Properties

Label 351.2.t.c.181.7
Level $351$
Weight $2$
Character 351.181
Analytic conductor $2.803$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [351,2,Mod(64,351)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(351, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("351.64");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.80274911095\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 6x^{16} + 9x^{14} + 54x^{12} + 81x^{10} + 486x^{8} + 729x^{6} - 4374x^{4} + 59049 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{9} \)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 181.7
Root \(-1.65391 + 0.514376i\) of defining polynomial
Character \(\chi\) \(=\) 351.181
Dual form 351.2.t.c.64.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.929969 + 0.536918i) q^{2} +(-0.423439 - 0.733417i) q^{4} +(1.10543 - 0.638222i) q^{5} +(-0.890926 - 0.514376i) q^{7} -3.05708i q^{8} +1.37069 q^{10} +(4.03796 + 2.33132i) q^{11} +(2.29741 - 2.77883i) q^{13} +(-0.552355 - 0.956708i) q^{14} +(0.794522 - 1.37615i) q^{16} +0.476187 q^{17} -6.69096i q^{19} +(-0.936166 - 0.540496i) q^{20} +(2.50345 + 4.33610i) q^{22} +(0.479867 + 0.831155i) q^{23} +(-1.68535 + 2.91910i) q^{25} +(3.62852 - 1.35071i) q^{26} +0.871227i q^{28} +(-4.68880 + 8.12123i) q^{29} +(1.66927 - 0.963754i) q^{31} +(-3.81725 + 2.20389i) q^{32} +(0.442839 + 0.255673i) q^{34} -1.31314 q^{35} +4.94666i q^{37} +(3.59249 - 6.22238i) q^{38} +(-1.95109 - 3.37939i) q^{40} +(-1.31994 + 0.762068i) q^{41} +(-1.31426 + 2.27637i) q^{43} -3.94868i q^{44} +1.03060i q^{46} +(5.92316 + 3.41974i) q^{47} +(-2.97083 - 5.14564i) q^{49} +(-3.13464 + 1.80978i) q^{50} +(-3.01086 - 0.508296i) q^{52} -0.582145 q^{53} +5.95159 q^{55} +(-1.57249 + 2.72363i) q^{56} +(-8.72087 + 5.03499i) q^{58} +(-3.64799 + 2.10617i) q^{59} +(-4.71645 + 8.16913i) q^{61} +2.06983 q^{62} -7.91132 q^{64} +(0.766122 - 4.53807i) q^{65} +(2.01156 - 1.16138i) q^{67} +(-0.201636 - 0.349243i) q^{68} +(-1.22118 - 0.705051i) q^{70} -1.35071i q^{71} +12.8687i q^{73} +(-2.65595 + 4.60024i) q^{74} +(-4.90726 + 2.83321i) q^{76} +(-2.39835 - 4.15406i) q^{77} +(6.45415 - 11.1789i) q^{79} -2.02833i q^{80} -1.63667 q^{82} +(-8.86189 - 5.11641i) q^{83} +(0.526392 - 0.303913i) q^{85} +(-2.44445 + 1.41130i) q^{86} +(7.12701 - 12.3444i) q^{88} +6.85985i q^{89} +(-3.47619 + 1.29400i) q^{91} +(0.406389 - 0.703886i) q^{92} +(3.67224 + 6.36050i) q^{94} +(-4.27032 - 7.39640i) q^{95} +(14.9635 + 8.63918i) q^{97} -6.38037i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 12 q^{4} - 16 q^{10} - 4 q^{13} + 18 q^{14} + 4 q^{16} + 12 q^{17} - 10 q^{22} - 24 q^{23} - 12 q^{25} + 12 q^{26} - 12 q^{29} + 12 q^{35} - 12 q^{38} - 8 q^{40} + 4 q^{43} - 10 q^{49} - 108 q^{53}+ \cdots - 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.929969 + 0.536918i 0.657587 + 0.379658i 0.791357 0.611354i \(-0.209375\pi\)
−0.133770 + 0.991012i \(0.542708\pi\)
\(3\) 0 0
\(4\) −0.423439 0.733417i −0.211719 0.366709i
\(5\) 1.10543 0.638222i 0.494365 0.285422i −0.232019 0.972711i \(-0.574533\pi\)
0.726383 + 0.687290i \(0.241200\pi\)
\(6\) 0 0
\(7\) −0.890926 0.514376i −0.336738 0.194416i 0.322090 0.946709i \(-0.395614\pi\)
−0.658829 + 0.752293i \(0.728948\pi\)
\(8\) 3.05708i 1.08084i
\(9\) 0 0
\(10\) 1.37069 0.433450
\(11\) 4.03796 + 2.33132i 1.21749 + 0.702918i 0.964380 0.264519i \(-0.0852133\pi\)
0.253110 + 0.967438i \(0.418547\pi\)
\(12\) 0 0
\(13\) 2.29741 2.77883i 0.637187 0.770709i
\(14\) −0.552355 0.956708i −0.147623 0.255691i
\(15\) 0 0
\(16\) 0.794522 1.37615i 0.198631 0.344038i
\(17\) 0.476187 0.115492 0.0577461 0.998331i \(-0.481609\pi\)
0.0577461 + 0.998331i \(0.481609\pi\)
\(18\) 0 0
\(19\) 6.69096i 1.53501i −0.641042 0.767505i \(-0.721498\pi\)
0.641042 0.767505i \(-0.278502\pi\)
\(20\) −0.936166 0.540496i −0.209333 0.120859i
\(21\) 0 0
\(22\) 2.50345 + 4.33610i 0.533737 + 0.924460i
\(23\) 0.479867 + 0.831155i 0.100059 + 0.173308i 0.911709 0.410837i \(-0.134763\pi\)
−0.811650 + 0.584145i \(0.801430\pi\)
\(24\) 0 0
\(25\) −1.68535 + 2.91910i −0.337069 + 0.583821i
\(26\) 3.62852 1.35071i 0.711612 0.264895i
\(27\) 0 0
\(28\) 0.871227i 0.164646i
\(29\) −4.68880 + 8.12123i −0.870687 + 1.50807i −0.00940050 + 0.999956i \(0.502992\pi\)
−0.861287 + 0.508119i \(0.830341\pi\)
\(30\) 0 0
\(31\) 1.66927 0.963754i 0.299810 0.173095i −0.342548 0.939500i \(-0.611290\pi\)
0.642357 + 0.766405i \(0.277956\pi\)
\(32\) −3.81725 + 2.20389i −0.674801 + 0.389597i
\(33\) 0 0
\(34\) 0.442839 + 0.255673i 0.0759462 + 0.0438476i
\(35\) −1.31314 −0.221962
\(36\) 0 0
\(37\) 4.94666i 0.813226i 0.913601 + 0.406613i \(0.133290\pi\)
−0.913601 + 0.406613i \(0.866710\pi\)
\(38\) 3.59249 6.22238i 0.582779 1.00940i
\(39\) 0 0
\(40\) −1.95109 3.37939i −0.308495 0.534329i
\(41\) −1.31994 + 0.762068i −0.206140 + 0.119015i −0.599516 0.800363i \(-0.704640\pi\)
0.393376 + 0.919378i \(0.371307\pi\)
\(42\) 0 0
\(43\) −1.31426 + 2.27637i −0.200423 + 0.347143i −0.948665 0.316283i \(-0.897565\pi\)
0.748242 + 0.663426i \(0.230898\pi\)
\(44\) 3.94868i 0.595285i
\(45\) 0 0
\(46\) 1.03060i 0.151953i
\(47\) 5.92316 + 3.41974i 0.863982 + 0.498820i 0.865344 0.501179i \(-0.167100\pi\)
−0.00136148 + 0.999999i \(0.500433\pi\)
\(48\) 0 0
\(49\) −2.97083 5.14564i −0.424405 0.735091i
\(50\) −3.13464 + 1.80978i −0.443305 + 0.255942i
\(51\) 0 0
\(52\) −3.01086 0.508296i −0.417531 0.0704880i
\(53\) −0.582145 −0.0799637 −0.0399819 0.999200i \(-0.512730\pi\)
−0.0399819 + 0.999200i \(0.512730\pi\)
\(54\) 0 0
\(55\) 5.95159 0.802512
\(56\) −1.57249 + 2.72363i −0.210133 + 0.363960i
\(57\) 0 0
\(58\) −8.72087 + 5.03499i −1.14511 + 0.661127i
\(59\) −3.64799 + 2.10617i −0.474927 + 0.274199i −0.718300 0.695733i \(-0.755080\pi\)
0.243373 + 0.969933i \(0.421746\pi\)
\(60\) 0 0
\(61\) −4.71645 + 8.16913i −0.603880 + 1.04595i 0.388348 + 0.921513i \(0.373046\pi\)
−0.992227 + 0.124437i \(0.960287\pi\)
\(62\) 2.06983 0.262868
\(63\) 0 0
\(64\) −7.91132 −0.988915
\(65\) 0.766122 4.53807i 0.0950257 0.562878i
