.2.t.c.64.2 20 9.4 even 3 inner
351.2.t.c.64.9 20 117.103 even 6 inner
351.2.t.c.181.2 20 13.12 even 2 inner
351.2.t.c.181.9 20 1.1 even 1 trivial
1053.2.b.i.649.2 10 9.7 even 3
1053.2.b.i.649.9 10 117.25 even 6
1053.2.b.j.649.2 10 117.38 odd 6
1053.2.b.j.649.9 10 9.2 odd 6