\(66\) 0 0
\(67\) 2.01156 1.16138i 0.245751 0.141885i −0.372066 0.928206i \(-0.621350\pi\)
0.617817 + 0.786322i \(0.288017\pi\)
\(68\) −0.201636 0.349243i −0.0244519 0.0423520i
\(69\) 0 0
\(70\) −1.22118 0.705051i −0.145959 0.0842697i
\(71\) 1.35071i 0.160299i −0.996783 0.0801497i \(-0.974460\pi\)
0.996783 0.0801497i \(-0.0255398\pi\)
\(72\) 0 0
\(73\) 12.8687i 1.50617i 0.657923 + 0.753085i \(0.271435\pi\)
−0.657923 + 0.753085i \(0.728565\pi\)
\(74\) −2.65595 + 4.60024i −0.308748 + 0.534767i
\(75\) 0 0
\(76\) −4.90726 + 2.83321i −0.562902 + 0.324991i
\(77\) −2.39835 4.15406i −0.273317 0.473399i
\(78\) 0 0
\(79\) 6.45415 11.1789i 0.726149 1.25773i −0.232351 0.972632i \(-0.574642\pi\)
0.958499 0.285094i \(-0.0920250\pi\)
\(80\) 2.02833i 0.226774i
\(81\) 0 0
\(82\) −1.63667 −0.180740
\(83\) −8.86189 5.11641i −0.972718 0.561599i −0.0726545 0.997357i \(-0.523147\pi\)
−0.900064 + 0.435758i \(0.856480\pi\)
\(84\) 0 0
\(85\) 0.526392 0.303913i 0.0570953 0.0329640i
\(86\) −2.44445 + 1.41130i −0.263591 + 0.152185i
\(87\) 0 0
\(88\) 7.12701 12.3444i 0.759742 1.31591i
\(89\) 6.85985i 0.727143i 0.931566 + 0.363572i \(0.118443\pi\)
−0.931566 + 0.363572i \(0.881557\pi\)
\(90\) 0 0
\(91\) −3.47619 + 1.29400i −0.364403 + 0.135648i
\(92\) 0.406389 0.703886i 0.0423690 0.0733852i
\(93\) 0 0
\(94\) 3.67224 + 6.36050i 0.378763 + 0.656036i
\(95\) −4.27032 7.39640i −0.438125 0.758855i
\(96\) 0 0
\(97\) 14.9635 + 8.63918i 1.51931 + 0.877175i 0.999741 + 0.0227483i \(0.00724164\pi\)
0.519571 + 0.854427i \(0.326092\pi\)
\(98\) 6.38037i 0.644515i
\(99\) 0 0
\(100\) 2.85456 0.285456
\(101\) 6.76434 11.7162i 0.673077 1.16580i −0.303950 0.952688i \(-0.598306\pi\)
0.977027 0.213116i \(-0.0683611\pi\)
\(102\) 0 0
\(103\) −0.0523553 0.0906821i −0.00515873 0.00893517i 0.863435 0.504461i \(-0.168309\pi\)
−0.868593 + 0.495526i \(0.834975\pi\)
\(104\) −8.49510 7.02336i −0.833014 0.688697i
\(105\) 0 0
\(106\) −0.541376 0.312564i −0.0525831 0.0303589i
\(107\) −12.4240 −1.20107 −0.600535 0.799598i \(-0.705046\pi\)
−0.600535 + 0.799598i \(0.705046\pi\)
\(108\) 0 0
\(109\) 14.1160i 1.35207i −0.736869 0.676036i \(-0.763696\pi\)
0.736869 0.676036i \(-0.236304\pi\)
\(110\) 5.53479 + 3.19551i 0.527722 + 0.304680i
\(111\) 0 0
\(112\) −1.41572 + 0.817366i −0.133773 + 0.0772339i
\(113\) 5.84280 + 10.1200i 0.549645 + 0.952013i 0.998299 + 0.0583071i \(0.0185703\pi\)
−0.448654 + 0.893706i \(0.648096\pi\)
\(114\) 0 0
\(115\) 1.06092 + 0.612524i 0.0989315 + 0.0571181i
\(116\) 7.94167 0.737365
\(117\) 0 0
\(118\) −4.52335 −0.416408
\(119\) −0.424247 0.244939i −0.0388906 0.0224535i
\(120\) 0 0
\(121\) 5.37007 + 9.30123i 0.488188 + 0.845566i
\(122\) −8.77230 + 5.06469i −0.794207 + 0.458536i
\(123\) 0 0
\(124\) −1.41367 0.816181i −0.126951 0.0732952i
\(125\) 10.6847i 0.955670i
\(126\) 0 0
\(127\) −8.11161 −0.719789 −0.359894 0.932993i \(-0.617187\pi\)
−0.359894 + 0.932993i \(0.617187\pi\)
\(128\) 0.277222 + 0.160054i 0.0245032 + 0.0141469i
\(129\) 0 0
\(130\) 3.14904 3.80892i 0.276189 0.334064i
\(131\) 4.68039 + 8.10667i 0.408927 + 0.708283i 0.994770 0.102142i \(-0.0325697\pi\)
−0.585843 + 0.810425i \(0.699236\pi\)
\(132\) 0 0
\(133\) −3.44167 + 5.96115i −0.298431 + 0.516897i
\(134\) 2.49425 0.215471
\(135\) 0 0
\(136\) 1.45574i 0.124829i
\(137\) −0.512400 0.295834i −0.0437773 0.0252748i 0.477952 0.878386i \(-0.341379\pi\)
−0.521729 + 0.853111i \(0.674713\pi\)
\(138\) 0 0
\(139\) 6.33633 + 10.9749i 0.537441 + 0.930875i 0.999041 + 0.0437867i \(0.0139422\pi\)
−0.461600 + 0.887088i \(0.652724\pi\)
\(140\) 0.556036 + 0.963083i 0.0469936 + 0.0813954i
\(141\) 0 0
\(142\) 0.725218 1.25611i 0.0608589 0.105411i
\(143\) 15.7552 5.86481i 1.31751 0.490440i
\(144\) 0 0
\(145\) 11.9700i 0.994052i
\(146\) −6.90945 + 11.9675i −0.571830 + 0.990438i
\(147\) 0 0
\(148\) 3.62796 2.09461i 0.298217 0.172176i
\(149\) 10.1242 5.84520i 0.829406 0.478858i −0.0242432 0.999706i \(-0.507718\pi\)
0.853649 + 0.520848i \(0.174384\pi\)
\(150\) 0 0
\(151\) −8.83800 5.10262i −0.719226 0.415245i 0.0952418 0.995454i \(-0.469638\pi\)
−0.814468 + 0.580209i \(0.802971\pi\)
\(152\) −20.4548 −1.65910
\(153\) 0 0
\(154\) 5.15086i 0.415068i
\(155\) 1.23018 2.13073i 0.0988102 0.171144i
\(156\) 0 0
\(157\) −5.47021 9.47468i −0.436570 0.756162i 0.560852 0.827916i \(-0.310474\pi\)
−0.997422 + 0.0717541i \(0.977140\pi\)
\(158\) 12.0043 6.93070i 0.955012 0.551377i
\(159\) 0 0
\(160\) −2.81314 + 4.87251i −0.222399 + 0.385206i
\(161\) 0.987329i 0.0778125i
\(162\) 0 0
\(163\) 16.9633i 1.32867i −0.747436 0.664334i \(-0.768715\pi\)
0.747436 0.664334i \(-0.231285\pi\)
\(164\) 1.11783 + 0.645378i 0.0872877 + 0.0503956i
\(165\) 0 0
\(166\) −5.49419 9.51621i −0.426431 0.738601i
\(167\) 14.5559 8.40384i 1.12637 0.650309i 0.183349 0.983048i \(-0.441306\pi\)
0.943019 + 0.332739i \(0.107973\pi\)
\(168\) 0 0
\(169\) −2.44381 12.7682i −0.187985 0.982172i
\(170\) 0.652705 0.0500602
\(171\) 0 0
\(172\) 2.22604 0.169734
\(173\) −9.54320 + 16.5293i −0.725556 + 1.25670i 0.233189 + 0.972431i \(0.425084\pi\)
−0.958745 + 0.284268i \(0.908249\pi\)
\(174\) 0 0
\(175\) 3.00303 1.73380i 0.227008 0.131063i
\(176\) 6.41649 3.70456i 0.483661 0.279242i
\(177\) 0 0
\(178\) −3.68318 + 6.37945i −0.276066 + 0.478160i
\(179\) 8.33634 0.623087 0.311544 0.950232i \(-0.399154\pi\)
0.311544 + 0.950232i \(0.399154\pi\)
\(180\) 0 0
\(181\) 9.93629 0.738558 0.369279 0.929318i \(-0.379605\pi\)
0.369279 + 0.929318i \(0.379605\pi\)
\(182\) −3.92752 0.663048i −0.291127 0.0491484i
\(183\) 0 0
\(184\) 2.54090 1.46699i 0.187318 0.108148i
\(185\) 3.15707 + 5.46820i 0.232112 + 0.402030i
\(186\) 0 0
\(187\) 1.92282 + 1.11014i 0.140611 + 0.0811816i
\(188\) 5.79220i 0.422440i
\(189\) 0 0
\(190\) 9.17123i 0.665351i
\(191\) −3.03797 + 5.26192i −0.219820 + 0.380739i −0.954753 0.297401i \(-0.903880\pi\)
0.734933 + 0.678140i \(0.237214\pi\)
\(192\) 0 0
\(193\) −14.3007 + 8.25650i −1.02939 + 0.594316i −0.916809 0.399327i \(-0.869244\pi\)
−0.112577 + 0.993643i \(0.535910\pi\)
\(194\) 9.27705 + 16.0683i 0.666054 + 1.15364i
\(195\) 0 0
\(196\) −2.51593 + 4.35772i −0.179709 + 0.311266i
\(197\) 19.1696i 1.36578i 0.730523 + 0.682888i \(0.239276\pi\)
−0.730523 + 0.682888i \(0.760724\pi\)
\(198\) 0 0
\(199\) 9.06267 0.642436 0.321218 0.947005i \(-0.395908\pi\)
0.321218 + 0.947005i \(0.395908\pi\)
\(200\) 8.92393 + 5.15223i 0.631017 + 0.364318i
\(201\) 0 0
\(202\) 12.5813 7.26379i 0.885214 0.511078i
\(203\) 8.35474 4.82361i 0.586387 0.338551i
\(204\) 0 0
\(205\) −0.972737 + 1.68483i −0.0679389 + 0.117674i
\(206\) 0.112442i 0.00783421i
\(207\) 0 0
\(208\) −1.99875 5.36943i −0.138589 0.372303i
\(209\) 15.5987 27.0178i 1.07899 1.86886i
\(210\) 0 0
\(211\) 7.34882 + 12.7285i 0.505913 + 0.876268i 0.999977 + 0.00684175i \(0.00217781\pi\)
−0.494063 + 0.869426i \(0.664489\pi\)
\(212\) 0.246503 + 0.426955i 0.0169299 + 0.0293234i
\(213\) 0 0
\(214\) −11.5539 6.67065i −0.789809 0.455996i
\(215\) 3.35516i 0.228820i
\(216\) 0 0
\(217\) −1.98293 −0.134610
\(218\) 7.57916 13.1275i 0.513325 0.889105i
\(219\) 0 0
\(220\) −2.52013 4.36500i −0.169907 0.294288i
\(221\) 1.09400 1.32324i 0.0735901 0.0890109i
\(222\) 0 0
\(223\) −17.4983 10.1026i −1.17177 0.676521i −0.217673 0.976022i \(-0.569847\pi\)
−0.954096 + 0.299500i \(0.903180\pi\)
\(224\) 4.53452 0.302975
\(225\) 0 0
\(226\) 12.5484i 0.834709i
\(227\) −17.8003 10.2770i −1.18145 0.682109i −0.225098 0.974336i \(-0.572270\pi\)
−0.956349 + 0.292228i \(0.905603\pi\)
\(228\) 0 0
\(229\) 17.2270 9.94602i 1.13839 0.657251i 0.192361 0.981324i \(-0.438386\pi\)
0.946032 + 0.324073i \(0.105052\pi\)
\(230\) 0.657750 + 1.13926i 0.0433707 + 0.0751203i
\(231\) 0 0
\(232\) 24.8272 + 14.3340i 1.62999 + 0.941074i
\(233\) −28.3932 −1.86010 −0.930049 0.367436i \(-0.880236\pi\)
−0.930049 + 0.367436i \(0.880236\pi\)
\(234\) 0 0
\(235\) 8.73021 0.569496
\(236\) 3.08940 + 1.78366i 0.201103 + 0.116107i
\(237\) 0 0
\(238\) −0.263024 0.455571i −0.0170493 0.0295303i
\(239\) 12.7434 7.35741i 0.824302 0.475911i −0.0275956 0.999619i \(-0.508785\pi\)
0.851898 + 0.523708i \(0.175452\pi\)
\(240\) 0 0
\(241\) 11.4631 + 6.61822i 0.738403 + 0.426317i 0.821488 0.570225i \(-0.193144\pi\)
−0.0830856 + 0.996542i \(0.526477\pi\)
\(242\) 11.5331i 0.741378i
\(243\) 0 0
\(244\) 7.98851 0.511412
\(245\) −6.56812 3.79210i −0.419622 0.242269i
\(246\) 0 0
\(247\) −18.5930 15.3719i −1.18305 0.978089i
\(248\) −2.94627 5.10309i −0.187088 0.324047i
\(249\) 0 0
\(250\) −5.73681 + 9.93645i −0.362828 + 0.628437i
\(251\) 11.9439 0.753893 0.376946 0.926235i \(-0.376974\pi\)
0.376946 + 0.926235i \(0.376974\pi\)
\(252\) 0 0
\(253\) 4.47489i 0.281334i
\(254\) −7.54354 4.35527i −0.473324 0.273274i
\(255\) 0 0
\(256\) 8.08319 + 14.0005i 0.505200 + 0.875032i
\(257\) −7.48243 12.9600i −0.466741 0.808419i 0.532537 0.846407i \(-0.321239\pi\)
−0.999278 + 0.0379872i \(0.987905\pi\)
\(258\) 0 0
\(259\) 2.54444 4.40710i 0.158104 0.273844i
\(260\) −3.65270 + 1.35971i −0.226531 + 0.0843255i
\(261\) 0 0
\(262\) 10.0519i 0.621010i
\(263\) 0.774621 1.34168i 0.0477652 0.0827317i −0.841154 0.540795i \(-0.818123\pi\)
0.888919 + 0.458063i \(0.151457\pi\)
\(264\) 0 0
\(265\) −0.643522 + 0.371538i −0.0395312 + 0.0228234i
\(266\) −6.40129 + 3.69579i −0.392488 + 0.226603i
\(267\) 0 0
\(268\) −1.70355 0.983543i −0.104061 0.0600794i
\(269\) −21.0293 −1.28218 −0.641090 0.767466i \(-0.721517\pi\)
−0.641090 + 0.767466i \(0.721517\pi\)
\(270\) 0 0
\(271\) 12.7508i 0.774554i −0.921963 0.387277i \(-0.873416\pi\)
0.921963 0.387277i \(-0.126584\pi\)
\(272\) 0.378341 0.655305i 0.0229403 0.0397337i
\(273\) 0 0
\(274\) −0.317677 0.550233i −0.0191916 0.0332408i
\(275\) −13.6107 + 7.85814i −0.820756 + 0.473864i
\(276\) 0 0
\(277\) 5.81364 10.0695i 0.349308 0.605019i −0.636819 0.771013i \(-0.719750\pi\)
0.986127 + 0.165995i \(0.0530835\pi\)
\(278\) 13.6084i 0.816175i
\(279\) 0 0
\(280\) 4.01439i 0.239905i
\(281\) −14.9681 8.64183i −0.892921 0.515528i −0.0180245 0.999838i \(-0.505738\pi\)
−0.874897 + 0.484309i \(0.839071\pi\)
\(282\) 0 0
\(283\) −10.8047 18.7143i −0.642273 1.11245i −0.984924 0.172987i \(-0.944658\pi\)
0.342651 0.939463i \(-0.388675\pi\)
\(284\) −0.990631 + 0.571941i −0.0587831 + 0.0339385i
\(285\) 0 0
\(286\) 17.8007 + 3.00514i 1.05258 + 0.177698i
\(287\) 1.56796 0.0925536
\(288\) 0 0
\(289\) −16.7732 −0.986662
\(290\) −6.42689 + 11.1317i −0.377400 + 0.653676i
\(291\) 0 0
\(292\) 9.43814 5.44912i 0.552326 0.318885i
\(293\) 0.0618730 0.0357224i 0.00361466 0.00208692i −0.498192 0.867067i \(-0.666002\pi\)
0.501806 + 0.864980i \(0.332669\pi\)
\(294\) 0 0
\(295\) −2.68840 + 4.65645i −0.156525 + 0.271109i
\(296\) 15.1223 0.878967
\(297\) 0 0
\(298\) 12.5536 0.727209
\(299\) 3.41209 + 0.576033i 0.197326 + 0.0333129i
\(300\) 0 0
\(301\) 2.34182 1.35205i 0.134980 0.0779309i
\(302\) −5.47937 9.49055i −0.315303 0.546120i
\(303\) 0 0
\(304\) −9.20778 5.31611i −0.528102 0.304900i
\(305\) 12.0406i 0.689441i
\(306\) 0 0
\(307\) 19.9335i 1.13766i 0.822454 + 0.568831i \(0.192604\pi\)
−0.822454 + 0.568831i \(0.807396\pi\)
\(308\) −2.03111 + 3.51798i −0.115733 + 0.200455i
\(309\) 0 0
\(310\) 2.28805 1.32101i 0.129953 0.0750282i
\(311\) 3.04014 + 5.26567i 0.172390 + 0.298589i 0.939255 0.343220i \(-0.111518\pi\)
−0.766865 + 0.641809i \(0.778184\pi\)
\(312\) 0 0
\(313\) −3.04622 + 5.27620i −0.172182 + 0.298228i −0.939183 0.343418i \(-0.888415\pi\)
0.767000 + 0.641647i \(0.221748\pi\)
\(314\) 11.7482i 0.662990i
\(315\) 0 0
\(316\) −10.9317 −0.614959
\(317\) −8.25032 4.76332i −0.463384 0.267535i 0.250082 0.968225i \(-0.419542\pi\)
−0.713466 + 0.700690i \(0.752876\pi\)
\(318\) 0 0
\(319\) −37.8663 + 21.8621i −2.12011 + 1.22404i
\(320\) −8.74544 + 5.04918i −0.488885 + 0.282258i
\(321\) 0 0
\(322\) 0.530115 0.918186i 0.0295421 0.0511685i
\(323\) 3.18614i 0.177282i
\(324\) 0 0
\(325\) 4.23977 + 11.3897i 0.235180 + 0.631785i
\(326\) 9.10790 15.7753i 0.504440 0.873715i
\(327\) 0 0
\(328\) 2.32970 + 4.03516i 0.128636 + 0.222804i
\(329\) −3.51807 6.09347i −0.193957 0.335944i
\(330\) 0 0
\(331\) −15.7143 9.07268i −0.863739 0.498680i 0.00152386 0.999999i \(-0.499515\pi\)
−0.865262 + 0.501319i \(0.832848\pi\)
\(332\) 8.66595i 0.475606i
\(333\) 0 0
\(334\) 18.0487 0.987580
\(335\) 1.48243 2.56765i 0.0809938 0.140285i
\(336\) 0 0
\(337\) 4.00930 + 6.94430i 0.218400 + 0.378280i 0.954319 0.298789i \(-0.0965828\pi\)
−0.735919 + 0.677070i \(0.763250\pi\)
\(338\) 4.58283 13.1862i 0.249273 0.717234i
\(339\) 0 0
\(340\) −0.445790 0.257377i −0.0241763 0.0139582i
\(341\) 8.98726 0.486687
\(342\) 0 0
\(343\) 13.3138i 0.718876i
\(344\) 6.95904 + 4.01780i 0.375206 + 0.216625i
\(345\) 0 0
\(346\) −17.7497 + 10.2478i −0.954232 + 0.550926i
\(347\) 8.31364 + 14.3996i 0.446299 + 0.773013i 0.998142 0.0609351i \(-0.0194083\pi\)
−0.551842 + 0.833949i \(0.686075\pi\)
\(348\) 0 0
\(349\) −0.155013 0.0894966i −0.00829764 0.00479065i 0.495845 0.868411i \(-0.334858\pi\)
−0.504143 + 0.863620i \(0.668192\pi\)
\(350\) 3.72364 0.199037
\(351\) 0 0
\(352\) −20.5519 −1.09542
\(353\) −14.6540 8.46052i −0.779956 0.450308i 0.0564585 0.998405i \(-0.482019\pi\)
−0.836415 + 0.548097i \(0.815352\pi\)
\(354\) 0 0
\(355\) −0.862050 1.49311i −0.0457529 0.0792463i
\(356\) 5.03114 2.90473i 0.266650 0.153950i
\(357\) 0 0
\(358\) 7.75253 + 4.47593i 0.409734 + 0.236560i
\(359\) 34.4410i 1.81773i −0.417093 0.908864i \(-0.636951\pi\)
0.417093 0.908864i \(-0.363049\pi\)
\(360\) 0 0
\(361\) −25.7689 −1.35626
\(362\) 9.24044 + 5.33497i 0.485667 + 0.280400i
\(363\) 0 0
\(364\) 2.42099 + 2.00157i 0.126895 + 0.104911i
\(365\) 8.21310 + 14.2255i 0.429893 + 0.744597i
\(366\) 0 0
\(367\) −12.5426 + 21.7244i −0.654717 + 1.13400i 0.327248 + 0.944939i \(0.393879\pi\)
−0.981965 + 0.189064i \(0.939455\pi\)
\(368\) 1.52506 0.0794993
\(369\) 0 0
\(370\) 6.78034i 0.352493i
\(371\) 0.518648 + 0.299441i 0.0269268 + 0.0155462i
\(372\) 0 0
\(373\) −5.47530 9.48350i −0.283500 0.491037i 0.688744 0.725005i \(-0.258162\pi\)
−0.972244 + 0.233968i \(0.924829\pi\)
\(374\) 1.19211 + 2.06479i 0.0616425 + 0.106768i
\(375\) 0 0
\(376\) 10.4544 18.1076i 0.539145 0.933827i
\(377\) 11.7954 + 31.6872i 0.607496 + 1.63197i
\(378\) 0 0
\(379\) 11.1048i 0.570415i −0.958466 0.285208i \(-0.907937\pi\)
0.958466 0.285208i \(-0.0920626\pi\)
\(380\) −3.61643 + 6.26385i −0.185519 + 0.321329i
\(381\) 0 0
\(382\) −5.65043 + 3.26228i −0.289101 + 0.166913i
\(383\) −5.09111 + 2.93935i −0.260144 + 0.150194i −0.624400 0.781105i \(-0.714656\pi\)
0.364256 + 0.931299i \(0.381323\pi\)
\(384\) 0 0
\(385\) −5.30242 3.06135i −0.270236 0.156021i
\(386\) −17.7322 −0.902548
\(387\) 0 0
\(388\) 14.6326i 0.742860i
\(389\) −0.0401383 + 0.0695217i −0.00203510 + 0.00352489i −0.867041 0.498237i \(-0.833981\pi\)
0.865006 + 0.501761i \(0.167314\pi\)
\(390\) 0 0
\(391\) 0.228506 + 0.395785i 0.0115561 + 0.0200157i
\(392\) −15.7306 + 9.08207i −0.794516 + 0.458714i
\(393\) 0 0
\(394\) −10.2925 + 17.8271i −0.518528 + 0.898117i
\(395\) 16.4767i 0.829034i
\(396\) 0 0
\(397\) 1.33964i 0.0672345i −0.999435 0.0336172i \(-0.989297\pi\)
0.999435 0.0336172i \(-0.0107027\pi\)
\(398\) 8.42800 + 4.86591i 0.422458 + 0.243906i
\(399\) 0 0
\(400\) 2.67809 + 4.63858i 0.133904 + 0.231929i
\(401\) −27.4333 + 15.8386i −1.36995 + 0.790942i −0.990921 0.134442i \(-0.957076\pi\)
−0.379030 + 0.925384i \(0.623742\pi\)
\(402\) 0 0
\(403\) 1.15689 6.85276i 0.0576288 0.341360i
\(404\) −11.4571 −0.570014
\(405\) 0 0
\(406\) 10.3595 0.514135
\(407\) −11.5322 + 19.9744i −0.571631 + 0.990094i
\(408\) 0 0
\(409\) −2.92633 + 1.68952i −0.144698 + 0.0835412i −0.570601 0.821227i \(-0.693290\pi\)
0.425903 + 0.904769i \(0.359956\pi\)
\(410\) −1.80923 + 1.04456i −0.0893515 + 0.0515871i
\(411\) 0 0
\(412\) −0.0443386 + 0.0767966i −0.00218440 + 0.00378350i
\(413\) 4.33345 0.213235
\(414\) 0 0
\(415\) −13.0616 −0.641170
\(416\) −2.64555 + 15.6707i −0.129709 + 0.768322i
\(417\) 0 0
\(418\) 29.0127 16.7505i 1.41906 0.819293i
\(419\) −10.8330 18.7633i −0.529228 0.916649i −0.999419 0.0340847i \(-0.989148\pi\)
0.470191 0.882565i \(-0.344185\pi\)
\(420\) 0 0
\(421\) 12.1688 + 7.02566i 0.593071 + 0.342409i 0.766311 0.642470i \(-0.222090\pi\)
−0.173240 + 0.984880i \(0.555424\pi\)
\(422\) 15.7828i 0.768297i
\(423\) 0 0
\(424\) 1.77966i 0.0864280i
\(425\) −0.802539 + 1.39004i −0.0389288 + 0.0674267i
\(426\) 0 0
\(427\) 8.40401 4.85206i 0.406699 0.234808i
\(428\) 5.26079 + 9.11195i 0.254290 + 0.440443i
\(429\) 0 0
\(430\) −1.80145 + 3.12020i −0.0868735 + 0.150469i
\(431\) 26.5547i 1.27909i −0.768752 0.639547i \(-0.779122\pi\)
0.768752 0.639547i \(-0.220878\pi\)
\(432\) 0 0
\(433\) 21.7861 1.04697 0.523485 0.852035i \(-0.324631\pi\)
0.523485 + 0.852035i \(0.324631\pi\)
\(434\) −1.84406 1.06467i −0.0885178 0.0511058i
\(435\) 0 0
\(436\) −10.3530 + 5.97728i −0.495817 + 0.286260i
\(437\) 5.56122 3.21077i 0.266029 0.153592i
\(438\) 0 0
\(439\) 3.89690 6.74963i 0.185989 0.322142i −0.757920 0.652347i \(-0.773784\pi\)
0.943909 + 0.330205i \(0.107118\pi\)
\(440\) 18.1945i 0.867387i
\(441\) 0 0
\(442\) 1.72785 0.643188i 0.0821857 0.0305933i
\(443\) 8.00154 13.8591i 0.380165 0.658465i −0.610921 0.791692i \(-0.709201\pi\)
0.991086 + 0.133227i \(0.0425339\pi\)
\(444\) 0 0
\(445\) 4.37811 + 7.58311i 0.207542 + 0.359474i
\(446\) −10.8486 18.7902i −0.513694 0.889744i
\(447\) 0 0
\(448\) 7.04840 + 4.06940i 0.333006 + 0.192261i
\(449\) 8.58501i 0.405151i 0.979267 + 0.202576i \(0.0649312\pi\)
−0.979267 + 0.202576i \(0.935069\pi\)
\(450\) 0 0
\(451\) −7.10648 −0.334631
\(452\) 4.94814 8.57043i 0.232741 0.403119i
\(453\) 0 0
\(454\) −11.0358 19.1146i −0.517936 0.897092i
\(455\) −3.01683 + 3.64901i −0.141431 + 0.171068i
\(456\) 0 0
\(457\) 4.76629 + 2.75182i 0.222958 + 0.128725i 0.607319 0.794458i \(-0.292245\pi\)
−0.384361 + 0.923183i \(0.625578\pi\)
\(458\) 21.3608 0.998123
\(459\) 0 0
\(460\) 1.03747i 0.0483721i
\(461\) 19.9077 + 11.4937i 0.927196 + 0.535317i 0.885924 0.463831i \(-0.153525\pi\)
0.0412725 + 0.999148i \(0.486859\pi\)
\(462\) 0 0
\(463\) 21.8412 12.6100i 1.01505 0.586037i 0.102381 0.994745i \(-0.467354\pi\)
0.912665 + 0.408708i \(0.134021\pi\)
\(464\) 7.45070 + 12.9050i 0.345890 + 0.599099i
\(465\) 0 0
\(466\) −26.4048 15.2448i −1.22318 0.706201i
\(467\) −18.1098 −0.838023 −0.419012 0.907981i \(-0.637623\pi\)
−0.419012 + 0.907981i \(0.637623\pi\)
\(468\) 0 0
\(469\) −2.38954 −0.110338
\(470\) 8.11883 + 4.68741i 0.374494 + 0.216214i
\(471\) 0 0
\(472\) 6.43871 + 11.1522i 0.296366 + 0.513321i
\(473\) −10.6139 + 6.12792i −0.488026 + 0.281762i
\(474\) 0 0
\(475\) 19.5316 + 11.2766i 0.896171 + 0.517405i
\(476\) 0.414867i 0.0190154i
\(477\) 0 0
\(478\) 15.8013 0.722734
\(479\) −14.3564 8.28869i −0.655962 0.378720i 0.134775 0.990876i \(-0.456969\pi\)
−0.790737 + 0.612157i \(0.790302\pi\)
\(480\) 0 0
\(481\) 13.7459 + 11.3645i 0.626760 + 0.518177i
\(482\) 7.10688 + 12.3095i 0.323709 + 0.560681i
\(483\) 0 0
\(484\) 4.54779 7.87700i 0.206718 0.358045i
\(485\) 22.0548 1.00146
\(486\) 0 0
\(487\) 5.78932i 0.262339i −0.991360 0.131170i \(-0.958127\pi\)
0.991360 0.131170i \(-0.0418732\pi\)
\(488\) 24.9737 + 14.4186i 1.13051 + 0.652697i
\(489\) 0 0
\(490\) −4.07210 7.05308i −0.183959 0.318626i
\(491\) −5.23530 9.06781i −0.236266 0.409224i 0.723374 0.690456i \(-0.242590\pi\)
−0.959640 + 0.281232i \(0.909257\pi\)
\(492\) 0 0
\(493\) −2.23274 + 3.86722i −0.100558 + 0.174171i
\(494\) −9.03752 24.2783i −0.406617 1.09233i
\(495\) 0 0
\(496\) 3.06289i 0.137528i
\(497\) −0.694771 + 1.20338i −0.0311647 + 0.0539789i
\(498\) 0 0
\(499\) 7.82629 4.51851i 0.350353 0.202276i −0.314488 0.949262i \(-0.601833\pi\)
0.664841 + 0.746985i \(0.268499\pi\)
\(500\) 7.83636 4.52432i 0.350453 0.202334i
\(501\) 0 0
\(502\) 11.1075 + 6.41289i 0.495750 + 0.286221i
\(503\) 9.96486 0.444311 0.222155 0.975011i \(-0.428691\pi\)
0.222155 + 0.975011i \(0.428691\pi\)
\(504\) 0 0
\(505\) 17.2686i 0.768443i
\(506\) −2.40265 + 4.16151i −0.106811 + 0.185002i
\(507\) 0 0
\(508\) 3.43477 + 5.94920i 0.152393 + 0.263953i
\(509\) 30.5593 17.6434i 1.35452 0.782030i 0.365638 0.930757i \(-0.380851\pi\)
0.988878 + 0.148727i \(0.0475175\pi\)
\(510\) 0 0
\(511\) 6.61936 11.4651i 0.292823 0.507185i
\(512\) 16.7198i 0.738919i
\(513\) 0 0
\(514\) 16.0698i 0.708808i
\(515\) −0.115751 0.0668287i −0.00510058 0.00294482i
\(516\) 0 0
\(517\) 15.9450 + 27.6175i 0.701260 + 1.21462i
\(518\) 4.73251 2.73231i 0.207934 0.120051i
\(519\) 0 0
\(520\) −13.8732 2.34209i −0.608381 0.102708i
\(521\) −12.9544 −0.567541 −0.283770 0.958892i \(-0.591585\pi\)
−0.283770 + 0.958892i \(0.591585\pi\)
\(522\) 0 0
\(523\) −0.367139 −0.0160539 −0.00802694 0.999968i \(-0.502555\pi\)
−0.00802694 + 0.999968i \(0.502555\pi\)
\(524\) 3.96371 6.86535i 0.173156 0.299914i
\(525\) 0 0
\(526\) 1.44075 0.831815i 0.0628195 0.0362689i
\(527\) 0.794884 0.458927i 0.0346257 0.0199912i
\(528\) 0 0
\(529\) 11.0395 19.1209i 0.479976 0.831343i
\(530\) −0.797940 −0.0346603
\(531\) 0 0
\(532\) 5.82934 0.252734
\(533\) −0.914787 + 5.41867i −0.0396238 + 0.234709i
\(534\) 0 0
\(535\) −13.7339 + 7.92925i −0.593767 + 0.342811i
\(536\) −3.55042 6.14950i −0.153355 0.265618i
\(537\) 0 0
\(538\) −19.5566 11.2910i −0.843145 0.486790i
\(539\) 27.7038i 1.19329i
\(540\) 0 0
\(541\) 42.0316i 1.80708i −0.428504 0.903540i \(-0.640959\pi\)
0.428504 0.903540i \(-0.359041\pi\)
\(542\) 6.84612 11.8578i 0.294066 0.509337i
\(543\) 0 0
\(544\) −1.81772 + 1.04946i −0.0779343 + 0.0449954i
\(545\) −9.00917 15.6043i −0.385911 0.668417i
\(546\) 0 0
\(547\) 14.2892 24.7496i 0.610962 1.05822i −0.380116 0.924939i \(-0.624116\pi\)
0.991079 0.133279i \(-0.0425506\pi\)
\(548\) 0.501071i 0.0214047i
\(549\) 0 0
\(550\) −16.8767 −0.719625
\(551\) 54.3388 + 31.3725i 2.31491 + 1.33651i
\(552\) 0 0
\(553\) −11.5003 + 6.63972i −0.489044 + 0.282350i
\(554\) 10.8130 6.24289i 0.459401 0.265235i
\(555\) 0 0
\(556\) 5.36610 9.29435i 0.227573 0.394168i
\(557\) 3.59187i 0.152192i −0.997100 0.0760961i \(-0.975754\pi\)
0.997100 0.0760961i \(-0.0242456\pi\)
\(558\) 0 0
\(559\) 3.30625 + 8.88187i 0.139839 + 0.375663i
\(560\) −1.04332 + 1.80709i −0.0440884 + 0.0763634i
\(561\) 0 0
\(562\) −9.27991 16.0733i −0.391449 0.678010i
\(563\) −15.3227 26.5396i −0.645774 1.11851i −0.984122 0.177492i \(-0.943202\pi\)
0.338349 0.941021i \(-0.390132\pi\)
\(564\) 0 0
\(565\) 12.9177 + 7.45801i 0.543450 + 0.313761i
\(566\) 23.2050i 0.975377i
\(567\) 0 0
\(568\) −4.12921 −0.173258
\(569\) −17.3324 + 30.0206i −0.726612 + 1.25853i 0.231695 + 0.972788i \(0.425573\pi\)
−0.958307 + 0.285740i \(0.907761\pi\)
\(570\) 0 0
\(571\) 7.76050 + 13.4416i 0.324767 + 0.562512i 0.981465 0.191641i \(-0.0613809\pi\)
−0.656698 + 0.754153i \(0.728048\pi\)
\(572\) −10.9727 9.07173i −0.458792 0.379308i
\(573\) 0 0
\(574\) 1.45815 + 0.841864i 0.0608621 + 0.0351387i
\(575\) −3.23497 −0.134908
\(576\) 0 0
\(577\) 18.6264i 0.775426i 0.921780 + 0.387713i \(0.126735\pi\)
−0.921780 + 0.387713i \(0.873265\pi\)
\(578\) −15.5986 9.00585i −0.648816 0.374594i
\(579\) 0 0
\(580\) 8.77898 5.06855i 0.364527 0.210460i
\(581\) 5.26352 + 9.11669i 0.218368 + 0.378224i
\(582\) 0 0
\(583\) −2.35068 1.35716i −0.0973550 0.0562080i
\(584\) 39.3407 1.62793
\(585\) 0 0
\(586\) 0.0767199 0.00316927
\(587\) 30.6515 + 17.6966i 1.26512 + 0.730418i 0.974061 0.226287i \(-0.0726587\pi\)
0.291060 + 0.956705i \(0.405992\pi\)
\(588\) 0 0
\(589\) −6.44844 11.1690i −0.265703 0.460211i
\(590\) −5.00026 + 2.88690i −0.205857 + 0.118852i
\(591\) 0 0
\(592\) 6.80736 + 3.93023i 0.279781 + 0.161531i
\(593\) 2.41535i 0.0991864i −0.998770 0.0495932i \(-0.984208\pi\)
0.998770 0.0495932i \(-0.0157925\pi\)
\(594\) 0 0
\(595\) −0.625302 −0.0256349
\(596\) −8.57395 4.95017i −0.351203 0.202767i
\(597\) 0 0
\(598\) 2.86386 + 2.36771i 0.117112 + 0.0968227i
\(599\) 20.4683 + 35.4522i 0.836314 + 1.44854i 0.892956 + 0.450143i \(0.148627\pi\)
−0.0566424 + 0.998395i \(0.518040\pi\)
\(600\) 0 0
\(601\) 8.82077 15.2780i 0.359807 0.623203i −0.628122 0.778115i \(-0.716176\pi\)
0.987928 + 0.154912i \(0.0495093\pi\)
\(602\) 2.90376 0.118348
\(603\) 0 0
\(604\) 8.64259i 0.351662i
\(605\) 11.8725 + 6.85459i 0.482686 + 0.278679i
\(606\) 0 0
\(607\) 9.22956 + 15.9861i 0.374616 + 0.648854i 0.990270 0.139163i \(-0.0444412\pi\)
−0.615653 + 0.788017i \(0.711108\pi\)
\(608\) 14.7461 + 25.5411i 0.598035 + 1.03583i
\(609\) 0 0
\(610\) −6.46480 + 11.1974i −0.261752 + 0.453368i
\(611\) 23.1108 8.60293i 0.934964 0.348037i
\(612\) 0 0
\(613\) 7.01548i 0.283352i −0.989913 0.141676i \(-0.954751\pi\)
0.989913 0.141676i \(-0.0452492\pi\)
\(614\) −10.7026 + 18.5375i −0.431923 + 0.748112i
\(615\) 0 0
\(616\) −12.6993 + 7.33193i −0.511669 + 0.295412i
\(617\) 8.78344 5.07112i 0.353608 0.204156i −0.312665 0.949863i \(-0.601222\pi\)
0.666273 + 0.745708i \(0.267888\pi\)
\(618\) 0 0
\(619\) −8.11092 4.68284i −0.326005 0.188219i 0.328061 0.944657i \(-0.393605\pi\)
−0.654066 + 0.756437i \(0.726938\pi\)
\(620\) −2.08362 −0.0836802
\(621\) 0 0
\(622\) 6.52922i 0.261798i
\(623\) 3.52855 6.11162i 0.141368 0.244857i
\(624\) 0 0
\(625\) −1.60751 2.78428i −0.0643002 0.111371i
\(626\) −5.66577 + 3.27113i −0.226450 + 0.130741i
\(627\) 0 0
\(628\) −4.63260 + 8.02389i −0.184861 + 0.320188i
\(629\) 2.35553i 0.0939212i
\(630\) 0 0
\(631\) 0.999379i 0.0397846i 0.999802 + 0.0198923i \(0.00633234\pi\)
−0.999802 + 0.0198923i \(0.993668\pi\)
\(632\) −34.1748 19.7308i −1.35940 0.784851i
\(633\) 0 0
\(634\) −5.11503 8.85948i −0.203144 0.351855i
\(635\) −8.96684 + 5.17701i −0.355838 + 0.205443i
\(636\) 0 0
\(637\) −21.1241 3.56619i −0.836967 0.141298i
\(638\) −46.9526 −1.85887
\(639\) 0 0
\(640\) 0.408601 0.0161514
\(641\) −4.27107 + 7.39770i −0.168697 + 0.292192i −0.937962 0.346738i \(-0.887289\pi\)
0.769265 + 0.638930i \(0.220623\pi\)
\(642\) 0 0
\(643\) −0.783139 + 0.452145i −0.0308840 + 0.0178309i −0.515362 0.856972i \(-0.672343\pi\)
0.484479 + 0.874803i \(0.339009\pi\)
\(644\) −0.724124 + 0.418073i −0.0285345 + 0.0164744i
\(645\) 0 0
\(646\) 1.71070 2.96301i 0.0673065 0.116578i
\(647\) −20.5148 −0.806518 −0.403259 0.915086i \(-0.632123\pi\)
−0.403259 + 0.915086i \(0.632123\pi\)
\(648\) 0 0
\(649\) −19.6406 −0.770959
\(650\) −2.17247 + 12.8684i −0.0852111 + 0.504742i
\(651\) 0 0
\(652\) −12.4412 + 7.18292i −0.487234 + 0.281305i
\(653\) 4.68449 + 8.11378i 0.183318 + 0.317517i 0.943009 0.332768i \(-0.107983\pi\)
−0.759690 + 0.650285i \(0.774649\pi\)
\(654\) 0 0
\(655\) 10.3477 + 5.97425i 0.404318 + 0.233433i
\(656\) 2.42192i 0.0945600i
\(657\) 0 0
\(658\) 7.55565i 0.294550i
\(659\) 17.6521 30.5743i 0.687627 1.19101i −0.284976 0.958535i \(-0.591986\pi\)
0.972603 0.232471i \(-0.0746811\pi\)
\(660\) 0 0
\(661\) 20.2167 11.6721i 0.786337 0.453992i −0.0523346 0.998630i \(-0.516666\pi\)
0.838671 + 0.544638i \(0.183333\pi\)
\(662\) −9.74257 16.8746i −0.378656 0.655851i
\(663\) 0 0
\(664\) −15.6413 + 27.0915i −0.606999 + 1.05135i
\(665\) 8.78619i 0.340714i
\(666\) 0 0
\(667\) −9.00000 −0.348481
\(668\) −12.3270 7.11702i −0.476948 0.275366i
\(669\) 0 0
\(670\) 2.75723 1.59189i 0.106521 0.0615000i
\(671\) −38.0897 + 21.9911i −1.47043 + 0.848956i
\(672\) 0 0
\(673\) −24.9264 + 43.1738i −0.960842 + 1.66423i −0.240449 + 0.970662i \(0.577295\pi\)
−0.720393 + 0.693566i \(0.756039\pi\)
\(674\) 8.61065i 0.331670i
\(675\) 0 0
\(676\) −8.32964 + 7.19890i −0.320371 + 0.276881i
\(677\) 5.45592 9.44994i 0.209688 0.363191i −0.741928 0.670479i \(-0.766088\pi\)
0.951616 + 0.307289i \(0.0994218\pi\)
\(678\) 0 0
\(679\) −8.88757 15.3937i −0.341074 0.590757i
\(680\) −0.929085 1.60922i −0.0356288 0.0617109i
\(681\) 0 0
\(682\) 8.35787 + 4.82542i 0.320039 + 0.184775i
\(683\) 24.0595i 0.920610i 0.887761 + 0.460305i \(0.152260\pi\)
−0.887761 + 0.460305i \(0.847740\pi\)
\(684\) 0 0
\(685\) −0.755232 −0.0288559
\(686\) −7.14840 + 12.3814i −0.272927 + 0.472724i
\(687\) 0 0
\(688\) 2.08842 + 3.61725i 0.0796203 + 0.137906i
\(689\) −1.33743 + 1.61768i −0.0509518 + 0.0616288i
\(690\) 0 0
\(691\) 25.4878 + 14.7154i 0.969600 + 0.559799i 0.899114 0.437714i \(-0.144212\pi\)
0.0704856 + 0.997513i \(0.477545\pi\)
\(692\) 16.1638 0.614457
\(693\) 0 0
\(694\) 17.8550i 0.677765i
\(695\) 14.0088 + 8.08798i 0.531383 + 0.306794i
\(696\) 0 0
\(697\) −0.628538 + 0.362886i −0.0238076 + 0.0137453i
\(698\) −0.0961047 0.166458i −0.00363762 0.00630053i
\(699\) 0 0
\(700\) −2.54320 1.46832i −0.0961240 0.0554972i
\(701\) −16.6961 −0.630604 −0.315302 0.948991i \(-0.602106\pi\)
−0.315302 + 0.948991i \(0.602106\pi\)
\(702\) 0 0
\(703\) 33.0979 1.24831
\(704\) −31.9456 18.4438i −1.20399 0.695127i
\(705\) 0 0
\(706\) −9.08520 15.7360i −0.341926 0.592234i
\(707\) −12.0530 + 6.95883i −0.453302 + 0.261714i
\(708\) 0 0
\(709\) −28.9718 16.7269i −1.08806 0.628191i −0.155000 0.987915i \(-0.549538\pi\)
−0.933059 + 0.359724i \(0.882871\pi\)
\(710\) 1.85140i 0.0694818i
\(711\) 0 0
\(712\) 20.9711 0.785925
\(713\) 1.60206 + 0.924948i 0.0599975 + 0.0346396i
\(714\) 0 0
\(715\) 13.6732 16.5385i 0.511350 0.618503i
\(716\) −3.52993 6.11401i −0.131920 0.228491i
\(717\) 0 0
\(718\) 18.4920 32.0291i 0.690115 1.19531i
\(719\) 31.3183 1.16797 0.583987 0.811763i \(-0.301492\pi\)
0.583987 + 0.811763i \(0.301492\pi\)
\(720\) 0 0
\(721\) 0.107721i 0.00401175i
\(722\) −23.9643 13.8358i −0.891858 0.514915i
\(723\) 0 0
\(724\) −4.20741 7.28745i −0.156367 0.270836i
\(725\) −15.8045 27.3742i −0.586964 1.01665i
\(726\) 0 0
\(727\) −18.8915 + 32.7210i −0.700646 + 1.21356i 0.267593 + 0.963532i \(0.413772\pi\)
−0.968240 + 0.250023i \(0.919562\pi\)
\(728\) 3.95586 + 10.6270i 0.146614 + 0.393862i
\(729\) 0 0
\(730\) 17.6390i 0.652850i
\(731\) −0.625834 + 1.08398i −0.0231473 + 0.0400923i
\(732\) 0 0
\(733\) −5.55072 + 3.20471i −0.205021 + 0.118369i −0.598995 0.800753i \(-0.704433\pi\)
0.393975 + 0.919121i \(0.371100\pi\)
\(734\) −23.3284 + 13.4687i −0.861067 + 0.497137i
\(735\) 0 0
\(736\) −3.66355 2.11515i −0.135040 0.0779655i
\(737\) 10.8301 0.398933
\(738\) 0 0
\(739\) 26.2292i 0.964856i 0.875936 + 0.482428i \(0.160245\pi\)
−0.875936 + 0.482428i \(0.839755\pi\)
\(740\) 2.67365 4.63089i 0.0982852 0.170235i
\(741\) 0 0
\(742\) 0.321551 + 0.556942i 0.0118045 + 0.0204460i
\(743\) −23.7541 + 13.7144i −0.871454 + 0.503134i −0.867831 0.496859i \(-0.834487\pi\)
−0.00362278 + 0.999993i \(0.501153\pi\)
\(744\) 0 0
\(745\) 7.46108 12.9230i 0.273353 0.473461i
\(746\) 11.7591i 0.430533i
\(747\) 0 0
\(748\) 1.88031i 0.0687508i
\(749\) 11.0688 + 6.39059i 0.404446 + 0.233507i
\(750\) 0 0
\(751\) 7.31837 + 12.6758i 0.267051 + 0.462546i 0.968099 0.250568i \(-0.0806174\pi\)
−0.701048 + 0.713114i \(0.747284\pi\)
\(752\) 9.41217 5.43412i 0.343227 0.198162i
\(753\) 0 0
\(754\) −6.04401 + 35.8013i −0.220110 + 1.30381i
\(755\) −13.0264 −0.474080
\(756\) 0 0
\(757\) 4.79203 0.174169 0.0870846 0.996201i \(-0.472245\pi\)
0.0870846 + 0.996201i \(0.472245\pi\)
\(758\) 5.96236 10.3271i 0.216563 0.375098i
\(759\) 0 0
\(760\) −22.6114 + 13.0547i −0.820201 + 0.473543i
\(761\) −16.7477 + 9.66927i −0.607103 + 0.350511i −0.771831 0.635828i \(-0.780659\pi\)
0.164728 + 0.986339i \(0.447325\pi\)
\(762\) 0 0
\(763\) −7.26096 + 12.5763i −0.262864 + 0.455294i
\(764\) 5.14558 0.186160
\(765\) 0 0
\(766\) −6.31277 −0.228089
\(767\) −2.52824 + 14.9759i −0.0912895 + 0.540747i
\(768\) 0 0
\(769\) −8.74040 + 5.04627i −0.315187 + 0.181973i −0.649245 0.760579i \(-0.724915\pi\)
0.334058 + 0.942552i \(0.391582\pi\)
\(770\) −3.28739 5.69393i −0.118469 0.205195i
\(771\) 0 0
\(772\) 12.1109 + 6.99224i 0.435882 + 0.251656i
\(773\) 8.43470i 0.303375i −0.988428 0.151688i \(-0.951529\pi\)
0.988428 0.151688i \(-0.0484708\pi\)
\(774\) 0 0
\(775\) 6.49703i 0.233380i
\(776\) 26.4106 45.7446i 0.948087 1.64213i
\(777\) 0 0
\(778\) −0.0746548 + 0.0431020i −0.00267651 + 0.00154528i
\(779\) 5.09896 + 8.83166i 0.182689 + 0.316427i
\(780\) 0 0
\(781\) 3.14892 5.45409i 0.112677 0.195163i
\(782\) 0.490757i 0.0175494i
\(783\) 0 0
\(784\) −9.44157 −0.337199
\(785\) −12.0939 6.98242i −0.431650 0.249213i
\(786\) 0 0
\(787\) 11.0977 6.40724i 0.395589 0.228393i −0.288990 0.957332i \(-0.593319\pi\)
0.684579 + 0.728939i \(0.259986\pi\)
\(788\) 14.0593 8.11714i 0.500842 0.289161i
\(789\) 0 0
\(790\) 8.84665 15.3228i 0.314750 0.545162i
\(791\) 12.0216i 0.427439i
\(792\) 0 0
\(793\) 11.8650 + 31.8741i 0.421339 + 1.13188i
\(794\) 0.719275 1.24582i 0.0255261 0.0442125i
\(795\) 0 0
\(796\) −3.83749 6.64672i −0.136016 0.235587i
\(797\) 14.6074 + 25.3008i 0.517421 + 0.896200i 0.999795 + 0.0202344i \(0.00644124\pi\)
−0.482374 + 0.875965i \(0.660225\pi\)
\(798\) 0 0
\(799\) 2.82053 + 1.62843i 0.0997832 + 0.0576099i
\(800\) 14.8573i 0.525284i
\(801\) 0 0
\(802\) −34.0161 −1.20115
\(803\) −30.0011 + 51.9634i −1.05871 + 1.83375i
\(804\) 0 0
\(805\) −0.630135 1.09143i −0.0222094 0.0384677i
\(806\) 4.75524 5.75170i 0.167496 0.202595i
\(807\) 0 0
\(808\) −35.8173 20.6791i −1.26005 0.727489i
\(809\) 11.3570 0.399292 0.199646 0.979868i \(-0.436021\pi\)
0.199646 + 0.979868i \(0.436021\pi\)
\(810\) 0 0
\(811\) 26.8826i 0.943974i −0.881605 0.471987i \(-0.843537\pi\)
0.881605 0.471987i \(-0.156463\pi\)
\(812\) −7.07544 4.08500i −0.248299 0.143356i
\(813\) 0 0
\(814\) −21.4492 + 12.3837i −0.751795 + 0.434049i
\(815\) −10.8264 18.7518i −0.379231 0.656847i
\(816\) 0 0
\(817\) 15.2311 + 8.79367i 0.532868 + 0.307652i
\(818\) −3.62852 −0.126868
\(819\) 0 0
\(820\) 1.64758 0.0575359
\(821\) −14.2700 8.23880i −0.498027 0.287536i 0.229871 0.973221i \(-0.426169\pi\)
−0.727898 + 0.685685i \(0.759503\pi\)
\(822\) 0 0
\(823\) −4.10205 7.10496i −0.142988 0.247663i 0.785632 0.618694i \(-0.212338\pi\)
−0.928621 + 0.371031i \(0.879005\pi\)
\(824\) −0.277222 + 0.160054i −0.00965750 + 0.00557576i
\(825\) 0 0
\(826\) 4.02997 + 2.32670i 0.140221 + 0.0809564i
\(827\) 43.6569i 1.51810i 0.651033 + 0.759049i \(0.274336\pi\)
−0.651033 + 0.759049i \(0.725664\pi\)
\(828\) 0 0
\(829\) 23.3338 0.810415 0.405208 0.914225i \(-0.367199\pi\)
0.405208 + 0.914225i \(0.367199\pi\)
\(830\) −12.1469 7.01302i −0.421625 0.243425i
\(831\) 0 0
\(832\) −18.1756 + 21.9842i −0.630124 + 0.762166i
\(833\) −1.41467 2.45028i −0.0490155 0.0848973i
\(834\) 0 0
\(835\) 10.7270 18.5798i 0.371224 0.642979i
\(836\) −26.4204 −0.913770
\(837\) 0 0
\(838\) 23.2658i 0.803702i
\(839\) 11.8836 + 6.86099i 0.410267 + 0.236868i 0.690904 0.722946i \(-0.257213\pi\)
−0.280638 + 0.959814i \(0.590546\pi\)
\(840\) 0 0
\(841\) −29.4696 51.0428i −1.01619 1.76010i
\(842\) 7.54440 + 13.0673i 0.259997 + 0.450328i
\(843\) 0 0
\(844\) 6.22355 10.7795i 0.214223 0.371046i
\(845\) −10.8504 12.5547i −0.373266 0.431896i
\(846\) 0 0
\(847\) 11.0489i 0.379646i
\(848\) −0.462527 + 0.801120i −0.0158832 + 0.0275106i
\(849\) 0 0
\(850\) −1.49267 + 0.861795i −0.0511982 + 0.0295593i
\(851\) −4.11144 + 2.37374i −0.140938 + 0.0813708i
\(852\) 0 0
\(853\) 13.2769 + 7.66545i 0.454594 + 0.262460i 0.709768 0.704435i \(-0.248800\pi\)
−0.255175 + 0.966895i \(0.582133\pi\)
\(854\) 10.4206 0.356587
\(855\) 0 0
\(856\) 37.9810i 1.29817i
\(857\) 21.3961 37.0590i 0.730875 1.26591i −0.225634 0.974212i \(-0.572445\pi\)
0.956510 0.291701i \(-0.0942212\pi\)
\(858\) 0 0
\(859\) 13.1536 + 22.7826i 0.448793 + 0.777333i 0.998308 0.0581513i \(-0.0185206\pi\)
−0.549514 + 0.835484i \(0.685187\pi\)
\(860\) 2.46074 1.42071i 0.0839104 0.0484457i
\(861\) 0 0
\(862\) 14.2577 24.6950i 0.485618 0.841116i
\(863\) 8.03444i 0.273495i 0.990606 + 0.136748i \(0.0436650\pi\)
−0.990606 + 0.136748i \(0.956335\pi\)
\(864\) 0 0
\(865\) 24.3627i 0.828357i
\(866\) 20.2603 + 11.6973i 0.688475 + 0.397491i
\(867\) 0 0
\(868\) 0.839648 + 1.45431i 0.0284995 + 0.0493626i
\(869\) 52.1232 30.0933i 1.76816 1.02085i
\(870\) 0 0
\(871\) 1.39412 8.25795i 0.0472378 0.279810i
\(872\) −43.1539 −1.46137
\(873\) 0 0
\(874\) 6.89568 0.233250
\(875\) 5.49596 9.51929i 0.185797 0.321811i
\(876\) 0 0
\(877\) −6.03899 + 3.48661i −0.203922 + 0.117735i −0.598484 0.801135i \(-0.704230\pi\)
0.394561 + 0.918870i \(0.370897\pi\)
\(878\) 7.24799 4.18463i 0.244608 0.141224i
\(879\) 0 0
\(880\) 4.72867 8.19029i 0.159403 0.276095i
\(881\) −30.4317 −1.02527 −0.512635 0.858606i \(-0.671331\pi\)
−0.512635 + 0.858606i \(0.671331\pi\)
\(882\) 0 0
\(883\) −1.51291 −0.0509134 −0.0254567 0.999676i \(-0.508104\pi\)
−0.0254567 + 0.999676i \(0.508104\pi\)
\(884\) −1.43373 0.242044i −0.0482215 0.00814081i
\(885\) 0 0
\(886\) 14.8824 8.59234i 0.499983 0.288665i
\(887\) −18.4472 31.9514i −0.619395 1.07282i −0.989596 0.143872i \(-0.954045\pi\)
0.370201 0.928952i \(-0.379289\pi\)
\(888\) 0 0
\(889\) 7.22684 + 4.17242i 0.242380 + 0.139938i
\(890\) 9.40274i 0.315181i
\(891\) 0 0
\(892\) 17.1114i 0.572931i
\(893\) 22.8813 39.6316i 0.765695 1.32622i
\(894\) 0 0
\(895\) 9.21526 5.32043i 0.308032 0.177842i
\(896\) −0.164656 0.285193i −0.00550078 0.00952763i
\(897\) 0 0
\(898\) −4.60944 + 7.98379i −0.153819 + 0.266422i
\(899\) 18.0754i 0.602848i
\(900\) 0 0
\(901\) −0.277209 −0.00923519
\(902\) −6.60881 3.81560i −0.220049 0.127045i
\(903\) 0 0
\(904\) 30.9377 17.8619i 1.02897 0.594078i
\(905\) 10.9839 6.34156i 0.365117 0.210801i
\(906\) 0 0
\(907\) −14.3940 + 24.9312i −0.477946 + 0.827827i −0.999680 0.0252808i \(-0.991952\pi\)
0.521734 + 0.853108i \(0.325285\pi\)
\(908\) 17.4067i 0.577662i
\(909\) 0 0
\(910\) −4.76478 + 1.77367i −0.157951 + 0.0587967i
\(911\) −19.8931 + 34.4559i −0.659089 + 1.14158i 0.321763 + 0.946820i \(0.395725\pi\)
−0.980852 + 0.194755i \(0.937609\pi\)
\(912\) 0 0
\(913\) −23.8559 41.3197i −0.789517 1.36748i
\(914\) 2.95500 + 5.11822i 0.0977428 + 0.169296i
\(915\) 0 0
\(916\) −14.5892 8.42306i −0.482039 0.278306i
\(917\) 9.62991i 0.318008i
\(918\) 0 0
\(919\) 28.4990 0.940095 0.470047 0.882641i \(-0.344237\pi\)
0.470047 + 0.882641i \(0.344237\pi\)
\(920\) 1.87253 3.24332i 0.0617356 0.106929i
\(921\) 0 0
\(922\) 12.3424 + 21.3776i 0.406475 + 0.704035i
\(923\) −3.75338 3.10313i −0.123544 0.102141i
\(924\) 0 0
\(925\) −14.4398 8.33683i −0.474778 0.274113i
\(926\) 27.0822 0.889975
\(927\) 0 0
\(928\) 41.3344i 1.35687i
\(929\) −26.1642 15.1059i −0.858421 0.495610i 0.00506213 0.999987i \(-0.498389\pi\)
−0.863483 + 0.504378i \(0.831722\pi\)
\(930\) 0 0
\(931\) −34.4292 + 19.8777i −1.12837 + 0.651466i
\(932\) 12.0228 + 20.8240i 0.393819 + 0.682114i
\(933\) 0 0
\(934\) −16.8416 9.72349i −0.551073 0.318162i
\(935\) 2.83407 0.0926839
\(936\) 0 0
\(937\) 6.31683 0.206362 0.103181 0.994663i \(-0.467098\pi\)
0.103181 + 0.994663i \(0.467098\pi\)
\(938\) −2.22219 1.28298i −0.0725572 0.0418909i
\(939\) 0 0
\(940\) −3.69671 6.40289i −0.120573 0.208839i
\(941\) 36.5433 21.0983i 1.19128 0.687784i 0.232681 0.972553i \(-0.425250\pi\)
0.958596 + 0.284769i \(0.0919168\pi\)
\(942\) 0 0
\(943\) −1.26679 0.731383i −0.0412524 0.0238171i
\(944\) 6.69358i 0.217857i
\(945\) 0 0
\(946\) −13.1608 −0.427893
\(947\) 11.7977 + 6.81143i 0.383375 + 0.221342i 0.679286 0.733874i \(-0.262290\pi\)
−0.295910 + 0.955216i \(0.595623\pi\)
\(948\) 0 0
\(949\) 35.7600 + 29.5647i 1.16082 + 0.959712i
\(950\) 12.1092 + 20.9737i 0.392874 + 0.680477i
\(951\) 0 0
\(952\) −0.748798 + 1.29696i −0.0242687 + 0.0420346i
\(953\) 43.5443 1.41054 0.705268 0.708940i \(-0.250826\pi\)
0.705268 + 0.708940i \(0.250826\pi\)
\(954\) 0 0
\(955\) 7.75560i 0.250965i
\(956\) −10.7921 6.23082i −0.349041 0.201519i
\(957\) 0 0
\(958\) −8.90068 15.4164i −0.287568 0.498082i
\(959\) 0.304340 + 0.527132i 0.00982765 + 0.0170220i
\(960\) 0 0
\(961\) −13.6424 + 23.6293i −0.440076 + 0.762234i
\(962\) 6.68148 + 17.9491i 0.215420 + 0.578701i
\(963\) 0 0
\(964\) 11.2096i 0.361038i
\(965\) −10.5390 + 18.2540i −0.339261 + 0.587618i
\(966\) 0 0
\(967\) 13.9813 8.07210i 0.449608 0.259581i −0.258057 0.966130i \(-0.583082\pi\)
0.707665 + 0.706549i \(0.249749\pi\)
\(968\) 28.4346 16.4167i 0.913922 0.527653i
\(969\) 0 0
\(970\) 20.5103 + 11.8416i 0.658547 + 0.380212i
\(971\) 0.206193 0.00661704 0.00330852 0.999995i \(-0.498947\pi\)
0.00330852 + 0.999995i \(0.498947\pi\)
\(972\) 0 0
\(973\) 13.0370i 0.417948i
\(974\) 3.10839 5.38389i 0.0995992 0.172511i
\(975\) 0 0
\(976\) 7.49465 + 12.9811i 0.239898 + 0.415515i
\(977\) 6.91568 3.99277i 0.221252 0.127740i −0.385278 0.922801i \(-0.625894\pi\)
0.606530 + 0.795061i \(0.292561\pi\)
\(978\) 0 0
\(979\) −15.9925 + 27.6998i −0.511122 + 0.885289i
\(980\) 6.42289i 0.205172i
\(981\) 0 0
\(982\) 11.2437i 0.358801i
\(983\) 24.1512 + 13.9437i 0.770304 + 0.444735i 0.832983 0.553299i \(-0.186631\pi\)
−0.0626793 + 0.998034i \(0.519965\pi\)
\(984\) 0 0
\(985\) 12.2344 + 21.1907i 0.389822 + 0.675191i
\(986\) −4.15276 + 2.39760i −0.132251 + 0.0763550i
\(987\) 0 0
\(988\) −3.40099 + 20.1455i −0.108200 + 0.640914i
\(989\) −2.52269 −0.0802168
\(990\) 0 0
\(991\) −8.84780 −0.281059 −0.140530 0.990076i \(-0.544881\pi\)
−0.140530 + 0.990076i \(0.544881\pi\)
\(992\) −4.24802 + 7.35778i −0.134875 + 0.233610i
\(993\) 0 0
\(994\) −1.29223 + 0.746070i −0.0409871 + 0.0236639i
\(995\) 10.0182 5.78400i 0.317598 0.183365i
\(996\) 0 0
\(997\) 12.7226 22.0362i 0.402929 0.697893i −0.591149 0.806562i \(-0.701326\pi\)
0.994078 + 0.108669i \(0.0346590\pi\)
\(998\) 9.70427 0.307183
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 351.2.t.c.181.7 20
3.2 odd 2 117.2.t.c.25.4 20
9.2 odd 6 1053.2.b.j.649.7 10
9.4 even 3 inner 351.2.t.c.64.4 20
9.5 odd 6 117.2.t.c.103.7 yes 20
9.7 even 3 1053.2.b.i.649.4 10
13.12 even 2 inner 351.2.t.c.181.4 20
39.38 odd 2 117.2.t.c.25.7 yes 20
117.25 even 6 1053.2.b.i.649.7 10
117.38 odd 6 1053.2.b.j.649.4 10
117.77 odd 6 117.2.t.c.103.4 yes 20
117.103 even 6 inner 351.2.t.c.64.7 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.t.c.25.4 20 3.2 odd 2
117.2.t.c.25.7 yes 20 39.38 odd 2
117.2.t.c.103.4 yes 20 117.77 odd 6
117.2.t.c.103.7 yes 20 9.5 odd 6
351.2.t.c.64.4 20 9.4 even 3 inner
351.2.t.c.64.7 20 117.103 even 6 inner
351.2.t.c.181.4 20 13.12 even 2 inner
351.2.t.c.181.7 20 1.1 even 1 trivial
1053.2.b.i.649.4 10 9.7 even 3
1053.2.b.i.649.7 10 117.25 even 6
1053.2.b.j.649.4 10 117.38 odd 6
1053.2.b.j.649.7 10 9.2 odd 6